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Incompressible Maxwell-Boussinesq
approximation: Existence, uniqueness and

shape sensitivity

Luisa Consiglieri 1, Šárka Nečasová 2,4,
Jan Sokolowski 3,4

Abstract
We prove the existence and uniqueness of weak solutions to the

variational formulation of the Maxwell-Boussinesq approximation prob-
lem. Some further regularity in W 1,2+δ, δ > 0, is obtained for the weak
solutions. The shape sensitivity analysis by the boundary variations
technique is performed for the weak solutions. As a result, the exis-
tence of the strong material derivatives for the weak solutions of the
problem is shown. The result can be used to establish the shape dif-
ferentiability for a broad class of shape functionals for the models of
Fourier-Navier-Stokes flows under the electromagnetic field.
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Republic
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1 Introduction

The problem of magnetohydrodynamics flows have been studied by several
authors [9, 11, 16, 17, 19, 20, 21, 26], and it goes back to the work of La-
dyzhenskaya and Solonnikov. At that time the coupled system did not in-
clude thermal effects. The full complete problem including the heat transfer
seems to be more realistic and not many authors were dealt with it. The
full Navier-Stokes-Fourier-Maxwell problem was only partially studied in the
works [1, 20, 21], where the principal coefficients are assumed constant. While
in [9] the coefficients are only temperature dependent, and the force term is
either globally bounded (truncated) or that the thermal expansion coefficient
is sufficiently small. Concerning the shape sensitivity analysis we can mention
work of Zolésio and his collaborators (see [2, 3, 8, 12, 13, 14, 22, 23, 24, 25]),
where the case of Navier-Stokes problem was investigated and also the cou-
pled problem with heat transfer. We refer to [7] where an uncoupled complete
problem is studied (cf. Remark 6.1). It is only in this paper that the problem
under study has the principal coefficients varying with the temperature as
well as the space variable.

Let Ω be an open bounded subset of R3 with the boundary ∂Ω ∈ C1,1

which is splitted into two parts ∂Ω = Γ̄D∪Γ̄N , where ΓD is an open nonempty
subset of ∂Ω and ΓN = ∂Ω \ Γ̄D. The thermoelectromagnetoflow problem
reads in Ω:

−∇ · (ν(T )Du) + ρ(u · ∇)u +∇p = µrotH×H + ρf − ρG(T )T ; (1)

∇× (σ−1(T )∇×H) = ∇× (σ−1(T )J0 + µu×H); (2)

divu =
3∑

i=1

∂ui

∂xi

= divH = 0; (3)

−∇ · (k(T )∇T ) + ρu · ∇T = f. (4)

Here u is the fluid velocity vector, T is the temperature, Du = (Dij) =
(∂iuj + ∂jui)/2 (i, j = 1, 2, 3) is the symmetrized gradient of the velocity,
µ the magnetic permeability, p denotes the pressure, ρ is density, f and f
denote the external forces and heat sources, respectively. The coefficients
ν, σ, k are temperature dependent functions representing the viscosity of the
fluid, the electric and the heat conductivities, respectively. Indeed in order
to be more realistic setting these coefficients are not only functions on the
temperature but also on the space variable. The density ρ is assumed to be
constant, we set ρ = 1.
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The buoyancy force as in the Boussinesq approximation is described by
G(T ) = β(T )(0, 0, g)>, where β denotes the coefficient of thermal dilatation
and g is the constant of gravity. The existence of two body forces in the fluid,
the Lorentz force J×B = (∇×H)× (µH) and the buoyancy force, results
from the presence of the magnetic field H. Moreover (2) results if we take
the rotational in the second equation of the steady-state Maxwell equations:

∇× E = 0; J = ∇×H,

where E is the electric intensity field and J is the current density given by
the Ohm’s law

J = J0 + σ(T )(E + u×B),

where J0 denotes a given applied current [1].
Finally, the thermoelectromagnetoflow problem under study has the fol-

lowing boundary conditions

u = 0, H · n = 0 on ∂Ω; (5)

T = 0 on ΓD, k(T )
∂T

∂n
+ αT = h on ΓN , (6)

where α represents the convective heat tranfer coefficient. Here α is a function
only depending on the space variable. We refer to [4, 5, 9, 21] where it can be
extended to a function also depending on the temperature and even to include
radiation effects. To simplify the presentation it is assumed a homogeneous
Dirichlet condition for the velocity of the fluid (cf. Remark 3.5).

The outline of the paper is as follows. In Section 2, new existence results
are stated under diverse assumptions for the system of strongly coupled el-
liptic equations governing temperature dependent electromagnetic stationary
flow. Fluid velocity, magnetic field intensity and fluid temperature are the
state variables. Section 3 is devoted to the proof of the existence of a weak
solution to the nonlinear coupling of electromagnetics, heat and fluid de-
vice, using a fixed point argument. Some well posedness auxiliary existence
results are established as well as results on the regularity of solutions. In
Section 4, additional regularity of a weak solution to the considered electro-
magnetic flow problem is proved, assuming more regular external forces and
applied current intensities. Assuming Lipschitz type continuity of function
parameters with respect to temperature, this solution is shown to be unique
for suitable small data. In Section 5, assuming that all coefficients of the
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elliptic system are constant and the velocity field is divergence free, sensi-
tivity analysis of the unique solution to the considered elliptic system with
respect to perturbation of the boundary of the domain occupied by the fluid
is performed using the material derivative approach. The existence of strong
material derivative of the weak solution to the elliptic system is shown. The
elliptic system characterizing this derivative is provided.

2 Assumptions and main existence results

We need some assumptions on the model, which are listed below.
Let us assume that

(H1) ν, σ, k : Ω× R → R are Caratheodory functions such that

∃ν#, ν# > 0 : ν# ≤ ν(·, ξ) ≤ ν#, a.e. in Ω, ∀ξ ∈ R; (7)

∃σ#, σ# > 0 : σ# ≤ σ(·, ξ) ≤ σ#, a.e. in Ω, ∀ξ ∈ R; (8)

∃k#, k# > 0 : k# ≤ k(·, ξ) ≤ k#, a.e. in Ω, ∀ξ ∈ R; (9)

(H2) G = (0, 0, G) where G = gβ with β a real, continuous, and bounded
function and we denote by G# the upper bound for the function G;

(H3) α ∈ Lq
+(ΓN) = {α ∈ Lq(ΓN) : α ≥ 0} for q such that q > 3/2, which

means that its conjugate q′ = q/(q − 1) verifies q′ < 3;

(H4) and f ∈ L2(Ω), J0 ∈ L2(Ω), f ∈ L2(Ω) and h ∈ L2(ΓN).

In the framework of function spaces of the Lebesgue and Sobolev type, the
norms are denoted by the symbols ‖ · ‖, ‖ · ‖1, ‖ · ‖ΓN

in spaces L2(Ω), H1(Ω),
L2(ΓN), respectively, and there scalar and vector function spaces are not
distinguished in our notations. Providing that the meaning remains clear,
the canonical norm in Lp(Ω) for p 6= 1, 2 is denoted by ‖ · ‖p. We introduce
the Hilbert spaces

V = {v ∈ H1
0(Ω) : div v = 0 in Ω} ,

V(rot) = {v ∈ L2(Ω) : rot v ∈ L2(Ω), div v = 0 in Ω, v · n = 0 on ∂Ω} ,

Z = {ξ ∈ H1(Ω) : ξ = 0 on ΓD} ,

equipped with their standard scalar products. We recall that the norms
‖ · ‖V(rot) and ‖ · ‖Z are equivalent to the usual seminorms ‖∇× ·‖ and ‖∇ · ‖
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and also to the norms ‖ · ‖1 on spaces H1(Ω) and H1(Ω), respectively (cf.
[11]).

We state the main results of the paper.

Theorem 2.1. Under the above assumptions (H1)-(H4), and, in addition,
under the following assumptions

b > 0 and µa2 < b3 , (10)

a =
ν#

µσ#

‖J0‖ ,

b =
ν#

µσ#
−
(
‖f‖+

G#

k#

(‖f‖+ ‖h‖ΓN
)

)
,

the problem (1)-(6) has a weak solution in the following sense:
The triplet (u,H, T ) ∈ V × V(rot) × Z satisfies the following integral

identities ∫
Ω

ν(T )Du : Dvdx +

∫
Ω

(v ⊗ u) : ∇udx =

=

∫
Ω

(
µ(∇×H)×H + f −G(T )T

)
· vdx, ∀v ∈ V; (11)∫

Ω

1

σ(T )
(∇×H) · (∇× v)dx = µ

∫
Ω

(u×H) · (∇× v)dx +

+

∫
Ω

1

σ(T )
J0 · (∇× v)dx, ∀v ∈ V(rot); (12)∫

Ω

k(T )∇T · ∇ηdx +

∫
Ω

u · ∇Tηdx +

∫
ΓN

αTηds =

=

∫
Ω

fηdx +

∫
ΓN

hηds, ∀η ∈ Z. (13)

Moreover, the pair (H, T ) enjoys the additional regularity, actually belongs
to W1,2+ε(Ω)×W 1,2+ε(Ω) for some ε, ε > 0.

Remark 2.2. If ε > 2/5 we can deduce the additional regularity on u as
in [7]. Otherwise, since the operators in the above elliptic equations of the
second order have discontinuous coefficients, we can obtain Hölder continuity
on Ω̄ of the weak solution T due to the De Giorgi-Nash Theorem if f, h ∈
Lq(Ω) for q > 3. If σ is taken as a continuous function, then the main
operator in (12) has continuous coefficient and the regularity theory can be
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applied to the weak solution H. Or simply if we suppose that the electric
conductivity σ is constant, it will be sufficient to our purposes in the study
of the shape sensivity. However, in the sequel the data assumptions are kept
as general as possible.

Theorem 2.3. Let ε0 < ε < 1 and 2 < q < 3 be such that

3q

3− q
=

(2 + ε0)(2 + ε)

ε− ε0

. (14)

If J0 ∈ Lq(Ω), then H ∈ L3q/(3−q)(Ω). Under the assumption f ∈ L2+δ1(Ω),
where δ1 > 0, the weak solution u given by Theorem 2.1 enjoys the additional
regularity, actually belongs to W1,2+δ(Ω) for some δ > 0. Furthermore, un-
der the following Lipschitz-type continuity assumption on the temperature
dependent function parameters of the model

∃ν̄ > 0 : |ν(T 2)− ν(T 1)| ≤ ν̄|T 2 − T 1|3δ/(2+δ), (15)

∃Ḡ > 0 : g|β(T 2)− β(T 1)| ≤ Ḡ|T 2 − T 1|, (16)

∃σ̄ > 0 : |σ(T 2)− σ(T 1)| ≤ σ̄|T 2 − T 1|3ε/(2+ε), (17)

∃k̄ > 0 : |k(T 2)− k(T 1)| ≤ k̄|T 2 − T 1|3ε/(2+ε), ∀T 2, T 1 ∈ R, (18)

the weak solution (u,H, T ) is unique for small data.

The existence of the pressure p in the space of distributions follows from
the well-known results by using the divergence-free test functions v ∈ C∞

0 (Ω)
in (11). Moreover, the pressure is unique up to a constant.

3 Proof of Theorem 2.1

First, we recall the Tychonoff extension to weak topologies of the Schauder
fixed point theorem [10, pp. 453-456 and 470].

Theorem 3.1. Let K be a nonempty weakly sequentially compact convex
subset of a locally convex linear topological vector space V . Let L : K → K
be a weakly sequentially continuous operator. Then L has at least one fixed
point.

Let L be the mapping of the form

L : (w,h, ξ) ∈ V ×V(rot)× Z 7→ (H, T ) 7→ (u,H, T ) ,
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where the functions u, H and T are the solutions for the elliptic boundary
value problems (23), (21) and (19), respectively. Indeed, the fixed point
argument starts by prescribing (w,h, ξ) from V×V(rot)×Z next by finding
the temperature and the magnetic field and finally the velocity of the fluid.
The proofs of such existence results are the straightforward application of
the classical existence theory, hence are omitted here.

Proposition 3.2. Let (w, ξ) ∈ V×Z and assume that conditions (9), (H3)-
(H4) are fulfilled. Then there exists a unique T ∈ Z such that∫

Ω

k(ξ)∇T · ∇ηdx +

∫
Ω

w · ∇Tηdx +

∫
ΓN

αTηds =

=

∫
Ω

fηdx +

∫
ΓN

hηds, ∀η ∈ Z. (19)

Moreover, the energy estimate holds

k#‖T‖1 ≤ ‖f‖+ ‖h‖ΓN
. (20)

Proposition 3.3. Let (w,h, ξ) ∈ V×V(rot)×Z and assume that conditions
(8) and (H4) are fulfilled. Then there exists a unique H ∈ V(rot) such that∫

Ω

1

σ(ξ)
(∇×H) · (∇× v)dx = −µ

∫
Ω

(h×w) · (∇× v)dx +

+

∫
Ω

1

σ(ξ)
J0 · (∇× v)dx, ∀v ∈ V(rot). (21)

Moreover, the energy estimate holds

1

σ#
‖H‖1 ≤ µ‖h×w‖+

1

σ#

‖J0‖. (22)

Proposition 3.4. Let (w, ξ) ∈ V×Z, T and H the solutions in accordance
with Propositions 3.2 and 3.3, respectively, and assume that conditions (7),
(H2) and (H4) are fulfilled. Then there exists a unique u ∈ V such that∫

Ω

ν(ξ)Du : Dvdx +

∫
Ω

(v ⊗w) : ∇udx =

=

∫
Ω

(
µ(∇×H)×H + f −G(T )T

)
· vdx, ∀v ∈ V. (23)

Moreover, the energy estimate holds

ν#‖u‖1 ≤ µ‖∇ ×H‖‖H‖L3 + ‖f‖+ G#‖T‖L6/5 . (24)
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Remark 3.5. For given g ∈ H−1/2(∂Ω), there exists a lifting ug ∈ H1(Ω)
such that ug = g on ∂Ω and ug verifies

−∇ · (ν(ξ)Dug) + (w · ∇)ug = −∇pg; ∇ · ug = 0 in Ω.

If the element U = u− ug ∈ V is determined by a solution to the problem

−∇ · (ν(ξ)DU) + (w · ∇)U = −∇pU + µ(∇×H)×H + f −G(T )T in Ω,

then u = U + ug is the solution to the problem

−∇ · (ν(ξ)Du) + (w · ∇)u = −∇p + µ(∇×H)×H + f −G(T )T in Ω,

∇ · u = 0 in Ω, u = g on ∂Ω.

Therefore, it is assumed that g = 0, observing that in the inhomogeneous
case a smallness assumption for the velocity at the boundary will be also
needed in order to prove the main results.

In view of Propositions 3.2, 3.3 and 3.4, the operator L is well defined.
Moreover, L maps the ball

K = {(w,h, ξ) ∈ V ×V(rot)× Z : ‖w‖1 ≤ R1, ‖h‖1 ≤ R2,

‖ξ‖1 ≤
1

k#

(‖f‖+ ‖h‖ΓN
)}

into itself, since by (20), (22) and (24) it follows that

‖H‖1 ≤ σ#

(
µR1R2 +

1

σ#

‖J0‖
)
≤ R2 , (25)

‖u‖1 ≤
1

ν#

(
µR2

2 + ‖f‖+
G#

k#

(‖f‖+ ‖h‖ΓN
)

)
= R1 , (26)

where R2 > 0 is such that

µσ#

ν#

R2

(
µR2

2 + ‖f‖+
G#

k#

(‖f‖+ ‖h‖ΓN
)

)
+

σ#

σ#

‖J0‖ ≤ R2

or equivalently

a ≤ R2(b− µR2
2)
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if b > 0 and (a/b)2 < b/µ which is assured by (10).
In order to apply Theorem 3.1 it remains to prove the weak continuity of

L. Since we have the compact embeddings

V,V(rot) ↪→↪→ {w ∈ L4(Ω) : ∇ ·w = 0 in Ω, w · n = 0 on ∂Ω} (27)

Z ↪→↪→ L1(Ω), (28)

let {(wm,hm, ξm)} be a sequence such that

wm → w, hm → h in L4(Ω); ξm → ξ in L1(Ω). (29)

Let (um,Hm, Tm) be the corresponding weak solutions given by Propositions
3.2, 3.3 and 3.4, for each m ∈ N. From the estimates (24), (22) and (20), the
sequence {(um,Hm, Tm)} is bounded in V ×V(rot)× Z. Then there exists
the weak limit (u,H, T ) ∈ V ×V(rot)× Z such that

um ⇀ u in V; Hm ⇀ H in V(rot); Tm ⇀ T in Z, (30)

possibly for a subsequence, still denoted by (um,Hm, Tm). Applying (27)-
(28) we obtain

um → u, Hm → H in L4(Ω); Tm → T in L1(Ω). (31)

We pass to the limit as m → +∞ in the integral identities (23), (21) and
(19), in which replacing w,h, ξ,u,H and T by the sequences wm, hm, ξm,
um, Hm and Tm, respectively, using(29)-(31) and the continuity properties of
the Niemytskii operators in the coefficients combined with (7)-(9). Therefore,
we conclude that the limit (u,H, T ) is a solution corresponding to (w,h, ξ)
of the required problem (23), (21) and (19).

Then Theorem 3.1 guarantees the existence of at least one fixed point
which is the required weak solution.

The regularity (H, T ) ∈ W1,2+ε(Ω) × W 1,2+ε(Ω) for some ε, ε > 0 is a
consequence of the following regularity results.

Proposition 3.6. If J0 ∈ L2(Ω) then there exists a constant ε > 0 such that
the weak solution H ∈ V(rot) of (12) belongs to W1,2+ε(Ω), i.e.

‖∇H‖2+ε ≤ K1,

with a constant K1 > 0 only dependent on the data.
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Proof. Adapting the regularity theory for elliptic equations of the second
order [18], we obtain H ∈ W1,2+ε(Ω) with 2 + ε < 6 since

J0 − σ(T )µH× u ∈ L2(Ω) ↪→ (W1,6/5(Ω))′.

The following result is consequence of the regularity of solutions to the
mixed boundary value problems for elliptic equations (cf. [18]).

Proposition 3.7. If f ∈ L2(Ω) and h ∈ L2(ΓN) then there exists a constant
ε > 0 such that the weak solution T ∈ Z of (13) belongs to W 1,2+ε(Ω), i.e.

‖∇T‖2+ε ≤ K2,

with a constant K2 > 0 only dependent on the data.

Proof. According to [18] we obtain T ∈ W 1,2+ε(Ω) with 2 + ε < 3 since
f, h ∈ (W 1,3/2(Ω))′.

4 Proof of Theorem 2.3

The regularity u ∈ W1,2+δ(Ω) for some δ > 0 is a consequence of the following
regularity results.

Proposition 4.1. For every 2 < q < 3, if J0 ∈ Lq(Ω) then the weak solution
H ∈ V(rot) of (12) belongs to L3q/(3−q)(Ω).

Proof. Adapting the regularity theory for elliptic equations of the second
order [18], the desired result is obtained provided by

J0 − σ(T )µH× u ∈ Lq(Ω).

Proposition 4.2. If q is given as in (14) and f ∈ L2+δ1(Ω) for some δ1 > 0,
then there exists a constant δ > 0 such that the weak solution u ∈ V of (11)
belongs to W1,2+δ(Ω), i.e.

‖∇u‖2+δ ≤ K3,

with a constant K3 > 0 only dependent on the data.
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Proof. For every x0 ∈ Ω̄, 0 < r < R small enough, Ω(x0, R) := Ω ∩
B(x0, R), θ ∈]0, 1[ and some positive constants B1, B2, independent of u,H
and T , we have the following reverse estimate (cf. [6, Lemma 3.2])(∫

Ω(x0,r)

|∇u|2dx

)1/2

≤ θ

(∫
Ω(x0,R)

|∇u|2dx

)1/2

+
B1

R− r

(∫
Ω(x0,R)

|∇u|6/5dx

)5/6

+
B2

R− r

(∫
Ω(x0,R)

(|u⊗ u|2 + |F|2 + |f |2 + 1)dx

)1/2

where F = µrotH × H − G(T )T . By Propositions 3.6 and 4.1, we have
H ∈ W1,2+ε(Ω) ∩ L(2+ε0)(2+ε)/(ε−ε0)(Ω). Thus it follows that rotH × H ∈
L2+ε0(Ω) and F ∈ L2+ε0(Ω). Since u⊗u ∈ L3(Ω) then the Gehring inequality
[15] guarantees the higher integrability u ∈ W1,2+δ(Ω) for some 0 < δ <
min{ε0, δ1}.

Now, we prove the uniqueness. To this end, let (u1,H1, T 1) and (u2,H2, T 2)
be two weak solutions to problem (11), (13), and (12). Arguing as in [7], the
respective differences ū = u1 − u2, H̄ = H1 −H2 and T̄ = T 1 − T 2 satisfy

ν#

2
‖Dū‖2 ≤ ν̄

ν#

‖T̄‖6δ/(2+δ)
6 ‖Du2‖2

2+δ + C2
2‖Dū‖2‖∇u2‖+

+
C1

ν#

(
µ‖(∇×H1)×H1 − (∇×H2)×H2‖6/5 +

+G#‖T̄‖6/5 + Ḡ‖T̄‖6‖T 2‖3/2

)2

;

1

4σ#
‖∇ × H̄‖2 ≤ σ#

∥∥∥∥( 1

σ(T 2)
− 1

σ(T 1)

)
∇×H2

∥∥∥∥2

+

+σ#µ‖u1 ×H1 − u2 ×H2‖2 + σ#

∥∥∥∥( 1

σ(T 1)
− 1

σ(T 2)

)
J0

∥∥∥∥2

;

k#

2
‖∇T̄‖2 ≤ k̄

k#

‖T̄‖6ε/(2+ε)
6 ‖∇T 2‖2

2+ε +
C1

k#

‖ū‖2
6‖∇T 2‖2

3/2, (32)

where C1, C2 are the Sobolev constants of the embeddings H1(Ω) ↪→ L6(Ω)
and H1(Ω) ↪→ L4(Ω), respectively. Using the Lipschitz continuity assump-
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tions (15)-(18), and applying Hölder and Young inequalities leads to

ν#

2
‖Dū‖2 ≤ ν̄

ν#

‖T̄‖6δ/(2+δ)
6 ‖Du2‖2

2+δ + C2
2‖Dū‖2‖∇u2‖+

+
C1

ν#

(
µ‖∇ × H̄‖‖H1‖3 + µ‖∇ ×H2‖‖H̄‖3 + G#‖T̄‖6/5 + Ḡ‖T̄‖6‖T 2‖3/2

)2

;

1

4(σ#)2
‖∇ × H̄‖2 ≤ σ̄

(σ#)2
‖T̄‖6ε/(2+ε)

6 (‖∇H2‖2
2+ε + ‖J0‖2

2+ε) +

+µ(‖ū‖2
4‖H1‖2

4 + ‖u2‖2
4‖H̄‖2

4).

Let K1, K2 and K3 be the upper bounds derived in Propositions 3.6, 3.7
and 4.2, respectively, and K4 stand for the upper bound in estimate (20),
namely,

K4 =
1

k#

(‖f‖+ ‖h‖ΓN
).

Next, in view of (25)-(26), we set

R1 =
1

ν#

(
µR2

2 + ‖f‖+ G#K4

)
,

where R2 is chosen such that(
1− µσ#

ν#

(
µR2

2 + ‖f‖+ G#K4

) )
R2 =

σ#

σ#

‖J0‖,

we have

ν#

2
‖Dū‖2 ≤ ν̄

ν#

‖T̄‖6δ/(2+δ)
6 K2

3 + C2
2‖Dū‖2R1 +

+
C1

ν#

(
µR2(‖∇ × H̄‖+ ‖H̄‖3) + G#‖T̄‖6/5 + Ḡ‖T̄‖6K4

)2

;

1

4(σ#)2
‖∇ × H̄‖2 ≤ σ̄

(σ#)2
‖T̄‖6ε/(2+ε)

6 (K2
1 + ‖J0‖2

2+ε) +

+µ(‖ū‖2
4R

2
2 + R2

1‖H̄‖2
4).

Now, sum the above two inequalities with (32) rewritten as follows as

k#

2
‖∇T̄‖2 ≤ k̄

k#

‖T̄‖6ε/(2+ε)
6 K2

2 +
C1

k#

‖ū‖2
6K

2
4 .

12



As a result, (
ν#

2
− C2R1 − CµR2

2 −
C

k#

K2
4

)
‖Dū‖2 +

+

(
1

4(σ#)2
− 2Cµ2

ν#

R2
2 − CµR2

1

)
‖∇H̄‖2 +

+

(
k#

2
− C

ν#

(ν̄K2
3 + (G# + ḠK4)

2)−

− Cσ̄

(σ#)2
(K2

1 + ‖J0‖2
2+ε)−

Ck̄

k#

K2
2

)
‖∇T̄‖2 ≤ 0,

with C standing for different Sobolev constants, and the uniqueness of solu-
tion holds under smallness assumption on the data.

5 Shape sensivity analysis

In this section we deal with the shape sensivity analysis to the model corre-
spondent to Theorem 2.1, when the coefficients ν, k, σ and α are assumed
constants. First, a family of mappings Tτ : R3 → R3 associated with a given
velocity field V (τ, x) is constructed. The evolution of geometrical domains,
if the vector field V is chosen, is governed by the real parameter τ . So we
denote by Ωτ = Tτ (Ω) the variable domain depending on two parameters, a
vector field V and the real variable τ . We call the family of perturbations
Ωτ of a given initial configuration Ω, and the variable τ has the meaning of
the time in our setting. Indeed the variable domains Ωτ are defined by the
images of the mapping which is given by the system of differential equations

d

dτ
x(τ) = V (τ, x(τ)), x(0) = X,

with the solution denoted by x(τ) = x(τ,X), τ ∈ (0, τ1), X ∈ R3, for some
positive constant τ1. Therefore each specific family parametrized by τ is
defined in the direction of a given vector field V , and it is denoted by Ωτ =
{x ∈ R3| x = x(τ,X), X ∈ Ω}.

In our setting all equations defined in variable domain Ωτ can be trans-
ported to the reference domain which is also called the fixed domain Ω, using
the inverse transformation T −1

τ : Ωτ → Ω.
Let us assume the following additional hypothesis:

13



(H5) The field V is compactly supported with respect to the spatial variable
x, i.e.,

V ∈ C(0, τ1;D2(Ω; R3)), suppV ⊂ Ω,

and it is divergence free.

(H6) In the variable domain setting, the elements

f τ ∈ L2(Ωτ ), Jτ
0 ∈ L2(Ωτ ), f τ ∈ L2(Ωτ ) and hτ ∈ L2(Γτ

N), (33)

stand for the data in boundary value problems in Ωτ , are simply given
by restrictions to Ωτ of some functions

f ∈ H1(R3), J0 ∈ H1(R3), f ∈ H1(R3) and h ∈ H1(R3) (34)

defined in the whole space. In this way the shape derivatives of all the
data vanish, except for h, and the material derivatives are just given by
the scalar products of the gradients of the data with respect to spatial
variables with the velocity vector field, e.g., ḟ = ∇f · V , provided that
all data are given in the Sobolev spaces H1(R3).

Notice that (H5) implies the additional constraint, |Ω| = constant, this
means that for our shapes the admissible domains have the given volume.

5.1 Perturbated problem

We consider in (H5) that the velocity field V (τ, x) is divergence free, which
implies that also our u and H also conserve the divergenceless. This simplifies
the situation and we do not need to apply Bogovskii operator, since for
pressure we use the standard Rham theorem.

Definition 5.1. We say a perturbated problem to the model (1)-(6) in a
perturbated domain to the following system of equations in Ωτ

−∇ · (νDuτ ) + (uτ · ∇)uτ +∇pτ = µrotHτ ×Hτ + f τ −G(T τ )T τ ; (35)

∇× (∇×Hτ ) = ∇× (Jτ
0 + σµuτ ×Hτ ); (36)

divuτ = divHτ = 0; (37)

−∇ · (k∇T τ ) + uτ · ∇T τ = f τ ; (38)

with the boundary conditions:

uτ = 0, Hτ · nτ = 0 on ∂Ωτ ; (39)

T τ = 0 on Γτ
D; k

∂T τ

∂nτ
+ αT τ = hτ on Γτ

N . (40)
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We introduce the Hilbert spaces

Vτ = {v ∈ H1
0(Ωτ ) : div v = 0 in Ωτ}

Vτ (rot) = {v ∈ L2(Ωτ ) : rot v ∈ L2(Ωτ ),

div v = 0 in Ωτ , v · n = 0 on ∂Ωτ}
Zτ = {ξ ∈ H1(Ωτ ) : ξ = 0 on Γτ

D}

equipped with their standard inner products.

Theorem 5.2. Assuming (H2), (H5), (33) and (10) with the constants a
and b under the perturbated data, i.e.

a =
ν

µσ
‖Jτ

0‖

b =
ν

µσ
−
(
‖f τ‖+

G#

k
(‖f τ‖+ ‖hτ‖ΓN

)

)
,

then the problem (35)-(40) has a weak solution in the following sense:
The triple (uτ ,Hτ , T τ ) ∈ Vτ ×Vτ (rot)× Zτ and it satisfies

ν

∫
Ωτ

Duτ : Dvτdxτ +

∫
Ωτ

Duτ : (uτ ⊗ vτ )dxτ =

=

∫
Ωτ

(
µ(∇×Hτ )×Hτ + f τ −G(T τ )T τ

)
· vτdxτ , ∀vτ ∈ Vτ ;∫

Ωτ

(∇×Hτ ) · (∇×wτ )dxτ = σµ

∫
Ωτ

(uτ ×Hτ ) · (∇×wτ )dxτ +

+

∫
Ωτ

Jτ
0 · (∇×wτ )dxτ , ∀wτ ∈ Vτ (rot);

k

∫
Ωτ

∇T τ · ∇ητdxτ +

∫
Ωτ

uτ · ∇T τητdxτ + α

∫
Γτ

N

T τητdsτ =

=

∫
Ωτ

f τητdxτ +

∫
Γτ

N

hτητdsτ , ∀ητ ∈ Zτ .

Proof. See the proof of Theorem 2.1.

Theorem 5.3. If the assumptions of Theorem 5.2 are fulfilled, the solution
(uτ ,Hτ , T τ ) in accordance to Theorem 5.2 is such that (Hτ , T τ ) belongs to
W1,2+ε(Ωτ ) × W 1,2+ε(Ωτ ) for some ε, ε > 0. Moreover, if we assume f τ ∈
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L2+δ1(Ωτ ) for some δ1 > 0 and Jτ
0 ∈ Lq(Ωτ ) with q given as in (14), then

uτ ∈ W1,2+δ(Ωτ ) for some δ > 0, and (uτ ,Hτ , T τ ) is unique under small
data.

Proof. See the proof of Theorems 2.1 and 2.3.

5.2 Transported problem

The transported solution to the fixed domain is denoted by uτ = uτ ◦ Tτ ,
Hτ = Hτ ◦Tτ , Tτ = T τ ◦Tτ with data fτ = f τ ◦Tτ , Gτ = Gτ ◦Tτ , J0τ = Jτ

0◦Tτ ,
fτ = f τ ◦ Tτ and hτ = hτ ◦ Tτ .

We begin by recalling the result [27].

Proposition 5.4. The unit normal vector field on Γτ is given by

nτ (Tτ (X)) = (‖∗JT −1
τ · n‖−1

R3
∗(DTτ )

−1 · n)(X)

for X ∈ Γ. Here we denote by JTτ the Jacobian of Tτ and for any matrix B
the transposed matrix is denoted by ∗B. For any f ∈ L1(Γτ ),∫

Γτ

fdsτ =

∫
Γ

f ◦ Tτ‖M(Tτ ) · n‖R3ds,

where M(Tτ ) = det (JTτ )
∗JT −1

τ is the cofactor matrix of the Jacobian matrix
JTτ .

We recall the following important results, which give us the answer on
the question, what happens with grad, div or curl after applying the trans-
formation of domain.

Proposition 5.5. Denote by JTτ the Jacobian of Tτ and for any matrix B
the transposed matrix is denoted by ∗B. Then we have

(i) (grad w) ◦ Tτ =
(
∗JT −1

τ ∇
)(

w ◦ Tτ

)
for all w ∈ H1(Ω);

(ii) (div w) ◦ Tτ = ζ(τ)−1
(
ζ(τ)JT −1

τ ∇
)
·
(
w ◦ Tτ

)
for all w ∈ H1(Ω);

(iii) (curl w) ◦ Tτ =
(
∗JT −1

τ ∇
)
×
(
w ◦ Tτ

)
for all w ∈ H1(Ω).
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Remark 5.6. From Proposition 5.5, it follows that functions which are di-
vergence free on Ωτ generally loose this property when they are transported
to the fixed domain. For more details see [19, Remark 6.2]. This is a reason,
why we assume additional for simplicity that div V = 0.

We introduce the following notations

ζ(τ) = det(JTτ ),

%(τ) = ∗JT −1
τ ,

A(τ) = ζ(τ) ∗%(τ)%(τ),

B(τ) = ζ(τ)%(τ),

ω(τ) = ‖M(JTτ ) · n‖R3 .

Definition 5.7. We call the transported problem to the following system of
equations

ν

∫
Ω

A(τ) : (DuτDvτ )dx +

∫
Ω

B(τ)∇uτ : (vτ ⊗ uτ )dx =

=

∫
Ω

ζ(τ)
(
µ((%(τ)∇)×Hτ )×Hτ + fτ −G(Tτ )Tτ

)
· vτdx, ∀vτ ∈ V;∫

Ω

((%(τ)∇)×Hτ ) · ((%(τ)∇)×wτ ) =

=

∫
Ω

ζ(τ)(σµuτ ×Hτ + J0τ ) · ((%(τ)∇)×wτ )dx, ∀wτ ∈ V(rot);

k

∫
Ω

A(τ) : (∇Tτ ⊗∇ητ )dx +

∫
Ω

B(τ) : (uτ ⊗∇Tτ )ητdx +

+α

∫
ΓN

Tτητω(τ)ds =

∫
Ω

fτητζ(τ)dx +

∫
ΓN

hτητω(τ)ds, ∀ητ ∈ Z.

Theorem 5.8. Suppose that the assumptions (H2), (H5) and (34) are ful-
filled and additionally assuming that (10) holds for the constants a and b
under the transported data:

a =
ν

µσ
‖J0τ‖

b =
ν

µσ
−
(
‖fτ‖+

G#

k
(‖fτ‖+ ‖hτ‖ΓN

)

)
,

then the triple (uτ ,Hτ , Tτ ) ∈ V×V(rot)×Z is a weak solution in the sense
of Definition 5.7. Moreover, the solution (uτ ,Hτ , Tτ ) is such that (Hτ , Tτ )
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belongs to W1,2+ε(Ω)×W 1,2+ε(Ω) for some ε, ε > 0, and if fτ ∈ L2+δ1(Ω) for
some δ1 > 0 and J0τ ∈ Lq(Ω) with q given as in (14) then uτ ∈ W1,2+δ(Ω)
for some δ > 0. Furthermore (uτ ,Hτ , Tτ ) is unique under small data.

Proof. See the proof of Theorems 2.1 and 2.3.
Introducing the forms as

(F1) α0(τ,u,v) = ν
∫

Ω
ζ(τ)(%(τ)Du) : (%(τ)Dv)dx = ν

∫
Ω

A(τ) : (DuDv)dx

(F2) α1(τ,u,v) =
∫

Ω
ζ(τ)(%(τ)∇u) : (v ⊗ u)dx =

∫
Ω

B(τ)∇u : (v ⊗ u)dx

(F3) α2(τ,H,v) = µ
∫

Ω
ζ(τ)

(
((%(τ)∇)×H)×H

)
· vdx

(F4) α3(τ, f , T,v) =
∫

Ω
ζ(τ)

(
f −G(T)T

)
· vdx

(F5) β1(τ,H,w) =
∫

Ω
((%(τ)∇)×H) · ((%(τ)∇)×w) dx

(F6) β2(τ,u,H,w) = σµ
∫

Ω
ζ(τ)(u ×H) · ((%(τ)∇)×w) dx

(F7) β3(τ,J0,w) =
∫

Ω
ζ(τ)J0 · ((%(τ)∇)×w) dx

(F8) γ1(τ, T, η) = k
∫

Ω
A(τ) : (∇T ⊗∇η)dx

(F9) γ2(τ,u, T, η) =
∫

Ω
ζ(τ)u · (%(τ)∇)Tηdx =

∫
Ω

B(τ) : (u ⊗∇T)ηdx

(F10) γ3(τ, T, η) = α
∫

ΓN
Tηω(τ)ds

(F11) γ4(τ, f, η) =
∫

Ω
fηζ(τ)dx

(F12) γ5(τ, h, η) =
∫

ΓN
hηω(τ)ds

the following corollary can be stated.

Corollary 5.9. Assume (H5). Let |τ | ≤ τ1 and τ1 be small enough, then
there exist realvalued functions gi satisfying gi(τ) = o(τ), i = 0, ..., 11 and
forms α̃i(τ, ...), i = 0, 1, 2, 3, β̃(τ, ...), i = 1, 2, 3, and γ̃(τ, ...), i = 1, · · · , 5,
such that the following statements are valid.

(B1) For all u,v ∈ V

α0(τ,u,v) = α0(0,u,v) + τα0,τ (0,u,v) + α̃0(τ,u,v)

α0,τ (0,u,v) = ν

∫
Ω

A′(0) : (DuDv)dx

α̃0(τ,u,v) ≤ g0(τ)‖u‖1‖v‖1.
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(B2) For all u,v ∈ V

α1(τ,u,v) = α1(0,u,v) + τα1,τ (0,u,v) + α̃1(τ,u,v)

α1,τ (0,u,v) =

∫
Ω

B′(0)∇u : (v ⊗ u)dx

α̃1(τ,u,v) ≤ g1(τ)‖u‖2
1‖v‖1.

(B3) For all H ∈ H1(Ω) and v ∈ V

α2(τ,H,v) = α2(0,H,v) + τα2,τ (0,H,v) + α̃2(τ,H,v)

α2,τ (0,H,v) = µ

∫
Ω

((%′(0)∇)×H)×H · vdx

α̃2(τ,H,v) ≤ g2(τ)‖∇ ×H‖‖H‖1‖v‖1.

(B4) For all f ∈ L2(Ω), T ∈ Z and v ∈ V

α3(τ, f , T,v) = α3(0, f , T,v) + α̃3(τ, f , T,v)

α̃3(τ, f , T,v) ≤ g3(τ)
(
‖f‖+ G#‖T‖

)
‖v‖.

(B5) For all H,w ∈ V(rot)

β1(τ,H,w) = β1(0,H,w) + τβ1,τ (0,H,w) + β̃1(τ,H,w)

β1,τ (0,H,w) =

∫
Ω

A′(0) : (∇×H)⊗ (∇×w)dx

β̃1(τ,H,w) ≤ g4(τ)‖H‖1‖w‖1.

(B6) For all u ∈ V, H ∈ V(rot), w ∈ V(rot)

β2(τ,u,H,w) = β2(0,u,H,w) + τβ2,τ (0,u,H,w) + β̃2(τ,u,H,w)

β2,τ (0,u,H,w) = σµ

∫
Ω

(u ×H) · ((%′(0)∇)×w)dx

β̃2(τ,u,H,w) ≤ g5(τ)‖u×H‖2‖w‖V(rot).

(B7) For all J0 ∈ L2(Ω), w ∈ V(rot)

β3(τ,J0,w) = β2(0,J0,w) + τβ3,τ (0,J0,w) + β̃3(τ,J0,w)

β3,τ (0,J0,w) =

∫
Ω

J0 · ((%′(0)∇)×w)dx

β̃3(τ,J0,w) ≤ g6(τ)‖J0‖‖∇ ×w‖.
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(B8) For all T, η ∈ Z

γ1(τ, T, η) = γ1(0, T, η) + τγ1,τ (0, T, η) + γ̃1(τ, T, η)

γ1,τ (0, T, η) = k

∫
Ω

A′(0) : (∇T ⊗∇η)dx

γ̃1(τ, T, η) ≤ g7(τ)‖T‖1‖η‖1.

(B9) For all u ∈ V and T, η ∈ Z

γ2(τ,u, T, η) = γ2(0,u, T, η) + τγ2,τ (0,u, T, η) + γ̃2(τ,u, T, η)

γ2,τ (0,u, T, η) =

∫
Ω

B′(0) : (u ⊗∇T)ηdx

γ̃2(τ,u, T, η) ≤ g8(τ)‖u‖1‖T‖1‖η‖1.

(B10) For all T ∈ Z, η ∈ Z

γ3(τ, T, η) = γ3(0, T, η) + τγ3,τ (0, T, η) + γ̃3(τ, T, η)

γ3,τ (0, T, η) = α

∫
ΓN

Tηω′(0)ds

γ̃3(τ, T, η) ≤ g9(τ)‖T‖1‖η‖1.

(B11) For all f ∈ L2(Ω) and η ∈ Z

γ4(τ, f, η) = γ4(0, f, η) + γ̃4(τ, f, η)

γ̃4(τ, f, η) ≤ g10(τ)‖f‖‖η‖.

(B12) For all h ∈ L2(ΓN) and η ∈ Z

γ5(τ, h, η) = γ5(0, h, η) + τγ5,τ (0, h, η) + γ̃5(τ, h, η)

γ5,τ (0, h, η) =

∫
ΓN

hηω′(0)ds

γ̃5(τ, h, η) ≤ g11(τ)‖h‖ΓN
‖η‖1.

Proof. The expressions (B1)-(B12) are consequence of the following
derivatives with respect to τ at τ = 0

ζ ′(0) = div V (0) = 0, %′(0) = B′(0) = −∗JV (0), A′(0) = −2D(V (0)),
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observing that as in Section 1, D(V (0)) denotes the symmetrized part of
JV (0), i.e. D(V (0)) = 1

2
(JV (0) + ∗JV (0)). For the proof see Sokolowski-

Zolésio [27, Section 2.13].
Applying Taylor polynomials of degree one we can prove the stability

results.

Proposition 5.10. Under the assumptions of Theorem 5.8, if (uτ ,Hτ , Tτ )
is the transported solution correspondent to (u,H, T ) and the following as-
sumptions are fulfilled

(M1) ‖fτ − f‖ ≤ C|τ |

(M2) ‖G(Tτ )Tτ −G(T )T‖6/5 ≤ C|τ |

(M3) ‖J0τ − J0‖ ≤ C|τ |

(M4) ‖hτ − h‖ΓN
≤ C|τ |

(M5) ‖fτ − f‖ ≤ C|τ |

then we have

‖uτ − u‖1 ≤ C|τ |; (41)

‖Hτ −H‖1 ≤ C|τ |; (42)

‖Tτ − T‖1 ≤ C|τ |, (43)

with C denoting different constants.

Proof. For τ small enough and ξi ∈ [0, τ ], i = 0, ..., 4, we can write

ζ(τ) = 1 + τζ ′(ξ0),

%(τ) = I + τ%′(ξ1),

A(τ) = I + τA′(ξ2),

B(τ) = I + τB′(ξ3),

ω(τ) = 1 + τω′(ξ4),

where ζ(τ) ≥ cτ1 > 0 for |τ | ≤ τ1 and A, B, % are positive definite for
|τ | ≤ τ1.

Observing that α0 is linear with respect to the second argument, we write

α0(τ,uτ ,v)− α0(0,u,v) = α0(0,uτ−u,v)+
+τν

∫
Ω

A′(ξ2) : (DuτDv)dx.
(44)
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Observe that αi, (i = 1, 2, 3), is no more linear with respect to the secondary
argument, thus we write

α1(τ,uτ ,v)− α1(0,u,v) = α1(0,uτ ,v)−α1(0,u,v)+
+τ
∫

Ω
B′(ξ3)∇uτ : (v ⊗ uτ )dx;

(45)

α2(τ,Hτ ,v)− α2(0,H,v) = α2(0,Hτ ,v)−α2(0,H,v)+

+τµ
∫

Ω

(
ζ ′(ξ0)(∇×Hτ )×Hτ + ((%′(ξ1)∇)×Hτ )×Hτ

)
· vdx;

(46)

α3(τ, fτ , Tτ ,v)− α3(0, f , T,v) = α3(0, fτ , Tτ ,v)−
−α3(0, f , T,v) + τ

∫
Ω

ζ ′(ξ0)
(
fτ −G(Tτ )Tτ

)
· vdx.

(47)

Considering that u is the particular case (τ = 0) to the perturbed uτ it
follows that

RHS of (44) + RHS of (45) = RHS of (46) + RHS of (47).

If we set v = uτ − u and arguing as in the proof of Theorem 2.3 we get(ν

2
− C2

2‖u‖1

)
‖uτ − u‖2

1 ≤
C

ν

(
µ‖(∇×Hτ )×Hτ − (∇×H)×H‖6/5

+‖fτ − f‖+ ‖G(Tτ )Tτ −G(T )T‖6/5 + C|τ |
)2

. (48)

Now, observing that β1 and β3 are linear with respect to the second
argument we write

β1(τ,Hτ ,w)− β1(0,H,w) = β1(0,Hτ −H,w) +

+τ

∫
Ω

A′(ξ2) : (∇×Hτ ⊗∇×w)dx;

β3(τ,J0τ ,w)− β3(0,J0,w) = β3(0,J0τ − J0,w) +

+τ

∫
Ω

B′(ξ3) : (J0τ ⊗∇×w)dx,

while the remaining term reads

β2(τ,uτ ,Hτ ,w)− β2(0,u,H,w) = β2(0,uτ ,Hτ ,w)−

−β2(0,u,H,w) + τσµ

∫
Ω

B′(ξ3) :
(
(uτ ×Hτ )⊗∇×w

)
dx.
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Considering that H is the particular case (τ = 0) to the perturbed Hτ , we
set w = Hτ −H to get the following estimate

‖Hτ −H‖1 ≤ ‖J0τ − J0‖+ σµ‖uτ ×Hτ − u×H‖ + C|τ |. (49)

Next

(N1) γ1(τ, Tτ , η)−γ1(0, T, η) = γ1(0, Tτ−T, η)+τk
∫

Ω
A′(ξ2) : (∇Tτ⊗∇η)dx;

(N2) γ2(τ,uτ , Tτ , η)− γ2(0,u, T, η) = γ2(0,uτ , Tτ , η)− γ2(0,u, T, η)
+ τ

∫
Ω

B′(ξ3) : (uτ ⊗∇Tτ )ηdx;

(N3) γ3(τ, Tτ , η)− γ3(0, T, η) = γ3(0, Tτ − T, η) + τα
∫

ΓN
Tτηω′(ξ4)ds;

(N4) γ4(τ, fτ , η)− γ4(0, f, η) = γ4(0, fτ − f, η) + τ
∫

Ω
fτηζ ′(ξ0)dx;

(N5) γ5(τ, hτ , η)− γ5(0, h, η) = γ5(0, hτ − h, η) + τ
∫

ΓN
hτηω′(ξ4)ds.

We set η = Tτ − T to get

k

2
‖∇(Tτ − T )‖2 + α‖Tτ − T‖2

ΓN
≤ C

k

(
‖(uτ − u) · ∇T‖6/5 +

+‖fτ − f‖+ ‖hτ − h‖ΓN
+ C|τ |

)2

. (50)

Now we add the three inequalities (48),(49),(50) and from assumptions
(M1) -(M5), we get (41)-(43).

Finally, we are in the position to formulate the existence theorem for the
material derivative of our problem.

Definition 5.11. The following limit in the function space norm H

ḟ = lim
τ→0

f(τ)− f(0)

τ

is called the strong material derivative ḟ of f in H.

Remark 5.12. The shape derivative u′ of u(τ) in the direction of the vector
field V is defined by the formula u′ = u̇−∇u · V provided that there exists
the material derivative u̇.

We recall that A(0) = B(0) = %(0) = I , ζ(0) = ω(0) = 1, ζ̇ = ζ ′(0) = 0,
%̇ = %′(0), Ȧ = A′(0), Ḃ = B′(0) and ω̇ = ω′(0), and we state the following
result on the existence of material derivatives.
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Theorem 5.13. Assume (H2), (H5), ḟ ∈ L2(Ω), J̇ ∈ L2(Ω), ḟ ∈ L2(Ω), ḣ ∈
L2(ΓN) and moreover (10) holds with constants a and b given as

a =
ν

µσ
‖J̇0‖

b =
ν

µσ
−

(
‖ḟ‖+

Ġ#

k
(‖ḟ‖+ ‖ḣ‖ΓN

)

)
,

then the triple (u̇, Ḣ, Ṫ ) ∈ V ×V(rot)× Z satisfies

ν
∫

Ω
(ȦDu + Du̇) : Dvdx +

∫
Ω
(Ḃ∇u +∇u̇) : (v ⊗ u)dx +

∫
Ω
∇u : (v ⊗ u̇)dx

= µ
∫

Ω

(
((%̇∇)×H)×H + (∇× Ḣ)×H + (∇×H)× Ḣ

)
· vdx+

+
∫

Ω

(
ḟ − Ġ(T)T −G(T )Ṫ

)
· vdx, ∀v ∈ V;

∫
Ω
((%̇∇)×H +∇× Ḣ) · (∇×w) dx +

∫
Ω
(∇×H) · ((%̇∇)×w) dx =

= σµ
∫

Ω

(
u̇×H + u× Ḣ

)
· (∇×w)dx + σµ

∫
Ω
(u×H) · ((%̇∇)×w)dx+

+
∫

Ω
J̇0 · (∇×w)dx +

∫
Ω
J0 · (%̇∇)×wdx, ∀w ∈ V(rot);

k
∫

Ω
(Ȧ∇T +∇Ṫ ) · ∇ηdx +

∫
Ω
(Ḃ : u⊗∇T + u̇ · ∇T + u · ∇Ṫ )ηdx

+α
∫

ΓN
(Ṫ + T ω̇)ηds =

∫
Ω

ḟηdx +
∫

ΓN
(ḣ + hω̇)ηds, ∀η ∈ Z;

and the following estimates

‖Ṫ‖1 ≤ C
(
(1 + ‖u‖1 + ‖u̇‖1)‖T‖1 + ‖ḟ‖+ ‖ḣ‖ΓN

+ ‖h‖ΓN

)
;

‖u̇‖1 ≤ C
(
(‖Ḣ‖1 + ‖H‖1)‖H‖1 + ‖ḟ‖+ Ġ#‖T‖1 + G#‖Ṫ‖1 + ‖u‖1

)
;

‖Ḣ‖1 ≤ C
(
‖H‖1 + µσ(‖u̇×H‖+ ‖u× Ḣ‖+ ‖u×H‖) + ‖J̇0‖+ ‖J0‖

)
.

Proof. We subtract the perturbated solution and the transported so-
lution and we pass to the limit with τ tending to 0 (for details see [7] for
analogous proof).
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6 Concluding remarks

In order to overcome the problem of loosing divergence free behavior we can
apply Piola transform which is given by the following mapping:

PI : V → Vτ ;

v 7→ (JTτ · v) ◦ T −1
τ .

Denoting
ûτ := (JTτ )

−1 · (uτ ◦ Tτ ) defined on Ω

and
uτ = PI(ûτ ) is defined on Ωτ ,

the mapping PI can be applied on velocity field and also on magnetic field
to conserve the divergenceless and that u ·n = 0 and H ·n = 0. By the same
method as in Section 5 we get the stability and material derivative for û and
then we just apply the inverse mapping to conclude the results in [7].

Remark 6.1. In [7] we get the stability depending not only on the data but
also on assumption of behavior of H, but it is not the case in our present
problem.

Acknowlegment: We would like to thank to the referees and editor for
their valuable comments and suggestions.

References

[1] G.V. Alekseev. Steady model of magnetohydrodynamics viscous fluid
with heat transfer (in Russian), Uspechi Mechanics (2006), 66-116.
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