
HAL Id: hal-00416491
https://hal.science/hal-00416491v1

Submitted on 15 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Exemplar Breakpoint Distance for non-trivial
genomes cannot be approximated

Guillaume Blin, Guillaume Fertin, Florian Sikora, Stéphane Vialette

To cite this version:
Guillaume Blin, Guillaume Fertin, Florian Sikora, Stéphane Vialette. The Exemplar Breakpoint
Distance for non-trivial genomes cannot be approximated. WALCOM 2009, 2009, Kolkata, India.
pp.357-368. �hal-00416491�

https://hal.science/hal-00416491v1
https://hal.archives-ouvertes.fr

The Exemplar Breakpoint Distance for

non-trivial genomes cannot be approximated

Guillaume Blin1, Guillaume Fertin2, Florian Sikora1, and Stéphane Vialette1

1 Université Paris-Est, IGM-LabInfo - UMR CNRS 8049, France
{gblin,fsikora,vialette}@univ-mlv.fr

2 LINA - UMR CNRS 6241 - Université de Nantes - France
guillaume.fertin@univ-nantes.fr

Abstract. A promising and active field of comparative genomics con-
sists in comparing two genomes by establishing a one-to-one correspon-
dence (i.e., a matching) between their genes. This correspondence is usu-
ally chosen in order to optimize a predefined measure. One such problem
is the Exemplar Breakpoint Distance problem (or EBD, for short),
which asks, given two genomes modeled by signed sequences of charac-
ters, to keep and match exactly one occurrence of each character in the
two genomes (a process called exemplarization), so as to minimize the
number of breakpoints of the resulting genomes.
Bryant [6] showed that EBD is NP-complete. In this paper, we close the
study of the approximation of EBD by showing that no approximation
factor can be derived for EBD considering non-trivial genomes – i.e.
genomes that contain duplicated genes.

1 Introduction

Comparative genomics is a recent and active field of bioinformatics. One of the
problems arising in this domain consists in comparing two species, and more
specifically to look for conserved sets of genes between their genomes: a set of
genes that is conserved in the same order during the evolution suggests that it
participates to the same biological process. Finding conserved sets of genes in
genomes is usually done by optimizing a given (dis)similarity measure. Many
such measures have already been studied in the recent past: number of break-
points, of adjacencies, of conserved intervals, of common intervals, etc. In this
paper, we focus on the number of breakpoints between genomes.

All these measures are well-defined when genomes do not contain duplicates,
and can usually be computed in polynomial time in this case. However, this
assumption does not hold biologically. Moreover, by definition, the above men-
tioned measures do not apply when genes appear several times in a genome.
A way to overcome this difficulty is to start from two genomes and to obtain a
one-to-one correspondence (i.e., a matching) between their genes, in order to end
up with a permutation on which the measure can then be computed. Among all
possible matchings, the choice goes to the one that optimizes the studied mea-
sure. There exists several ways to achieve the desired matching. In this paper,

we are interested in the so-called exemplar model [9], where, for any gene family,
exactly one gene is kept (and thus matched) in the genome. The motivation for
this model is that the gene which is kept is assumed to be the ancestral gene,
from which the other copies have derived.

Following the notations from Blin et al. [5], given an alphabet Σ of elements
called gene families, a genome G on Σ is a sequence of signed elements of Σ,
where the sign represents the DNA strand on which the gene lies. Each occur-
rence of an element of Σ in G is called a gene. For any gene family g ∈ Σ, we
denote by occ(G, g) the number of genes (+g and −g) that appear in G. Let also
occ(G) = max{occ(G, g) | g ∈ Σ}.

For any genome G, a gene family g is said to be trivial if occ(G, g) = 1.
Otherwise, g is said to be non-trivial. A gene belonging to a trivial (resp. non-
trivial) family is said to be trivial (resp. non-trivial). A genome is called trivial if
it only contains trivial genes, i.e. if it is a signed permutation. For convenience,
we will use characters to represent each gene. In the following, given a genome
G over an alphabet Σ, let χ(i, g,G) denote the ith occurrence of character g ∈ Σ

in G (not taking signs into account). When there is no ambiguity, we will simply
use χ(i, g). Moreover, we will refer to the ith character of G as G[i]. We will
also note G[i] < G[j] for any i < j, that is when G[i] appears before G[j]. For
any gene g in G, we denote by g the gene with opposite sign. As introduced
by Chen et al. [7], a genome G is called an s-span genome if all the genes from
the same gene family g are within distance at most s in G. For example, let
G = +a − d + c − b− d− a + e + b − b. We have occ(G, a) = 2, occ(G) = 3,
χ(2, b) = +b and G is a 5-span genome.

Given a trivial genome G, we say that gene g = G[i] immediately precedes
g′ = G[j] iff j = i+1. Given two trivial genomes G1 and G2, if gene g immediately
precedes gene g′ in G1 while neither (i) g immediately precedes g′ nor (ii) g′

immediately precedes g in G2, then they constitute a breakpoint in G2. The
breakpoint distance between two trivial genomes G1 and G2 is then defined as
the number of breakpoints in G2 (we note that this distance is symmetric).

As previously mentioned, the breakpoint distance is not well defined for non-
trivial genomes. The idea is then to establish a matching between genes of G1 and
genes of G2, in order to get back to a signed permutation on which the breakpoint
distance can be computed. The exemplar model, introduced by Sankoff [9], is
one of several ways to construct the matching, which consists in keeping, for
each gene family, only one occurrence of its genes in G1 and in G2. This raises
the following problem, named Exemplar Breakpoint Distance problem, or
EBD for short.

Given two genomes G1 and G2, built over the same alphabet Σ, and an
integer k, the Exemplar Breakpoint Distance Problem asks whether it is
possible to establish an exemplar matching of G1 and G2, such that the break-
point distance between the resulting genomes is at most k.

Bryant [6] showed that EBD is NP-complete, even when one of the genomes
is trivial, and the other has genes that appear at most twice in each genome.
Concerning (in)approximability results, Angibaud et al. [2] proved that EBD is

2

APX-hard under the same conditions. Chen et al. [7] also showed that there
exists no approximation algorithm for EBD, even when both genomes have genes
that appear at most three times. However, this result does not completely close
the question of EBD potential approximation. Indeed, whether EBD can be
approximated on genomes that contain at most 2 copies of each gene remains
unknown, and was actually raised as an open question by Chen et al. [7] and
Angibaud et al. [4]. In this paper, we will answer this open question by showing
that no approximation factor can be derived for EBD, even when considering
genomes in which each gene occurs at most twice.

Chen et al. [7] also provided a logarithmic approximation ratio for the partic-
ular case in which one of the genomes is an s-span genome, with s = O(log m),
m = |Σ| being the number of gene families in the input genomes. It should also
be noted that Nguyen et al. [8] designed a divide-and-conquer heuristic method
in order to compute the Exemplar Breakpoint Distance while Angibaud
et al. [3] proposed an exact method based on transforming the problem into a
0-1 linear programming problem.

In order to prove that EBD is not approximable, we will prove that a par-
ticular subproblem of EBD – called the Zero Exemplar Breakpoint Dis-

tance problem (ZEBDfor short) – is NP-complete. This decision problem asks
whether there exists an exemplar matching of two genomes, such that the break-
point distance between the resulting genomes is equal to zero. For sake of read-
ability, for any p ≥ q ≥ 1, we will denote ZEBD(p, q) the ZEBD problem in
which occ(G1) = p and occ(G2) = q. It is easy to see that ZEBD(1, q) can be
solved in linear time, for any q ≥ 1. Chen et al. [7] showed that ZEBD(3, 3) is
NP-complete. Angibaud et al. [4] also showed that ZEBD(2, q) is NP-complete,
but with a value of q unbounded due to their reduction. Hence, the remaining
unknown cases concern the complexity of ZEBD(2, q), with fixed q. We will an-
swer this question, by proving that ZEBD(2, 2) (and thus, ZEBD(2, q) for any
q ≥ 2) is NP-complete.

In this paper, we thus focus on ZEBD. More precisely, we first complete
and close the study of the complexity of ZEBD, by proving that ZEBD is
NP-complete, even when both genomes contain at most two occurrences of each
gene. This result thus provides a full characterization of the polynomial and
NP-complete cases for ZEBD, and also answers an open question raised by
Chen et al. [7] and Angibaud et al. [4]. It also proves that no approximation
factor can be derived for EBD, even when considering genomes in which each
gene occurs at most twice; that is the simpliest case considering non-trivial
genomes. We then propose to overcome this difficulty by studying the fixed-
parameter tractability of ZEBD which was also leaved as an open question in
[7].

3

2 Inapproximability of Exemplar Breakpoint Distance

In this section, we prove that ZEBD(2, 2) is NP-complete. This result implies
that EBD does not admit any approximation unless P = NP, even when both
genomes contain at most two occurrences of each gene.

Theorem 1. ZEBD(2, 2) is NP-complete.

It is easy to see that ZEBD is in NP. In order to prove its NP-hardness,
we propose a reduction from 3-SAT : let Vn = {x1, x2, . . . , xn} be a set of n

boolean variables, and Cq = {c1, c2, . . . , cq} be a collection of q clauses, where
each clause is a disjunction of three literals taken from Vn. The 3-SAT problem
asks whether there exists an assignment of each variable of Vn such that each
clause is satisfied. Let I = (Cq, Vn) be an instance of 3-SAT. From I, we will
build an instance I ′ = (G1, G2) of ZEBD, such that occ(G1) = occ(G2) = 2.
In our construction, all genes carry a positive sign, which is omitted for sake
of clarity. Moreover, for convenience, for any 1 ≤ i ≤ q and 1 ≤ j ≤ 3, we let
L

j
i denote the jth literal of clause ci in Cq. Moreover, for any 1 ≤ k ≤ n, let

Nxk
(resp. Nxk

) denote the number of occurrences of xk (resp. xk) in Cq. For
each clause ci ∈ Cq, 1 ≤ i ≤ q, we first build a pair of sequences (Ui, Vi), with
Ui = U

1

i
di U

2

i
di U

3

i
ti and Vi = V

1

i
di V

2

i
di V

3

i
ti, such that

U1
i U2

i U3
i

Ui =
︷ ︸︸ ︷

m1
i TL1

i

p1
i FL1

i

ai m1
i di

︷ ︸︸ ︷

ai m2
i TL2

i

p2
i FL2

i

bi m2
i di

︷ ︸︸ ︷

bi m3
i TL3

i

p3
i FL3

i

m3
i ti

Vi = p1
i FL1

i

m1
i TL1

i

p1
i ai

︸ ︷︷ ︸

di p2
i ai FL2

i

m2
i TL2

i

p2
i bi

︸ ︷︷ ︸

di p3
i bi FL3

i

m3
i TL3

i

p3
i

︸ ︷︷ ︸

ti

V 1
i V 2

i V 3
i

Let us now define formally T
L

j

i
and F

L
j

i
for all 1 ≤ i ≤ q and 1 ≤ j ≤ 3. Let

T
L

j

i
= T 1

L
j

i

T 2

L
j

i

(resp. F
L

j

i
= F 1

L
j

i

F 2

L
j

i

), defined as follows:

– if (i) L
j
i is the first occurrence of xk or xk in Cq, and (ii) Nxk

and Nxk
are

both strictly positive, then T 1

L
j

i

= y1
k and F 1

L
j

i

= y2
k ; otherwise, T 1

L
j

i

and F 1

L
j

i

are empty.
– if L

j
i is the lth occurrence of xk (resp. xk), let p = l + 1 if l < Nxk

(resp.
l < Nxk

), and p = 1 otherwise. If Nxk
> 1 (resp. Nxk

> 1), then T 2

L
j

i

= xl
k

(resp. xk
l) and F 2

L
j

i

= x
p
k (resp. xk

p) ; otherwise, T 2

L
j

i

and F 2

L
j

i

are empty.

Genomes G1 and G2 are then defined as G1 = U1 U2 . . . Uq and G2 =
V1 V2 . . . Vq. Clearly, this construction can be carried out in polynomial time,
and it can also be seen that occ(G1) = occ(G2) = 2.

We now give an intuitive description of the different elements of this construc-
tion: each clause ci ∈ Cq, 1 ≤ i ≤ q, is represented by a pair (Ui, Vi) of sequences.
Those sequences are both composed of three subsequences representing the lit-
erals of ci. More precisely, the pair (U j

i , V
j
i) represents a selection mechanism of

4

the jth literal of ci. For each variable xk ∈ Vn, the set {x1
k, x2

k, x3
k, . . . , x

Nxk

k } is
used to propagate the selection of the literal xk all over Cq, in order to make sure
that if a literal satisfies a clause, then it satisfies all clauses where it appears.
Similarly, the set {xk

1, xk
2, xk

3, . . . , xk
Nxk } is a propagation mechanism for xk.

Finally, for each variable xk ∈ Vn such that Nxk
and Nxk

are both strictly posi-
tive, the pair (y1

k, y2
k) in both G1 and G2 is a control mechanism that guarantees

that a variable xk cannot be true and false simultaneously.
Figure 1 illustrates an example of an instance (G1, G2) of ZEBD(2, 2) ob-

tained from our construction, starting from Cq = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨
x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x4)}.

U1
1 U2

1 U3
1

z }| {

m
1
1 y

1
1 x

1
1 p

1
1 y

2
1 x

2
1 a1 m

1
1 d1

z }| {

a1 m
2
1 y

1
2 x

1
2 p

2
1 y

2
2 x

2
2 b1 m

2
1 d1

z }| {

b1 m
3
1 y

1
3 x

1
3 p

3
1 y

2
3 x

2
3 m

3
1 t1

p
1
1 y

2
1 x

2
1 m

1
1 y

1
1 x

1
1 p

1
1 a1

| {z }
d1 p

2
1 a1 y

2
2 x

2
2 m

2
1 y

1
2 x

1
2 p

2
1 b1

| {z }
d1 p

3
1 b1 y

2
3 x

2
3 m

3
1 y

1
3 x

1
3 p

3
1

| {z }
t1

V 1
1 V 2

1 V 3
1

U1
2 U2

2 U3
2

z }| {

m
1
2 y

1
1 x1

1
p
1
2 y

2
1 x1

2
a2 m

1
2 d2

z }| {

a2 m
2
2 x

2
2 p

2
2 x

3
2 b2 m

2
2 d2

z }| {

b2 m
3
2 y

1
3 p

3
2 y

2
3 m

3
2 t2

p
1
2 y

2
1 x1

2
m

1
2 y

1
1 x1

1
p
1
2 a2

| {z }
d2 p

2
2 a2 x

3
2 m

2
2 x

2
2 p

2
2 b2

| {z }
d2 p

3
2 b2 y

2
3 m

3
2 y

1
3 p

3
2

| {z }
t2

V 1
2 V 2

2 V 3
2

U1
3 U2

3 U3
3

z }| {

m
1
3 x1

2
p
1
3 x1

1
a3 m

1
3 d3

z }| {

a3 m
2
3 y

1
2 p

2
3 y

2
2 b3 m

2
3 d3

z }| {

b3 m
3
3 x

2
3 p

3
3 x

1
3 m

3
3 t3

p
1
3 x1

1
m

1
3 x1

2
p
1
3 a3

| {z }
d3 p

2
3 a3 y

2
2 m

2
3 y

1
2 p

2
3 b3

| {z }
d3 p

3
3 b3 x

1
3 m

3
3 x

2
3 p

3
3

| {z }
t3

V 1
3 V 2

3 V 3
3

U1
4 U2

4 U3
4

z }| {

m
1
4 x

2
1 p

1
4 x

1
1 a4 m

1
4 d4

z }| {

a4 m
2
4 x

3
2 p

2
4 x

1
2 b4 m

2
4 d4

z }| {

b4 m
3
4 p

3
4 m

3
4 t4

p
1
4 x

1
1 m

1
4 x

2
1 p

1
4 a4

| {z }
d4 p

2
4 a4 x

1
2 m

2
4 x

3
2 p

2
4 b4

| {z }
d4 p

3
4 b4 m

3
4 p

3
4

| {z }
t4

V 1
4 V 2

4 V 3
4

Fig. 1. The instance (G1, G2) of ZEBD(2, 2) obtained starting from Cq = {x1 ∨ x2 ∨
x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x4)}.

In the following, let us denote by Sk (resp. Sd) the set of characters that
are kept (resp. deleted) in an exemplarization of G1 and G2, in a given solution
for ZEBD. By definition, exactly one occurrence of each gene family must be
kept. We also note that by construction, since, for 1 ≤ i ≤ q, there is only one

5

occurrence of ti in G1 and in G2 , characters of Ui may only be matched with
characters of Vi. Moreover, for a given 1 ≤ i ≤ q and a given 1 ≤ j ≤ 3, in
U

j
i , χ(1,mj

i) < p
j
i < χ(2,mj

i), whereas, in V
j
i , χ(1, pj

i) < m
j
i < χ(2, pj

i). Those
properties induce the following lemma.

Lemma 1. In any solution for ZEBD on (G1, G2), for any 1 ≤ i ≤ q and
1 ≤ j ≤ 3, either (a) {χ(1,mj

i , U
j
i), χ(2, pj

i , V
j
i)} ⊆ Sk or (b) {χ(2,mj

i , U
j
i),

χ(1, pj
i , V

j
i)} ⊆ Sk.

Lemma 2. In any solution for ZEBD on (G1, G2), for any 1 ≤ i ≤ q and
1 ≤ j ≤ 3, at least one of χ(1,m1

i , U
1
i), χ(1,m2

i , U
2
i), χ(1,m3

i , U
3
i) belongs to Sk.

Proof. By contradiction, let us suppose that none of χ(1,m1
i , U

1
i), χ(1,m2

i , U
2
i),

χ(1,m3
i , U

3
i) belongs to Sk. Then, by Lemma 1, {χ(2,mj

i , U
j
i), χ(1, pj

i , V
j
i)} ⊆ Sk

for all 1 ≤ j ≤ 3. Since in Ui, χ(1, ai) < χ(2,m1
i , U

1
i) < χ(1, di) < χ(2, ai) < p2

i ,
whereas in Vi, m1

i < χ(1, ai) < χ(1, di) < χ(1, p2
i , V

2
i) < χ(2, ai) < m2

i , we con-
clude that {χ(1, ai, Ui), χ(2, ai, Vi)} ⊆ Sd. Therefore, {χ(1, di, Ui), χ(1, di, Vi)}
⊆ Sd, whereas {χ(2, ai, Ui), χ(1, ai, Vi)} ⊆ Sk.

Moreover, since in Ui, χ(1, bi) < χ(2,m2
i , U

2
i) < χ(2, di) < χ(2, bi) < p3

i ,
whereas in Vi, m2

i < χ(1, bi) < χ(2, di) < χ(1, p3
i , U

3
i) < χ(2, bi) < m3

i , we con-
clude that {χ(1, bi, Ui), χ(2, bi, Vi)} ⊆ Sd. Thus, {χ(2, di, Ui), χ(2, di, Vi)} ⊆ Sd,
whereas {χ(2, bi, Ui), χ(1, bi, Vi)} ⊆ Sk. Consequently, none of the occurrences
of di can be kept in the exemplarization, a contradiction. ⊓⊔

Lemma 3. Let I = {(i1, j1), (i2, j2), . . . (ip, jp)} such that ∀ 1 ≤ m 6= n ≤

p, L
jm

im
= L

jn

in
. Then either (a) {χ(1,mjm

im
, U

jm

im
), χ(1,mjn

in
, U

jn

in
)} ⊆ Sk, or (b)

{χ(2,mjm

im
, U

jm

im
), χ(2,mjn

in
, U

jn

in
)} ⊆ Sk.

Proof. Let us first suppose that L
j1
i1

= xk. Then, by construction, xr
k < p

jr

ir
<

xr+1

k in U
jr

ir
and xr+1

k < m
jr

ir
< xr

k in V
jr

ir
, for any 1 ≤ r < p and x

p
k < p

jp

ip
< x1

k

in U
jp

ip
and x1

k < m
jp

ip
< x

p
k in V

jp

ip
. If χ(1,mjr

ir
, U

jr

ir
) ∈ Sk, for a given (ir, jr) ∈ I

such that r < p, xr+1

k in U
jr

ir
must be deleted. Therefore, the two occurrences of

xr+1

k in U
jr+1

ir+1
and V

jr+1

ir+1
must be kept. Consequently, χ(1,m

jr+1

ir+1
, U

jr+1

ir+1
) ∈ Sk.

By induction on r, we have χ(1,m
jp

ip
, U

jp

ip
) ∈ Sk. This implies that x1

k in U
jp

ip

must be deleted, which in turn means that x1
k in U

j1
i1

must be kept, and thus

χ(1,mj1
i1

, U
j1
i1

) ∈ Sk. The induction can then be continued from U
j1
i1

, and we

conclude that χ(1,mjn

in
, U

jn

in
) ∈ Sk for any 1 ≤ i ≤ p. This proves case (a) of the

above lemma, when L
j1
i1

= xk.

Moreover, if χ(1,mjr

ir
, U

jr

ir
) ∈ Sd, for a given (ir, jr) ∈ I such that r > 1, then

χ(2,mjr

ir
, U

jr

ir
) ∈ Sk and xr

k in U
jr

ir
must be deleted. Therefore, the two occur-

rences of xr
k in U

jr−1

ir−1
and V

jr−1

ir−1
must be kept. Consequently, χ(2,m

jr−1

ir−1
, U

jr−1

ir−1
) ∈

Sk. By induction on r, χ(2,mj1
i1

, U
j1
i1

) ∈ Sk and, thus, this implies that x1
k in U

j1
i1

must be deleted, which in turn means that x1
k in U

jp

ip
must be kept, and thus

6

χ(2,m
jp

ip
, U

jp

ip
) ∈ Sk. The induction can then be continued from U

jp

ip
, and we

conclude that χ(2,mjn

in
, U

jn

in
) ∈ Sk for any 1 ≤ i ≤ p. This proves case (b) of the

above lemma, when L
j1
i1

= xk.
By a similar reasoning, it is possible to prove that the same holds when

L
j
i = xp. ⊓⊔

Lemma 4. ∀ (i, j), (i′, j′) such that (1) L
j
i = L

j′

i′ and (2) L
j
i and L

j′

i′ are the

first occurrences of the corresponding variable, only one of χ(1,mj
i , U

j
i) and

χ(1,mj′

i′ , U
j′

i′) may be kept.

Proof. Let L
j
i = L

j′

i′ = xk and suppose L
j
i (resp. L

j′

i′) is the first occurrence of

xk (resp. xk). If χ(1,mj
i , U

j
i) is kept, then y2

k in U
j
i (resp. V

j
i) must be deleted,

and therefore of y2
k in U

j′

i′ (resp. V
j′

i′) must be kept. In that case, it can be seen

that χ(1,mj′

i′ , U
j′

i′) must be deleted. The proof is similar if we choose to keep

χ(1,mj′

i′ , U
j′

i′). ⊓⊔

Thanks to the four above lemmas, we can prove the following theorem (the
proof is omitted due to space constraints, and is available in Appendix).

Theorem 2. Let I be an instance of 3-SAT, and let I ′ = (G1, G2) be the in-
stance of ZEBD(2, 2) constructed from I. There exists a truth assignment that
satisfies each clause in I iff there exists a zero breakpoint distance exemplariza-
tion in I ′.

Altogether, this proves that ZEBD(2, 2) is NP-complete.

3 Exponential-time algorithms for ZEBD

It can be easily seen that, for two genomes G1 and G2 = g1 g2 . . . gn, if
ZEBD is answered positively, the induced exemplarization is either (1) a com-
mon subsequence of G1 and G2 or (2) a common subsequence between G1 and
←−
G2 = gn . . . g2 g1. Therefore, any algorithm that answers ZEBD should check
both cases. For simplicity, we will only discuss case (1) in this section. Checking

case (2) just requires to run the same algorithm on (G1,
←−
G2), instead of (G1, G2),

which does not change the complexity.
Let G1 and G2 be two genomes defined over a set of m gene families, and such

that occ(G1) = k1 and occ(G2) = k2. A brute-force algorithm for answering to
ZEBD of G1 and G2 consists in computing all the possible exemplarizations of
G1 and G2, and then determining whether one of them leads to a zero breakpoint
distance. Since for any gene family there are at most ki occurrences in Gi,
1 ≤ i ≤ 2, there are at most (k1)

m (resp. (k2)
m) exemplarizations of G1 (resp.

G2). Moreover, given two exemplar genomes (each of length m), one can check
in O(m) whether their breakpoint distance is equal to zero. Therefore, on the
whole the time complexity of the brute force algorithm is O(m · (k1 ·k2)

m) time.
In the following, we present two fixed parameter algorithms, which give more
feasible solutions.

7

Theorem 3. There exists an O(m2m) algorithm for solving ZEBD, where m

is the number of gene families of the input genomes.

Proof. The key idea is to decrease the time complexity of the brute-force algo-
rithm by using a color-coding like method (see [1]). Color-coding is a technique
to design fixed-parameter algorithms for several NP-complete subgraph isomor-
phism problems. This technique is based on a random coloring of each vertex of
the input graph, using a small set of colors, and looking for a colorful path in
the graph, that is a path whose vertices carry different colors and all colors are
used.

Given two genomes G1 and G2 over a set Σ of m gene families, we build a
directed graph (V,A) defined as follows. For each pair (G1[i], G2[j]) of genes of
the same gene family that carry the same sign, add a vertex (i, j) to V . For all
{(i, j), (p, q)} ∈ V 2 such that i < p and j < q, add an edge from (i, j) to (p, q)
in A. Finally, let C : Σ → {c1, c2, . . . , cm} be a function that assigns a unique
color to each gene family. For each vertex (i, j) ∈ V , we assign to (i, j) the color
C(f(G1[i])), where f(G[i]) denotes the gene family corresponding to G[i]. An
illustration is given in Figure 2.

Fig. 2. a) Two genomes G1 and G2; b) A coloring function C; c) The corresponding
graph (V, A)

It can be seen that looking for a colorful path of length m in the graph (V,A)
is equivalent to finding an zero breakpoint distance exemplarization of G1 and
G2, since (i) genes belonging to the same family carry the same color, and (ii) the
order is preserved by construction of A. It can be easily seen that there exists
a dynamic programming algorithm in O(m2m) to answer that question. Indeed,
we only need to maintain the set of colors already selected in the current path,
instead of the current selected vertices of the graph. Therefore, ZEBD is fixed
parameter tractable with respect to the number m of gene families. ⊓⊔

We now propose a second fixed-parameter algorithm for solving ZEBD, de-
fined as follows. As previously, we transform the ZEBD problem into the problem
of finding a path in a directed acyclic graph (or DAG, for short). But instead of
having a vertex for each possible match between two genes of G1 and G2, in this
DAG, a vertex will represent a common subsequence between the two genomes
(i.e. a sequence formed from the original sequence by deleting some of the ele-
ments without changing the relative order and signs of the remaining elements).

8

The complexity of this algorithm will stem from the construction of this graph,
which is, as we will see, exponential on the span s of the input genomes, rather
than on m.

Suppose, wlog, |G1| ≤ |G2|. The algorithm is based on two functions : Com-
monSubsequenceSet (cf. Figure 3) and BuildGraph (cf. Figure 4). The function
CommonSubsequenceSet consists in (1) computing – for all the common subse-
quences between non overlapping segments of G1 of size s (i.e. G1[i..i + s − 1]
for i = {1, s + 1, 2s + 1, . . .}) and G2 – the starting and ending positions of
the common subsequences in G2 ; and (2) add a vertex represented as a triplet
(αi

j , s
i
j , e

i
j) (formally defined in Figure 3) for each of those common subsequences

to a set V . This set will be returned by the function.

Function CommonSubsequenceSet (G1,G2) {1

V = ∅; j = 1;2

for (i = 1; i ≤ |G1|; i = i + s) do3

foreach common subsequence αi
j between G1[i..i + s − 1] and G2 do4

V = V ∪ {vi
j} such that vi

j = (αi
j , s

i
j , e

i
j) where si

j (resp. ei
j) is the5

starting (resp. ending) position of αi
j in G2;

end6

j + +;7

end8

return V }9

Fig. 3. Function CommonSubsequenceSet over two s-span genomes G1 and G2.

Function BuildGraph consists in building a DAG G = (V,A) from two s-span
genomes G1 and G2. The set of vertices V is obtained by calling the Common-
SubsequenceSet function on G1 and G2. BuildGraph then considers each pair of
vertices (vi

j , v
i′

j+1) and (vi
j , v

i′

j+2), and adds an edge to A iff the corresponding
common subsequences are compatible, i.e. if they have no gene of the same fam-
ily in common (exemplar solution) and do not overlap. In the resulting graph
(as illustrated in Figure 5), a path is an exemplarization of both G1 and G2. In
such a graph, if one decomposes each vertex vi

j into a path of length |αi
j | then,

as we will show, the existence of a path of length m induces that there exists a
zero breakpoint distance exemplarization of G1 and G2.

Before proving the correctness and complexity of the above algorithm, let us
prove an interesting property on the set V returned by CommonSubsequenceSet.
In the following, δj will refer to the set {vi

j |v
i
j ∈ V }.

Lemma 5. Given two s-span genomes G1 and G2, the function CommonSub-
sequenceSet, run on (G1, G2), returns a set V of size less than or equal to n2ss,
where n = |G1|.

Proof. Given any segment of size s of G1, there are at most 2s different subse-
quences. Moreover, for each such subsequence αi

j , there are at most s positions in

9

Function BuildGraph (G1,G2) {1

V = CommonSubsequenceSet(G1, G2);2

foreach (vi
j , v

i′

j+1) ∈ V 2 do3

if ei
j < si′

j+1 then4

//the order is respected;5

if αi
j and αi′

j+1 have no gene of the same family in common then6

//the concatenation is exemplar;7

A = A ∪ {(vi
j , v

i′

j+1)};8

end9

end10

end11

foreach (vi
j , v

i′

j+2) ∈ V 2 do12

if ei
j < si′

j+2 then13

//by construction, the concatenation is exemplar;14

A = A ∪ {(vi
j , v

i′

j+2)};15

end16

end17

return G = (V, A) }18

Fig. 4. Function BuildGraph over two s-span genomes G1 and G2.

G2 for the first (resp. the last) gene of αi
j ; namely αi

j [1] (resp. αi
j [|α

i
j |]). Since in

the function CommonSubsequenceSet, a vertex is added to V for each (αi
j , s

i
j , e

i
j),

V is of cardinality at most |G1|
s

2ss2. ⊓⊔

By construction, given any sequence of vertices along a path in the DAG
obtained by BuildGraph(G1, G2), the order of the vertices in the path is similar
to the one of the corresponding genes in both G1 and G2. Moreover, by definition,
for any j the set of genes involved in any common subsequence of δj is disjoint
from the one for δj′ with j′ ≥ j + 2. Therefore, a path in the DAG corresponds
to an exemplarization of both G1 and G2. Hence, for any s-span genome G1 and
G2, ZEBD is positively answered iff there exists a path of length m in the DAG
obtained by BuildGraph(G1, G2).

Let us now analyze the time complexity of our algorithm. The function
CommonSubsequenceSet(G1, G2) has a worst time complexity in O(n2ss), where
n is the length of G1. Indeed, for each value of i (which is bounded by n

s
), accord-

ing to Lemma 5 there are at most 2s different subsequences in G1 and s2 pairs
(si

j , e
i
j) for any such given subsequence in G2. Moreover, any set δj , 1 ≤ j ≤ n

s
,

is of size at most 2ss2.
Function BuildGraph(G1, G2) has a worst time complexity in O(n22ss3).

Indeed, there are less than (2ss2)2 pairs (vi
j , v

i′

j+1) in V , each of size at most n
s
.

Finally, finding a longest path in the resulting DAG from BuildGraph(G1, G2)
may be done polynomially in the size of the graph. On the whole, the algorithm
has a time complexity in O(n22ss3).

10

Fig. 5. Resulting graph from BuildGraph(G1, G2) with G1 = +a − b + a + c + d +
c + d + e − f and G2 = +a − b + c − b + d − f + e − f . The dotted path
corresponds to a positive solution for ZEBD. Links between δ1 and δ3 have not been
drawn. All arcs are drawn without arrow, but should be understood from left to right.

Altogether, the above results lead to the following theorem.

Theorem 4. There exists an O(n22ss3) algorithm for solving ZEBD, where n

is the length of the shortest input genome, and s is the span of the input genomes.

4 Conclusion

In this paper, we have given several results concerning the Exemplar Break-

point Distance and Zero Exemplar Breakpoint Distance problems.
We first proved that that EBD cannot be approximated at all as soon as
both genomes contain duplicates; this was done by showing that ZEBD(2,2)
is NP-complete. This last result fills the remaining gaps concerning the knowl-
edge of the complexity landscape of ZEBD. In particular, this answers an open
question from Chen et al. [7] and Angibaud et al. [4]. We have also provided
two fixed-parameter algorithms for ZEBD: one parameterized by the number of
gene families, and the other by their span. Two questions remain open:

(1) since ZEBD(1, q), q ≥ 1, is polynomial, there may exist approximation
algorithms for EBD(1, q) (we recall that EBD(1, q) is APX-hard [2]). For in-
stance, is it possible to approximate EBD(1, q) within a constant ratio ?

(2) as mentioned by Chen et al. [7], for problems whose optimal value could
be equal to zero, it is sometimes better to look for so-called weak approximations.
The natural question is thus the following: what can be said concerning weak

11

approximations for EBD(p, q) ? Chen et al. [7] gave a negative result in the
general case but restricting our study to particular values of p and q could lead
to positive results.

References

1. N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42(4):844–856,
1995.

2. S. Angibaud, G. Fertin, and I. Rusu. On the approximability of comparing genomes
with duplicates. In Proc. 2nd Workshop on Algorithms and Computation (WAL-
COM 2008), volume 4921 of Lecture Notes in Computer Science, pages 34–45.
Springer, 2008.

3. S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. A pseudo-boolean
programming approach for computing the breakpoint distance between two genomes
with duplicate genes. In Proc. 5th RECOMB Comparative Genomics Satellite Work-
shop (RECOMB-CG), volume 4751 of Lecture Notes in Bioinformatics, pages 16–29.
Springer, 2007.

4. S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. On the ap-
proximability of comparing genomes with duplicates. Journal of Graph Algo-
rithms and Applications, 2008. Extended version of [2]. Submitted. Available at
http://www.arxiv.org/abs/0806.1103.

5. G. Blin, C. Chauve, G. Fertin, R. Rizzi, and S. Vialette. Comparing genomes
with duplications: a computational complexity point of view. ACM/IEEE Trans.
Computational Biology and Bioinformatics, 14(4):523–534, 2007.

6. D. Bryant. The complexity of calculating exemplar distances. In Comparative
Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map
Alignment, and the Evolution of Gene Families, pages 207–212. Kluwer Academic
Publisher, 2000.

7. Z. Chen, B. Fu, and B. Zhu. The approximability of the exemplar breakpoint
distance problem. In 2nd International Conference on Algorithmic Aspects in In-
formation and Management (AAIM), volume 4041 of Lecture Notes in Computer
Science, pages 291–302. Springer, 2006.

8. C. Thach Nguyen, Y. C. Tay, and Louxin Zhang. Divide-and-conquer approach for
the exemplar breakpoint distance. Bioinformatics, 21:2171–2176, 2005.

9. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–
917, 1999.

12

5 Appendix

Theorem 5. Let I be an instance of 3-SAT, and let I ′ = (G1, G2) be the in-
stance of ZEBD(2, 2) constructed from I. There exists a truth assignment that
satisfies each clause in I iff there exists a zero breakpoint distance exemplariza-
tion in I ′.

Proof. (⇐) Suppose we have a solution (Sk, Sd) for ZEBD(G1, G2). By Lemma 2,
for any 1 ≤ i ≤ q and 1 ≤ j ≤ 3, at least one of χ(1,m1

i , U
1
i), χ(1,m2

i , U
2
i), χ(1,m3

i ,

U3
i) belongs to Sk. Let us define the following truth assignment for Vn: ∀ 1 ≤

i ≤ q, if χ(1,mj
i , U

j
i) ∈ Sk then L

j
i is set to true. Otherwise, L

j
i is set to false.

Let us prove that this assignment is a solution of 3-SAT. First, by Lemma 4, if

L
j
i = L

j′

i′ , then L
j
i and L

j′

i′ cannot both be set to the same value (true or false):
in other words, each literal is set a unique value true or false. Moreover, by
Lemma 2, for any 1 ≤ i ≤ q, at least one of the literals of clause ci satisfies it.
Altogether, this assignment is a positive solution for 3-SAT.

(⇒) Given a solution of 3-SAT, ∀ ci ∈ Cq, if L
j
i is true (that is, L

j
i is

one of the literals satisfying ci), we let Sk contain {χ(1,mj
i), TL

j

i
, p

j
i} of U

j
i

and {mi
j , TL

j

i
, χ(2, pj

i)} of V
j
i ; otherwise, if L

j
i is false, we let Sk contain

{pj
i , FL

j

i
, χ(2,mj

i)} of U
j
i and {χ(1, pj

i), F
L

j

i
,mi

j} of V
j
i . Moreover, ∀ ci ∈ Cq: (1)

if L1
i is true and L2

i is false, then {χ(1, ai, Ui), χ(1, ai, Vi), χ(1, di, Ui), χ(1, di, Vi),
χ(2, bi, Ui), χ(1, bi, Vi)} ⊆ Sk ; (2) if L2

i is true, then {χ(2, ai, Ui), χ(2, ai, Vi),
χ(1, di, Ui), χ(1, di, Vi), χ(1, bi, Ui), χ(1, bi, Vi)} ⊆ Sk ; (3) if L3

i is true and L1
i

and L2
i are false, then {χ(2, ai, Ui), χ(1, ai, Vi), χ(2, di, Ui), χ(2, di, Vi), χ(2, bi,

Ui), χ(2, bi, Vi)} ⊆ Sk ; (4) {χ(1, ti, Ui), χ(1, ti, Vi)} ⊆ Sk.
Let us now prove that the corresponding set Sk is a solution for ZEBD.

According to proof of Lemma 3, ∀ xk ∈ Vn such that xk (resp. xk) is true, all
T

L
j

i
such that L

j
i = xk (resp. L

j
i = xk) are kept. Therefore, for any 1 ≤ l ≤ Nxk

(resp. 1 ≤ l ≤ Nxk
), exactly one occurrence of xl

k (resp. xk
l) is kept. Moreover,

by construction, T 1

L
j

i

and F 1

L
j

i

are both empty if N
L

j

i
= 0 or N

L
j

i

= 0 ; otherwise,

∀ xk ∈ Vn such that Nxk
> 0 and Nxk

> 0, there exist exactly two occurrences
of y1

k (say, in T 1

L
j

i

and T 1

L
j′

i′

) and y2
k (in F 1

L
j

i

and F 1

L
j′

i′

) in both G1 and G2. Since

any variable of Vn is either true or false, exactly one of (T 1

L
j

i

, T 1

L
j′

i′

) and one of

(F 1

L
j

i

, F 1

L
j′

i′

) has been kept. Therefore, exactly one occurrence of each y1
k and y2

k

has been kept. Finally, it is easy to check that one of each remaining characters
is kept, which shows that there exists a zero breakpoint distance exemplarization
of G1 and G2. ⊓⊔

13

