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0. Introduction

By Shoenfield absoluteness theorem, the I1} real singleton are the simplest, non
constructible, projective reals. Very few I} non constructible real singletons exist
in the literature.

One of them is the real 07 introduced by Solovay in [9]. It is ‘provably II}
singleton’, that means that there is a I1} formula ¢ such that for any model M of
ZF that contains 0% as an element, 07 is —in M — the only solution of ¢. The
existence of 0” needs a large cardinal property as Ramsey or measurable and 0%
is not generic over L by mean of a constructible set of conditions.

Other ones have been constructed by forcing over L (see Jensen and Solovay
[8] and Jensen [5]). They are not ‘provably II} singleton’; they only are I}
singleton ‘at home’, that means there is a I} formula ¢ such that the real r is the
only solution of ¢ in L(r), but (except in trivial cases — for instance if M and L(r)
have the same reals) it is not true that if M is another model containing r as an
element, r remains—in M-——the only solution of ¢. Of course, by Shoenfield
theorem, r remains a solution of ¢ but not necessarily the only one.

Later Jensen and Johnsbraten constructed, also by forcing, a new and more
absolute I1} singleton r: r is the only solution — in M — of some [1} formula ¢ as
far as M satisfies: w; = wr. ‘

In the sense of absoluteness, this real is the ‘best’ Il; singleton known, except
0%. Other II; singleton with various properties have been constructed (see
[2, 3, 4]), but— in view of absoluteness — since they are constructed by use of the
Jensen and Johnsbraten method, they are not different from that one.

A natural question is: find a ‘provably’ IT; non constructible singleton r such
that 0% ¢ L(r)? It seems to be a difficult problem. This paper is devoted to the
proof of a theorem which is — perhaps — a step to a solution of this problem.

Theorem 1. Let M be a transitive model of ZF+V = L. There is an M definable
0003-4843/82/0000-0000/$02.75 © 1982 North-Holland
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class P of forcing conditions and a 11 formula ¢ such that, if N is a P generic
extension of M, then:

(1) N and M have the same cardinals and the same cofinality function.

(2) There is a real r in N such that N satisfies:

ZF+—0%+V=L{r+ré L+o(r)+3! xo(x).

(3) If N is a generic extension of N (by a set of conditions), then N satisfies:
A x p(x).

Note. (1) The real given by the theorem is not provably I} singleton. I shall
discuss and make some comments at the end of this paper.

(2) If 0% exists, I may assume that this real r is such that r e L(0%); but r is not
1} singleton in L(07%).

(3) The conclusion of (3) in the theorem remains true for some other extensions
of N: for instance if N is a generic extension of N by use of the class P of
conditions where P is:

(i) the forcing to add a Cohen subset of [a, &' for all the cardinals «,

(ii) the forcing to deny the generalized continuum hypothesis.

On the other way there are classes Q of conditions such that r does not remain

I1} singleton in a Q generic extension of N.

The proof of this theorem will use the method developed by Jensen in his
‘Coding the universe by a real’ [6]. A basic and important modification has to be
done, so the entire proof — and not only one or two points — has to be reex-
amined. It will be of course too long and fastidious — and useless — to rewrite the
whole proof in this new context. So, in a first step I shall prove a theorem which is
the basic idea of the theorem and the ‘building block’ of it. Then, while proving
the theorem, I shall invite the reader to work with a copy — and/or a good
knowledge — of Jensen’s theorem by himself.

1. The building block

This section is devoted to the proof of the following:
Theorem 2. Let M be a transitive model of ZF+ V = L. There is an M definable set
P of conditions and a 115 formula ¢ such that if N is a P generic extension of M,
then:

(1) N and M have the same cardinals and the same cofinality function.
(2) There is a real a in N such that N satisfies:

V=L{a)+e(a)+3! x¢(x).

(3) If N is a generic extension of N by use of a set of conditions with the strong
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w,-chain condition (i.e: VxcCEX=w,>dycx(y=w, and V¢, c'ey, c and ¢’
are compatible))), then N satisfies: 3! x ¢(x).

This real comes from something as a three steps forcing extension. I work in a
model My=M of V=1L.

1.1. The trees

I define a sequence (T(n)), ., of Suslin trees of height w, in the following way
(it is an easy generalisation of Jensen’s construction of a Suslin tree of height w,).
If T is a tree I shall denote T the athlevel of T and T | a = |Jz-, T?. The T(n)
will be such that: xe T*(n)=> x:a — 2. The levels of the T(n) are defined by
induction as follows:

xeT%n) iff x=0,
xeT*"'(n) iff x=yU{{e,i)]i=0 or 1} for some ye T%(n,)
for limit a,
cfla)=w:xeT*(n) iff x:a—2&VA<ax|ieT*(n)
(since 05 =w,, T"(n) = w,)
for limit A,
Cf()\,) = @q.

The elements of T*(n) are branches in T(n) | A choosen (in a classical way) by
the following forcing: B
Let m, be the least n such that (T(n) | A),, is in L,, and L, FZF + X = w,. Let

Fo={e,Pel, la<w, &f=f).fuia—=Tn) I A st
VnmeoVB B<alfB)=If.(B)
where |x| is the level of x. Set (o, f)=<(&, f) iff @ =a and
VnewVB<af.(B)=f.(8)
(in the ordering of T(n) | A).
Because of the definition of T'(n) in the case of cofinality w, it is clear that F, is
an w-closed set of conditions and so there is —in L —an F, generic over L, . The

L-least one gives w, branches in T(n) | A. They are the elements of T*(n). This
achieves the definition of the T(n).

Lemma. Let a be a finite subset of w, and T, =11, zo T(n). That is: a condition is a
sequence (X, )ncw-a Such that x,€T(n); and (%), <) ff Ynew—ax,=y,.
Then T, is w-closed and satisfies the w,-chain condition. Moreover let G be T,
generic over L and i< a, then L(G) satisfies: T(i) is Suslin.
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Proof. Although the proof is classical, I shall give it since I shall refer to it later.
T, is clearly w-closed. Let A be a maximal antichain in T,. Let X be the L-least
such that:

X"< ng & {A}leCX and lf A= WoH ﬂX, then A € Wy and Cf()\) = Wy

(clearly such an X exists). Let I1:L; = X, s0 A =w,N X =1I""(w,). Let g be a
function from w —a into w,; and

D, ={(a, f)e F, | (f,(g(n))),ce-a is compatible with some element of A}.

It is easy to see that D, is a dense subset of F, and that D,e L, (since 1, >f3
because LgEA =w, whereas L, FA = w,). It follows easily that A = A N A and so
A< wWy.

Assume now i€a,set b=a—{i}; then T,=T,* T(i) (where * means the
iteration of forcing) satisfies the w,-chain condition and so T(i) satisfies in L(G)

R P PSRRI Iy ™M
LG Wop~Liidill CONUILION. L

1.2. Coding the branches

For new and B, a branch in T(n) (in some generic extension of L). I shall
define a set Q, of conditions to code B, by a subset of w,. It is a slight
modification of the coding by use of almost disjoint sets and one of the basic idea
of proof of the theorem.

1.2.1

Let @ <@ <w, be such that: LyFa =w,;+ZF +Vx (X <) +VA(cfA)=a=n,
exists) (I shall denote @ (e, B) this property). I can construct in Lg the trees T(n)
exactly as I construct in L, the right ones. I shall denote Tg(n) these trees.

Claim 1. Assume @(o, B) and O(e, B) and B <P, then
Te(n)="Tg(n)N L.
This is an easy consequence of:

Claim 2. For vy <f:
(1) if Lz Fcf(y) = w, then LgFcf(y) = w;

(2) if feLgf:o-M5T(n) !y, then fe L,

Proof. (1) Let f:wMyfeLg; geLBg:ywabij‘ a, then gof e Lz and gof 1w —
a s0 gofe L, < Lg so f=((gof)o'g) "€ L.

(2) let geLgg:T(n) | y—Ej—'a«a; then gofe L, and so fe L, [
8 B
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1.2.2

Fix n; let B, be a branch in T(n). I define the forcing Q, in the following way.
(I shall omit the subscript n when not necessary.)

Claim 1. There is a definable function S: T — P(w,) such that:

(D) if x#ySx)NS(y)<w;

(2) if II:Lg—L, is an elementary embedding such that 7(a)=w,, then
II(S(x) Na)=STI(x)).

Proof. Easy.

A condition in Q, is a pair (p, p’) such that:

(1) p:lpl<w;—2 such that for a<|p| and B if @(a,B) and Ly(p | @)k
ZF +a=w;=of, then: {xe Ty | S(x)NpNaNE is bounded in o} is a cofinal
branch in Tg; (where p ={y <|p|| p(y) =1} and E = the even ordinals ={A +2n | A
Tivvvite 39 — oL
REEEERE, FO T wj.

(2) pcBXw,; p’=wandfor(x, n)e

2 F ANy

p>q and p ' ©q .

Note. So Q is the usual forcing to code B by a subset of w,, except the fact that I
ensure that this subset will have enough properties when later I shall use a
condensation argument.

Lemma 1. Let G be Q generic over L(B); then there is a subset A of w; such that:
(1) L(B)(G)=L(A);
(2) forxeT,xeB iff S(x)NANE is bounded in w;;
(3) if O, B) and Lg(ANa)FZF +a=w,, then {xcTz|SxX)NANE is
bounded in o} is a cofinal branch in Tj.

Proof. The only non usual fact is that for any condition (p, p*) and |p|<=vy <,
there is a q:y— 2 such that (q, q") is a condition stronger than (p, p°) (it is for
that reason, I code B only on the even ordinals (to keep place for other things).
Also note that since — later — I shall work with the Q, all together, I have in fact
to use a partition of w; into w parts).

To do that it is enough to put on the odd ordinals between |p| and |p|+w an
order of type vy so that there are no « € ]|p|, y] and B such that Lz(q | a«)FZF +
a=w,.

The following is crucial:
Lemma 2. Q is w-distributive in L(B).

Proof. Q is equivalent to the two steps forcing.
(1) Add a subset Ay of w;NE to code B in the usual way. This is trivially
distributive.
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(2) The forcing Q defined as follows: a condition is a function p: |p|Nw,— E —
2 such that |p|<ew, and for a<|p| and B, if @(a, B) and Ls(AsNa, p | a)F
ZF +a=w,, then {xe Ty | S(x) N AyNa is bounded in «} is a cofinal branch in
T[.;.

It is clearly enough to show:
Claim 2. O is w-distributive in L(B)(A,) = L(A,).

Proof. Let (4,);,-, be a sequence of strongly dense subsets of Q and pye O.
Define (X;); by:

X, = the smallest X<L, (A, such that pg, (4)-.€X,
X; ., = the smallest X< L, (A,) s.t. {XjjUX; <X,

- _J
Let
o Lg(ANey) = X, for isw.

Define (p;); by: p:.; = the least p<p, such that p € 4; and |p|= a;. It is enough to
show that p = ;- p: is a condition. It is easy to see that for i <w |p;|<q; and so
Ipl|=a,; so it remains to show that for B>a, if (*): O(a, B) and
Lg(AgNay,, p)EZF +a, = o, then {x € Ty | S(x) N AgNa,, is bounded in «,} is a
cofinal branch in T,.

For B=p, this is trivial since o,:Lg (AcNe,)— L, (Ap) is an elementary
embedding and A, really codes a branch in T (it also uses Claim 1 in Section
1.2.1 and Claim 1 in Section 1.2.2).

For B> B, there is nothing to prove since (*) does not occur: In Lg(A,Na,,)
we can define the sequence (), using Lg (AyNa,) instead of L, (A so
Lg(AgN a)Fa, =w. [

1.3.

For n € w define P, = T(n) * Q,, i.e. P, is the forcing that adds a branch in T(n)
and then codes it ‘nicely’ by a subset of w,.

Lemma 1. Let P=][]... P.; then P is w-distributive and satisfies the w,-chain
condition.

Proof. It is clear from the previous results. [
Let M, be a P generic extension of M,. New work in M,.
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Lemma 2. There is a sequence (A,),~, of subsets of w; such that M, satisfies:
V:L((An)ney{)

I shall now define the last forcing C that gives the real a that will be II}
singleton; a will code (by use of almost disjoint sets) the A, in such a way that
A, eL(a)iff a(n)=1and A,, ., L(a) iff a(n)=0. It will be shown that in L(a)
(as in some extension of this model) T(2n) (resp. T(2n + 1)) is Suslin iff a(n)=0
(resp. =1).

For se~“2 define C, by: r is a condition iff r is a pair (ry, r;) such
that:

(1) ro: [rl<w—2;19>s;
(2) F,<w and

rn<ox{{a2i)|r(i)=1and a € A,;}
Uw X{(a, 20+ 1) I ro(l):O and a € A2i+l};

nnnnn

(S(B)—n)Niy=0;
where 7o ={i | ro(i) = 1} and B — S(B) is some nice function giving almost disjoint

subsets of w.

Lemma 3. For s €2, C, satisfies the w, chain condition.
Let M, be a C, generic extension of M;.

Lemma 4. There is a real a in M, such that, setting

D, ={a|S((a, n))N @ is finite},
then:
if n=2i, then: a(i)=1>D,= A, and a(i)=0=>D,, =0,

if n=2i+1, then: a(i)=1=>D,=0 and a(i)=0=> D, = A,.

Lemma 5. Let M= L(a) (M, is strictly included in M,); then M5 satisfies: T(2i) is
Suslin iff a(i)=0 and T(2i+1) is Suslin iff a(i)=1.

Proof. The part ‘if’ is trivial since if a(i)=1 (resp. 0), then A,; (resp. A,; ;) and
so By; (resp. B,;.q) is in L(a).
For the ‘only if’ direction I first need:

Claim 1. M, is generic over M, by the following set of conditions:

F =P # Cy={(%)n, (P> P> (ro, 11) | where x, € T(n), (p,, p,)) satisfies the
definition of Q, where B, is replaced by {ye T(n)|y<x,} and (ry; r;)
satisfies the definition of Cy where A; is replaced by p;}.
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[

Proof. Trivial. [

Lemma 6. Let f=(p, (r,r))eF; then F,={geF|g=<{f} is isomorphic to the
product F' X F" where

[ H PZnX H PZVH]iI l’()’

ro(n)=1 ro(n)=0
or or
n = lrgl n = [rg|
e T ™ v TT i)
o= 11 > 11 fon+t

ro(n)=0 ro(n)=1

Proof. Clear. [

Now suppose Lemma 5 is false; there is an i and s =(p, (o, r1)) in the generic
such that ry(i)=0 and sI-T(2i) is not Suslin in L(a). Using Lemrna 6, write the

i cvibont ~F T — (LT U\ PN PN r (L7 o
UL 47 Js

ll, is clear t} hat a 13 i o2 i1 j, SO 1t Luula ns to SuG‘

5

gENeric suosct =AAL .

Claim 2. T(2i) is Suslin in L(H").

Proof. It is easy to see that

m( [T @.x Il om) C.

ro(n)=1 ro(n)=0
or or
n={ro| n=|ro|

(This comes from the fact that forcing with T'(n) does not add subsets of w;.) [l

It is then enough to show that for each step T(2i) remains Suslin. For the first
one, it is exactly the lemma in Section 1.1. For the other ones it comes from the
following:

Lemma 7. Let N be a model of ZF and T be in N a Suslin tree of height w,; let P
be a notion of forcing with the strong w,-chain condition; then if N is a P generic
extension of N, N satisfies: T is Suslin.

Proof. Let AcN be an antichain in T; let A be a name for A and p in the
generic such that: pIFA is an antichain in T. °

Let B={xeT|3q=<p,ql-xe A} Then Be N and A < B; so it suffices to show
that B<w, (in N). Now work in N. For each xe B, pick g,<p such that
q, k% e A note that if x#x’ and g, and g, are compatible, then x and x’ are
uncompatible. Suppose B has cardinality w,; let C={q, | x € B}.

If C has cardinality @,, then for some q the set {x | ql-% e Al is an antichain of
T of cardinality w,; this is impossible.

So C contains (by the strong w,-chain condition) a subset D of pairwise
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compatible conditions, D = w,; but then the set {x | g, € D} is an antichain of T of
cardinality w,; and the proof is complete. [

1.4.

Let ¢(x) be the formula:

Va<B<w; if (LgFZF +a=w;+Vx (X<w)+VYA(CfA)=a=>n, exists) and
Lg(x)FZF +a =w;, then: assume you decode x into w subsets of «, which
themselves are decoded into subsets B, of Tg(n), then:

If x(i)=1, then B, is a cofinal branch in T, (2i).
If x(i)=0, then By, is a cofinal branch in Tz(2i +1).

Claim. ¢ is equivalent to a II} formula.

Lemma 1. (1) L(a)Ee(a).
(2) For any real x, if L(x)E@(x), then:
If x(i)=1, T(2i) is not Suslin in L{x).

If x(i)=0, T(2i+1) is not Suslin in L(x).

Proof. (1) Assume «, 3 satisfy the hypothesis in ¢; when a is decoded the
sequence (A; Na); -, is obtained and then the conclusion follows from the Lemma
1 in Section 1.2.2.

(2) It follows immediately from the Lowenheim-Skolem theorem. [

Now Theorem 2 follows easily from all the previous results.

1.5.

The idea of the proof of Theorem 1 is simply: Do the same thing with the trees
T(n) not only on w, but on all the cardinals, and choose a real a that codes (by
Jensen’s method, with enough condensation properties) branches in the T(n) in
such a way that a can be recovered by looking whether T(n) is Suslin or not.
Doing that is only a slight modification of Jensen’s proof; the important one
comes from the following:

One of the important fact in the proof of Theorem 2 is the lemma which
essentially says that for n# m T(n) remains Suslin when forcing with P, ; this
comes first from the property of the sequence (T(n)), (that is easy to extend to
greater cardinals) and secondly from the fact that Q,, is small in view of T(n) (the
strong chain condition).

In the general case, when P,, will be a class of conditions, P,, will not be ‘small’
in view of T(n); of course P, can be cut into its small and big part and one has
the lemma:

Lemma. Let M be a model of ZF, a a cardinal in M and T a Suslin tree of height
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a’ in M; let P be a notion of forcing which is a closed (i.e.: every decreasing chain
of conditions of length « has a lower bound). Then if N is a P generic extension of
M, then N satisfies: T is Suslin.

Unfortunately the big part of P,, only is « distributive and this is not sufficient
to preserve the Suslinity of a tree (since forcing with the tree itself is distributive!).
Happily there is a solution for that: the idea is the following: Work with the T(n)
defined in Section 1.1; recall that the level A for cf(A) = w; has been defined by
use of forcing over some L, . Assume C is some forcing which preserves the
cardinals and adds a subset D of w, such that for each A, cf(A)=w;, DNAeL,;
it follows easily from the proof of the lemma in Section 1.1 that the T(n) remain

Suslin in L(D).
The essential — but not so difficult! — fact that has to be examined in the
iteration is:

Claim. In the Jensen’s conditions, the level of constructibility of the conditions
can be controiied.

2. The iteration

2.1.

Definition 1. et a be a cardinal; I define yx,(a) by:
Xola) = a,
Xn1(0) = X, ()™
Definition 2. Let o be a cardinal; for £ €[a, o[ I define by induction the ordinals
pi (i<w) as follows:
e =sup(a Uiun|nela, &);
wit! = the least >} such that:
(i) L,FZF +Vxi=aq,
(i1) if « is a successor cardinal cf(p) = a;
pe=sup(pili<w).

Definition 3. Let o be a limit cardinal and n € w, I define one Suslin tree T(n, )
of height x,.-(a) in the same way the sequence T(n) has been defined in Section
1. The levels of the tree are defined by induction; for limit A such that
cf(A) = xn.1(e) the level is defined by forcing over L.

Note. (1) If 8 is an ordinal such that Ly FZF +there is a greatest cardinal and
VE<BYisop<pB;
then the trees T(n, v) can be defined in Lz — by the same definition as the right

ones — for any vy such that L, satisfies: y is a limit cardinal such that x,, ()
exists.
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(2) If B < B satisfy the hypothesis of (1) and L, and Lz have the same cardinals,
then the Tg(n, y) and the Ty(n, y) are the same if x,.,(y) is not the greatest
cardinal; and if Lg and Lz satisfy: x,.((7y) is the greatest cardinal, then:

TB(na FY) = Té(na ’Y) ﬂLB’

(3) Since now I shall work on a class of cardinals one tree by level will be
enough and simpler.
(4) If |x]| is the level of x in T, note that xe L, for any x and that:

V xeT(n, a) (cf(x)<x,,(a)=>xeL, ).

(This will be often used without mention.)

2.2.

Now I am going to define, for each n, a forcing P(n) which looks like the final
forcing P, of Jensen. Fix n up to the end of this section (the subscript n will be
often omitted). In the following I shall also follow Jensen’s notations (see [1]).

Definition 1. et « be a cardinal =Zw; define S, as follows:
(I If « is not x,..(y) for some limit cardinal v, then se S, iff s:[a,|s|[—2
such that |s|<a™ and V é<|s|:
(1) st éeL,y
(2) VB Lg(s | &) satisfies: “if @(a, & s | £), then (o, & s | €)" where @ is
“ZF +¢=o" +there is a greatest cardinal (not necessarily éN+Vi<w Vvpu!
exists” and I' is: “‘when s | £ is decoded by Jensen’s method, a cofinal branch is
founded in each Tgz(n,y) such that LgFvy is a limit cardinal such that x, .,(v)
exists”’.
(II) If & is x,1(y) for some limit v, then (1) is replaced by:
(1) s | Z, is a branch in T(n, v) (recall T is a binary tree);
(1) sl éeL (s ZoNE);
where as in [1] Z, ={(n, ») | n€Ord} and (-, -) is the Godel pairing function.

Note. In [1] for se S, ordinals u' are defined.
Claim. The p! defined in [1] are the uf, of my Definition 2.

Proof. In the case (I) this is trivial since se L.

In the case (II) I only have to show that b = L. (s | Z,) satisfies the conditions
a—d of Jensen’s definition of the w, in the case cf(|s]) = x,.:(y) (by Note 4
in Definition 3); but then s | Z; is (by the construction of T) generic over L, and

His|
the result follows easily. [

Definition 2. For « a cardinal and s € S+, R, is the set of pairs (r, ") such that:
(i) reS,;
(i) (r,r’) codes s as in [1].
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Jote. Here there is no A Na™: so the generic will be a Cohen in Z, if « is not
X n+1(y) for some limit cardinal y and a branch in T(n, v) in the other case. Define
also the . (i<w; seS§,) as in [1].

Claim. (1) For i#1 =L, .
(2) Fori=1s;=L, if ais not x,.,(y) for some limit y and ;=L (s | Z,)
in the other case.

Lemma 1. R, is o distributive in ..

Proof. Forcing with R, is equivalent to the three following forcing operations
(1) R, to code s on Z; and so add D, a subset of [o, [N Z, in such a way
that:

Véela,a[ DyNEeL,;.

Proof. Assume (4,);-, is a sequence of strongly dense subsets of Ry, (4,);-.€ .
and poe Ry; set b=dA2=L,z .
Define a sequence (X;),<, as follows:

X,=the least X < b such that a U{p,, (4,);}< X;
X..,=the least X < b such that X, U{X,}c X,
X, =U X, for limit A.
<A

Set 0;:h,=Lg= X, and o, =X, Na" =0 '(a™).
Define a sequence (p;);<. of conditions by:

p;r1=the least p<p, such that peA; and |p|= ¢
(I shall prove later — in Section 2.4 — that such a p exists);

py= U p; for limit A if J p; is a condition, undefined if not.

P<<A

As in [1] the only problem is to show that for limit A p= J,-, p; is a condition.
And for that I must show that pe L, - Butasin [1]itis easy to see that pe Lg 1y
(p can be defined in Lg ., by use of b, instead of b), and since B, < p, we are
done. We now work in #\(D,) =L, (D). [

Hefs|

(2) The second step is (if « is x,.1(y) for some limit y): add a branch B in
T(n, v); this is trivially « distributive since T remains Suslin in L (D).
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(3) The third has to ensure the property (2) in the definition of S,. A condition
is a function r:

[en I[N U Z, -2
Bel
such that |r|<a™ and I=[2, a™[if (2) has occurred (resp. {0} U[2, o™ if not) and
Véela,lr]]

(i) rl ée Ly(BNE)(resp. L,y)

(ii) VBLe(DyNE BNE r 1 &) (resp. Lg(DgNE rNé)) satisfies:  “if  O(aq,
(Dy, B, r) | &), then I'(~———~ )’ (resp. “if @(a, & (Dy, 1) } &), then I'(~—~—~ 7).
The proof that this forcing is a distributive in L,;(Dy, B) (resp. L, (Dy)) uses
essentially the same argument as in Lemma 2 in Section 1.2, but since some care
is needed, I shall repeat it.

I shall develop the argument in the first case (when B occurs). It is the same in
the other case.

Rem'n as in the prggf for R, using h=1 d_JA _ijl and define X X, o, py {(i=a)in
the same way; as usual I have to prove (1”) and (2) in the definition of S, onl for
£=q, =|p| when A is limit and p=J,-, p.

(17) is as for Ry: it is easy to see that

pelg 1(DoNay, BNay )< LM}M(B Na,).
I now prove (2): choose B8 such that Lz(DoNay, BNay, p)FO.
Since (ai)iqeLBXH(Doﬁax,Bﬂak),ﬁ is not greater than B, set §=o'(s)
(recall s eb).
(A) Assume first there is a &€ such that Lz Fé=a"", then B<p, (since o, :
Lg = L, and the definition of w; ensures that L, Fa’" does not exist).

Claim. £=<|3].

If |§|<é& then pi<é&<B<p, and so (by o) w! exists in b; a contradiction.
Set & =a, (&) (so €=<|s]) and B = 0, (B); the picture is:

In Lz(DyNay,, BNay,p)  a” ot 5
X R g - —
In b/ o p @, §tE ¢ B By af 3 |s| B TN

Now work in Lz(DyNay, B Na,, p): BNa, really is a branch; if you decode you
first find § and Lz(5| &) satisfies @(ay, &5 | &) so (by oy) Lg(s | &) satisfies
O(a*, & st &), since se S, and (by a,) Lg(DyNay, BNay, § | £) satisfies I'; and
this is exactly what we need.

(B) Assume now LzFa, is the greatest cardinal.

Claim. B<5.
If |§] =& < B, then by the definition of @, ui <B =g, and so by o, pdq exists in
b; a contradiction. So in Lz (DyNay, BNa,, p) we can recover § | B and so by
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the elementarity of 0,5 | BN Z, is a branch in the tree (if it has to be one) (note
that this does not occur when (B) appears—since that last tree has height
a, — however, I give the argument, since when (B) does not appear, this case can
occur). This achieves the proof of the lemma. [J

Defining S¢ and RP as in [1] (see Definition 2, p. 37) we have:
Lemma 2. R" satisfies the o™ -chain condition in Ap.

Proof. Each step of the iteration satisfies it — and even the strong chain condi-
tion, except for adding a branch in the tree. [

2.3.

The other definitions and lemmas used to define what is called P, in [1] are
exactly as in [1], except one point: It is more convenient to define p., to be a code
for odi, ) (instead of A, - in [1]). That does not modify the proof in [1] but for
me 1t ensures that there is no intrusion of the coding at limit cardinals with the
branches. Now what I call P(n) (remind n was fixed) is what it called P, in [1].

I have to show the lemmas that say:

(1) a condition can be arbitrarily extended;

(2) P.(n) is r-distributive.

I shall prove that later and now show how to conclude. At the moment the
following will be clear.

Lemma 1. Let N be a P(n) generic extension of My; then there is a subset A, of w,
such that N satisfies:

(1) ZF+V=L(A,).

(2) Va<o, VB if Lg(A, Na)EZF + there is a greatest cardinal + o = 0, = of,
then if you decode A, Na by Jensen’s method you find a cofinal branch in each
Tg(n, v) such that LgFy is a limit cardinal and x, () exists.

Let M, be a [],.., P(n) generic extension of M,. Define the forcing C, as in
Section 1. Let M, be a Cy generic extension of M. This gives the real a for which
I must prove.

Lemma 2. For all the limit v, L.(a) satisfies:
T(2i, v) is Suslin iff a(i)=0,
TQRi+1,v) is Suslin iff a(i)=1.

This follows — as in Section 1 —from Lemmas 3 to 5.

Lemma 3. Let = (p(n)),cw, (ro, r1)) be a condition in

F=]] Pn) = C,,

nedw
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then F;={ge F|g=<f} is isomorphic to the product F' X F" where

F= ( [T penyx T1 Pen+ 1)) *C,,
ro(n)=1 ro(n)=0
n={ro) ”;i"()!

F":( [T pen)x I] P(2n+1)>.

roln)=0 ro(n)=1

Proof. Trivial. [

Lemma 4. Let v be a limit cardinal, a be a finite subset of w and n € a. Let N be a
[1..¢a P(m) generic extension of My, then N satisfies: T(n,vy) is Suslin.

Proof. Set a = x,(y); still using the notation in [1], there are subsets
D,, (m¢ a) of [, a™[such that: P(m)= P, (m) * P2~(m).

Claim.

IT Pm)= (ﬂ Pa(m)) * (H me(m)>.

meéa mea mea

Proof. This follows easily from the fact that [],.4, P,(m) is a distributive and « is
a successor cardinal. [

SO [lnga P(m) is as a two step forcing:
The first one gives a model that satisfies:

V=L((Dmsa)+*Vm¢aD, <la,a[+V éca, a*[Vm D,, | (e,

So T(n,y) is Suslin in L((D,,)mg.); this follows from the Lemma 6 below.
The second one satisfies the a™ strong chain condition, so T(n, y) remains
Suslin by Lemma 5 below. [

Lemma 5. Let M be a model of ZF, « a cardinal and T a Suslin tree of height a™;
let P be a notion of forcing that satisfies the o™ strong chain condition and N be a P
generic extension of M; then N satisfies: T is Suslin.

Proof. As in Lemma 7 in Section 1.3. [

Lemma 6. Let M be a model of: ZF+V =L(D), D < «a™ for some regular cardinal
a. Let T be the Suslin tree of height a™ defined in L as in Section 1 (by forcing over
L, for cf(§)=a). Assume: V é<at(cf(§)=a—>D | éc L,.). Then T is Suslin in
M.

Proof. This is an easy corollary to the proof of the (generalized) lemma in Section
1.1. O
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Definition. et ¢ be the formula: Va<gB<w, if Lz(x)FZF +ta=w, =
o7 +there is a greatest cardinal +V £ Vi <w u} exists, then if you decode x by
Jensen’s method you find a cofinal branch in Tg(n, v) for each y such that Lgky
is a limit cardinal and for each n such that:

n=2i and x(i)=1
or
n=2i+1 and x(i)=0.

Now the theorem follows easily from all the previous results; the argument for (3)
in the theorem being: (by use of Lemma 5) you cannot kill all the T(n, y) by
forcing with a set of conditions.

It remains now to prove that conditions can be arbitrarily extended and then
distributivity.

3 A
Lot s

Lemma 1. Let  be a formula; o a cardinal; let C be the following notion of
forcing: a condition is a function ¢ :[a, |c|[ — 2 such that |c|<a™ and for £ <|c|
(1) cl éeL,,
(2) VBLg(c | )F(ZF +E=a "),
then for any condition c, and vyel|c|, a™[there is a condition c<c, such that
lc|= .

As a corrollary of this lemma we immediately have:

Lemma 2. Any condition in R, can be arbitrarily extended.

Proof of Lemma 1. By induction on +y; for y successor this is trivial, so let y be a
limit ordinal.

The proof of [, (see for instance [1, Section 6]) shows that there is a closed
unbounded set D of [«, y[such that |D|<a (the order type of D) and for all
veDU{y},DNvel,.

Let (v,); -, be the monotone enumeration of D; I may assume v, =|co| and v; is
a limit ordinal for i <<A.

For any ordinal 8 =&£&+n where £ is limit set f(B)=&+2n+1.

Define ¢; (i <A) by induction as foliows:

Cir1=¢Uxg where xg is the characteristic function of the set E=
{v}U{f(B) | Be '} where ¢’ is the least ¢ such that ¢ <[y, v;.q[ and ¢ Ux, is a
condition.

€y = Uiy ¢ for limit n if |J ¢ is a condition, undefined if not.

As usual it is enough to show that for limit nc¢ = |J;~, ¢; is a condition and for
that to see that (1) and (2) in the definition of C is true for £=ry,. (2) is trivial
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since D My, can be recovered from ¢ so there is no B such that
Lg(c)Ey,=a™.

(1) since DNy, €L, it follows easily that ce L,y . [

The other lemma that has to be proved is lemma 1.6 in [1] with the new
condition that control the level of constructibility.

Definition 1. Let « be a cardinal; define S, to be the set of functions s :[o, |s|[ — 2
such that |s|<a™ and for £<|s|s | éeL,.

Definition 2. Let « be a limit cardinal, A a subset of [k, k[ such that: ¥V ¢é<
k" ANéeL,; let I be the set of successor cardinals less than «. For 7 a cardinal
less than « define P, by:

A condition is a sequence p =(p,),crrp-. Such that:

(1) Yyp,€eS,.

(2) If |p| is defined by: |p| =the least £ such that p € L, then for £ <|p| there is
a vel such that: Vye[vy, «[NI

1 if (€A,
0 if not

Py (Pey) :{
(where the p,, are defined as in [5]).
Lemma 3. For any pe P, and £é=|p| there is a q<p such that |q|= &
The proof follows the proof in [1]: T shall need:

Lemma 4. Let -y be a successor cardinal; £ €[y, y*[ such that cf(é)<vy; nelé v
such that cf(n) =+ and L, FZF +V x(Xx<+v); X < ¢ such that Xe L and V n<§¢
XNnelL,. Then XeL,.

Proof. Set A =cf(&)<v; the proof follows immediately from the two claims.

Claim 1.
L, Ecf(&)=A.

Let feL; f:A— & be cofinal, injective; ge L, ; g: £ — v bijective, then gof : A —
v injective, so since vy is regular gofe L, <L, and so feL,.

Claim 2. Let feL,:A — ¢ be cofinal, increasing and x; = X N f(i); then (x;);<x €
L

we

Let ¢:u—> L, be the canonical enumeration of L,; set m, =¢ '(x;); it is
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enough to show: (1;);<, € L,, but this follows by the same argument as in Claim 1
from cf(p)=v>A.

Proof of Lemma 3. The successor case is as in [1] (I of course use Lemma 1 to
extend p up to pe)-

For the limit case, I extend p using a closed unbounded subset of [|p|, £[ coming
from a [] sequence. As usual it is enough to prove that for a limit A if p = Uiza Db
then for yeIp, €L, . It follows easily from Lemma 4 and the fact I may always
assume that A <y (if the order type of the c.u.b. is less than « this is easy; if not,
then « is regular and the p' are defined in such a way that p}= ;- p’, is a non
trivial union only for y > A(remind <y is a successor)).

Now the proof of the extendability of the conditions is exactly as in [1], using
the previous lemmas and specially the Lemma 4.

The only (slight) different point is in Lemma 2.14.3 of [1] when the r;, §; are
defined. I must be more careful since for limit i (r});; is not necessarily in 4 so

r,, has to be defined in the following way:
Let & be the least such that x; € L where x, =(p | Bi; (ro| h<i); G | B;); define
riy by: rigU{(m;, 5)}Ur" where 1’ is such that:

(1) m; is s.t. Ly Fx; has number n; in the canonical well ordering of V;

(2) ¢’ is the least r <[|ry|, p [N Z, such that r;; € Sg. It is then easy to see that
It is then easy to see that

% _

<<

and the end of the lemma is the same. [

2.5.

The distributivity is proved as in [1]. T shall only mention the points where
something has to be changed or where some care is needed. Lemma 3.7 in [1] has
to be replaced by:

Lemma. Assume distributivity holds up to a; let s€ S,-,7<ea and let D<[r,a”[
be PS generic over A then:
(1) s, DeL, (D)
(2) for ye[r, a] and &€y, vy then
(G) D, | ée L,y (resp. if v=xu1(v) for some limit cardinal v D,NZ, is a
branch in T(n, v) and D,} éeL (D,NZ,NE);
(i) VB Lg(D, N &) satisfies: ““if O, then I'”.

Proof. As in [1]. [

The only other point is in the proof of Lemma 3.22(a) in [1]. T have to verify
the additional property of ..
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There are two things to look at: the usual facts in [1] and the branches in the
trees. Moreqver we have to show that |[, P3(n) is 7-distributive, not only that for
each n Pj(n) is r-distributive, since the product of r-distributive forcings is not
necessarily 7-distributive.

What about branches?

Note that

H Pi(n)=Ps.(n) = H RP-  for some generic sets D,

With the first forcing there are no problems with the branches since all the trees
involved in this forcing are 7-closed.

For the second one there are no problems too with the branches except for the
n (if there is one) such that:

T=Xn+1(B) for some limit B.

<

‘ [ NS
LM; (Dm | 1 << ), SIICC L.

Y ic TR I TS PR B & {7 RN |} PGS R
J s Susiill 1 wl AU Lo ULy, | 1 = W) 114VE UIC
..*..

7" and it is well known that forcing with a Suslin tree of height =

I O]

same subsets o
is 7 distributive.

So I can ‘forget’ the branches and only have to look at the properties (1) and (2)
in S,: We start the construction with & =L, instead of o in [1].

The b appearing in the lemma is some L, with u'< g, but since the sequence
(p")i<y is definable from b as it was defined from &¢? it follows that p? e Ly -

The second property of S, comes from the fact that p) is generic over the
imitation of P; in b, so the result follows for a B <=a®; it remains to show it for
Bela™, u'[ (since L, ., F|p}|=1y) but this is exactly as in Lemma 1 in Section 2.2.

This achieves the proof of Theorem 1.

2.6.

(1) Following exactly the proof of Theorem 0.2 in [1] we see that the real in my
theorem T may be assumed to be in L(0%).

(2) To prove that the real is not provably II} singleton, do as follows: Start from
M; (the [1,, P(n) generic extension of M,) and choose M5 to be a Cyx C, generic
extension of M;; then there are two different reals a and a’ that satisfy ¢ so
La, a#3! x ¢(x).

(3) The following gives a slight improvement of Theorem 1: I may assume — as
in [7]— that the trees are such that: if o =|T| and B, B, are distinct, cofinal
branches in T, then &@"®o?’ <« (simply use an elementary, saturated — in the
sense of model theory — extension of the Rational numbers); I may assume too
that the first level in T only has two points: the right and the left one.

When forcing with the P(n) I may assume that all the branches are left
branches (i.e.: their first point is the left one) and so in ¢ it can be said that the
branches are left ones.
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Now in L(a) some trees remain Suslin; add in these trees right branches. Let N
be this extension. In N a remains I1} singleton since if x is another real satisfying
¢, then for some i, T(i) will have two branches: a right and a left one, and this is
impossible.

More generally if N is an extension of N and if there is another real x in N that
satisfies ¢, then a class of cardinals are collapsed (in the context I prove the

may assume that this class is {a™ | « regular}.

It would be more interesting if I could assume that all the successor cardinals
were collapsed since then an extension of N where a is not I} would have to
contain 0%; but it seems difficult to do that: it would be necessary to build trees of
length successors of singular cardinals: it does not seem difficult to build such
trees which are Suslin and have at most one branch (as far as |7| is not collapsed);
but in the proof I also need the fact that: (1) the trees are closed enough (all the
branches of ’small’ length have extension in the tree); (2) the tree remain Suslin in

some extension of L ---and I do not know how to do that!

SULLAY ARSI URE A QKizss
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