
HAL Id: hal-00416458
https://hal.science/hal-00416458

Submitted on 14 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pseudo-Boolean Programming for Partially Ordered
Genomes

Sébastien Angibaud, Guillaume Fertin, Annelyse Thevenin, Stéphane Vialette

To cite this version:
Sébastien Angibaud, Guillaume Fertin, Annelyse Thevenin, Stéphane Vialette. Pseudo-Boolean Pro-
gramming for Partially Ordered Genomes. RECOMB-CG 2009, Sep 2009, Budapest, Hungary.
pp.126-137, �10.1007/978-3-642-04744-2_11�. �hal-00416458�

https://hal.science/hal-00416458
https://hal.archives-ouvertes.fr

Pseudo Boolean Programming for Partially

Ordered Genomes

Sébastien Angibaud1, Guillaume Fertin1, Annelyse Thévenin2 and Stéphane
Vialette3

1 Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

2 Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623
Université Paris-Sud, 91405 Orsay - France

3 IGM-LabInfo, UMR CNRS 8049, Université Paris-Est,
5 Bd Descartes 77454 Marne-la-Vallée, France

{Sebastien.Angibaud,Guillaume.Fertin}@univ-nantes.fr, thevenin@lri.fr,

vialette@univ-mlv.fr

Abstract. Comparing genomes of different species is a crucial problem
in comparative genomics. Different measures have been proposed to com-
pare two genomes: number of common intervals, number of adjacencies,
number of reversals, etc. These measures are classically used between
two totally ordered genomes. However, genetic mapping techniques of-
ten give rise to different maps with some unordered genes. Starting from
a partial order between genes of a genome, one method to find a total
order consists in optimizing a given measure between a linear extension
of this partial order and a given total order of a close and well-known
genome. However, for most common measures, the problem turns out
to be NP-hard. In this paper, we propose a (0, 1)-linear programming
approach to compute a linear extension of one genome that maximizes
the number of common intervals (resp. the number of adjacencies) be-
tween this linear extension and a given total order. Next, we propose an
algorithm to find linear extensions of two partial orders that maximize
the number of adjacencies.

1 Introduction

Genetic mapping techniques often give rise to different maps with some un-
ordered genes. In that case, maps are combined in the form of a partially ordered
sequence of genes, and thus a genome is modeled by a poset (i.e., a partially or-
dered set), as was done in [10]. In this model, any linear extension of a poset
represents a possible total order of the genome. In order to find a total order
from a partial order, Sankoff et al. [10] suggested the following method: confront
the partial order with a given total order of a close and well-known genome.
More precisely, this method asks for a linear extension of the partially ordered
genome that optimizes a (dis)similarity measure between this total order and a
given totally ordered genome. Several measures can be used: number of common
intervals [8], of adjacencies [1], of breakpoints [9], of conserved intervals [3], etc.

Computing these measures between two total orders, whenever no gene is du-
plicated, is a polynomial-time solvable problem. Unfortunately, concerning the
number of adjacencies, the number of common intervals and the reversal dis-
tance, finding a linear extension that optimizes one of these measures between
this extension and a given total order is NP-hard [4,6]. In this paper, we first
present an approach to compute a linear extension of a partially ordered genome
with respect to a given totally ordered genome without duplicated genes. Our
method lies on a transformation of the initial problem into a (0, 1)-linear pro-
gram (i.e., a linear program with boolean variables) [2,1]. We focus here on two
similarity measures: the number of common intervals and the number of adja-

cencies. We also extend our approach and consider the problem of comparing
two partially ordered genomes with respect to the number of adjacencies. Af-
ter presenting our three algorithms, we evaluate our method by using the same
simulated data as in [4].

This paper is organized as follows. In Section 2, we present some preliminaries
and definitions. We focus in Section 3 on the problem of finding a total order
of a partially ordered genome that maximizes either the number of common
intervals or the number of adjacencies with a given totally ordered genome.
Next, we extend the case of adjacencies to find two totally ordered genomes
from two partially ordered genomes. For each problem, we give its formulation
in terms of a (0, 1)-linear program, together with some reduction rules that
ail at speeding-up the process. Section 4 is devoted to experimental results on
simulated data.

2 Preliminaries

In the literature, a (totally ordered) duplication-free genome having n oriented
genes is usually represented by a signed permutation, one where each element
in the set {1, 2, . . . , n − 1, n} has either a sign, + or −. Let T1 and T2 be two
duplication-free genomes of size n. Wlog, we may assume that T2 is the identity
positive permutation, i.e., T2 = +1 + 2 . . . + n. An interval of T1 is a set
of m consecutive genes {g1, g2, . . . , gm} in T1. A common interval between T1

and T2 is an interval which occurs in T1 and in T2. Observe that the notion of
common interval does not take into account the sign of the genes. We say that
there is a breakpoint after gene T1[i], 1 ≤ i ≤ n − 1, in T1 if neither T1[i] and
T1[i + 1] nor −T1[i + 1] and −T1[i] are consecutive genes in T2, otherwise we
say that there is an adjacency after gene T1[i]. Notice, that in order to take into
account common intervals and adjacencies that may occur at the extremities
of a genome, we artificially add to a genome with n genes the gene +0 (resp.
+(n + 1)) to its left (resp. right). We now introduce the required material for
partially ordered genomes. A partial order on a set P is a binary relation �
such that, for x, y and z in P , (i) x � x, (ii) x � y and y � x imply x = y,
and (iii) x � y and y � z imply x � z. These three relations are referred to as
reflexivity, antisymmetry, and transitivity, respectively. A set P equipped with
a partial order relation is said to be a partially ordered set (also called a poset).

When it is necessary to specify the partial order relation, we write (P,�). A
partial order relation � on P gives rise to a relation ≺ of strict inequality: x ≺ y
in P iff x � y and x 6= y. Strict partial orders differ from partial orders only
in whether each element is required to be unrelated, or required to be related,
to itself. A totally ordered set (or linearly ordered set) is a poset P which has
the property that every two elements of P are comparable (i.e., for all x, y ∈ P
either x � y or y � x). A poset Q is called an extension of a poset P if the
elements of P and Q are the same, and the set of relations of P is a subset of
the set of relations of Q (i.e., for all x, y ∈ P , if x ≺ y in P , then x ≺ y in Q,
but not necessarily conversely). Q is called a linear extension of P if Q is an
extension of P and also a linear order. In our context, a totally (resp. partially)
ordered genome is thus a set P that contains exactly one occurrence of i or −i,
0 ≤ i ≤ n + 1, equipped with some total (resp. partial) order. For the sake of
brevity, the totally ordered genome +0 +1 +2 . . . +n+(n+1) is abbreviated as
Id. Let P1 and P2 be two partially ordered genomes, and let x ∈ {1, 2}. The sign
of a gene g in Px is written sx(g). We write g1 ≺x g2 if gene g1 precedes gene
g2 in Px. The number of genes g1 such that g1 ≺x g2 is denoted by precx(g2).
We write g2 ≻x g1 if gene g2 follows g1 in Px. The number of genes g2 such
that g1 ≺x g2 is denoted by succx(g1). In Px, two genes g1 and g2 are said to be
incomparable (written g1‖xg2) if neither g1 ≺x g2 nor g2 ≺x g1. The width of a
partially ordered genome is the size of a largest subset of incomparable genes.
Two genes g1 and g2 are said to be adjoining in Px if there does not exist g3

such that g1 ≺x g3 ≺x g2 or g2 ≺x g3 ≺x g1 or g1‖xg3 or g2‖xg3. Let Tx be a
linear extension of Px. The set of allowed positions of a gene g in Tx is written by
POSx(g); one can easily check that POSx(g) = {precx(g)+1, . . . , succx(g)−1}.
The position of g in Tx is written Tx(g) (by definition, Tx(g) ∈ POSx(g)). We
say that a gene g1 is i-nailx if POSx(g1) = {i} (i.e., there are i−1 genes g2 such
that g2 ≺x g1 and no gene is incomparable with g1 in Px). In this paper, we are
interested in three combinatorial problems. The first two problems are concerned
with confronting a partially ordered genome with a reference totally ordered
genome: given a partially ordered genome P1 and a reference totally ordered
genome T2, problem MCIL-1PO (resp. MAL-1PO) asks for a linear extension T1 of
P1 that yields a maximum number of common intervals (resp. maximum number
of adjacencies) between any linear extension of P1 and T2. Observe that there
is no loss of generality in assuming here that T2 = Id. The third problem is
concerned with confronting two partially ordered genomes: given two partially
ordered genomes P1 and P2, problem MAL-2PO asks for a linear extension T1 of
P1 and a linear extension T2 of P2 s.t. the number of adjacencies between T1 and
T2 is maximized among all linear extensions of P1 and P2. Note that problems
MCIL-1PO, MAL-1PO and MAL-2PO have been proved to be NP-hard in [4].

3 An exact (0, 1)-linear programming approach

We present in this section an exact generic approach. The main idea is to trans-
form our problems into (0, 1)-linear programs [7] and use a powerful solver to ob-

tain optimal solutions. All computations conducted here use the minisat+ solver
[5]. In order to solve problems MCIL-1PO, MAL-1PO and MAL-2PO, we present the
(0, 1)-linear programs called CI-1PO, Adj-1PO and Adj-2PO, respectively. Pro-
grams CI-1PO and Adj-1PO take as input a partial order P1 while Adj-2PO

takes two partial orders P1 and P2. We first present the common part of these
three programs and next give a complete description of each program. Then, we
present some data reduction rules for reducing the size of the programs.

The common part of the three programs. We present here the common part of
programs CI-1PO, Adj-1PO and Adj-2PO. Let P1 and P2 be two partially ordered
genomes over [0 : n+1]. Fix x to be 1 if we consider either CI-1PO or Adj-1PO, or
1 or 2 if we consider Adj-2PO. For each problem, we seek for a linear extension
Tx of Px that maximizes the number of common intervals or the number of
adjacencies. Our programs are divided into two parts: (i) definition of a linear
extension Tx, and (ii) maximization of the measure. The first part is common
to the three programs whereas the second part is problem dependent and needs
specific variables and constraints. To define a linear extension of a partially
ordered genome, we use the same set Ax = {ax

g,i : g ∈ [0 : n + 1] and i ∈ [0 :
n + 1]} of boolean variables. For each ax

g,i ∈ Ax, ax
g,i = 1 iff Tx(g) = i, i.e., g is

at position i in the resulting linear extension. To this aim, we define the three
constraints presented in Figure 1:

– (C.a) ensures that each gene is assigned to exactly one position in Tx,
– (C.b) ensures that no two genes are assigned to the same position in Tx,
– (C.c) checks genes order in Tx. Let g1 and g2 be two genes of Px such that

g1 ≺x g2. We must certainly check that g1 precedes g2 in Tx. Thus, for all
0 ≤ j < i ≤ n + 1 we impose that ax

g1,i = 0 or ax
g2,j = 0.

Common constraints of programs CI-1PO, Adj-1PO and Adj-2PO.

Constraints:

C.a ∀x ∈ {1, 2}, ∀ 0 ≤ g ≤ n + 1,
P

0≤i≤n+1

ax
g,i = 1

C.b ∀x ∈ {1, 2}, ∀ 0 ≤ i ≤ n + 1,
P

0≤g≤n+1

ax
g,i = 1

C.c ∀x ∈ {1, 2}, ∀ 0 ≤ g1 ≤ n + 1, 0 ≤ g2 ≤ n + 1, g1 ≺x g2, 0 < j ≤ i ≤ n + 1,

xax
g1,i + ax

g2,j ≤ 1

Fig. 1. Common constraints for CI-1PO, Adj-1PO and Adj-2PO. A gene g is at position
i in Tx iff ax

g,i. Constraints C.a to C.c ensure that Tx is a valid linear extension of Px,
x ∈ {1, 2}.

Now, we present specific variables and constraints for each problem.

Confronting a partially ordered genome with a totally ordered genome: maxi-

mizing the number of common intervals. We give here a (0, 1)-linear program
called CI-1PO that computes a linear extension T1 of a partially ordered genome
P1 that maximizes the number of common intervals between T1 and Id. Recall
that common intervals do not take into account the sign of the genes. Program
CI-1PO is given in Figure 2.

We describe now the variables used in CI-1PO. Let g ∈ [0 : n + 1] be a
gene, i ∈ [0 : n + 1] be a position and t ∈ [0 : n + 1]. After having defined
the total order T1 with the set A1, we define two sets of boolean variables:
B = {bg,i,t : g ∈ [0 : n + 1], i ∈ [0 : n + 1] and t ∈ [0 : n + 1]} and
C = {cg,i,t : g ∈ [0 : n+1], i ∈ [0 : n+1] and t ∈ [0 : n+1]}. For each bg,i,t ∈ B,
we have bg,i,t = 1 iff T1(g) ∈ [i : i+t], i.e., g is located between positions i and i+t
in T1. The set C corresponds to the set of all possible common intervals. For each
cg,i,t ∈ C, we have cg,i,t = 1 iff, for all k ∈ [0 : t], we have T1(g + k) ∈ [i : i + t],
i.e., the set of genes g + k (k ∈ [0 : t]) is an interval of T1. In this case, we
certainly have a common interval between T1 and the identity. Therefore, the
objective function is the sum of all variables cg,i,t ∈ C.

Constraints (C.01) to (C.05) are needed to ensure correctness of CI-1PO.
First, we obviously need constraints (C.01) to (C.03), that correspond to the
common constraints (C.a) to (C.c), with x = 1. Then, we add constraint (C.04)
to check variables bg,i,t: bg,i,t = 1 iff there exists j in [0 : t] such that ag,i+j = 1.
Finally, we add constraint (C.05) to check variables cg,i,t: cg,i,t = 1 iff, for all k
in [0 : t], we have bg+k,i,t = 1.

Program CI-1PO

Objective: Maximize
P

0≤g≤n+1

P

0≤i≤n+1

P

0≤t≤n+1−i

cg,i,t

Constraints:

C.01 ∀ 0 ≤ g ≤ n + 1,
P

0≤i≤n+1

a1
g,i = 1

C.02 ∀ 0 ≤ i ≤ n + 1,
P

0≤g≤n+1

a1
g,i = 1

C.03 ∀ 0 ≤ g1 ≤ n+1, 0 ≤ g2 ≤ n+1, g1 ≺1 g2, 0 < j ≤ i ≤ n+1, a1
g1,i+a1

g2,j < 1

C.04 ∀ 0 ≤ g ≤ n + 1, 0 ≤ i ≤ n + 1, 0 ≤ t ≤ n + 1 − i,
P

0≤j≤t

a1
g,i+j − bg,i,t = 0

C.05 ∀ 0 ≤ g ≤ n + 1, 0 ≤ i ≤ n + 1, 0 ≤ t ≤ n + 1 − i,

P

0≤k≤t

bg+k,i,t − cg,i,t < t + 1 and
P

0≤k≤t

bg+k,i,t − t.cg,i,t ≥ 0

Fig. 2. Program CI-1PO computes a linear extension L of a partial order maximizing
the maximum number of common intervals between L and the identity.

Confronting a partially ordered genome with a totally ordered genome: maximiz-

ing the number of adjacencies. We now give a (0, 1)-linear program (Adj-1PO)
that computes a linear extension T1 of a partial order P1 that maximizes the
number of adjacencies between T1 and Id. Oppositely to common intervals, the
sign of genes is now relevant. Program Adj-1PO is presented in Figure 3.

Let g ∈ [0 : n + 1] be a gene, and i ∈ [0 : n + 1] be a position. After
having defined the total order T1 with the set of variables A1, we define the
set D = {dg,i : g ∈ [0 : n + 1[and i ∈ [0 : n + 1]} of boolean variables that
corresponds to the set of possible adjacencies. For each dg,i ∈ D (g 6= n + 1),
we have dg,i = 1 iff (i) T1(g) = i and (ii) g and (g + 1) create an adjacency.
Therefore, we define the objective function as the sum of all variables dg,i ∈ D.

We now define the constraints (C’.01) to (C’.06) to ensure the validity of
program Adj-1PO. We first add constraints (C’.01) to (C’.03), that correspond
to the common constraints (C.a) to (C.c) with x = 1, to obtain a valid linear
extension T1. Next, we add constraints (C’.04) to connect the assignment of
variables in D to the assignment of variables in A1. To this aim, for each dg,i ∈ D,
g 6= n + 1, i /∈ {0, n + 1}, we have dg,i = 1 iff the two following conditions hold:
(i) a1

g,i = 1 (i.e., g is at the position i in T1) and (ii) a1
g+1,i+1 = 1 (case 1) or

a1
g+1,i−1 = 1 (case 2) (depending on the sign of g and g+1). Finally, constraints

(C’.05) and (C’.06) check variables dg,0 and dg,n+1 that correspond to the two
possible adjacencies located at the extremities. These two constraints are defined
as constraints (C’.04), (C’.05) (case 1 only) and (C’.06) (case 2 only).

Confronting two partially ordered genomes: maximizing the number adjacencies.

The (0, 1)-linear program Adj-2PO proposed here computes two linear extensions
T1 and T2 of two partially ordered genomes P1 and P2 such that the number of
adjacencies between T1 and T2 is maximized. Recall that the sign of the genes
is relevant here. Oppositely to MAL-1PO where one genome is totally ordered,
we do not know the relation between two genes that will eventually create an
adjacency. Program Adj-2PO is given in Figure 4.

Let g1 ∈ [0 : n + 1] and g2 ∈ [0 : n + 1] be two genes, and let i ∈ [0 : n + 1]
and j ∈ [0 : n + 1] be two positions. After having defined the total orders T1

and T2 with the sets of variables A1 and A2, we introduce the set of variables
E = {eg1,i,j,g2 : g1 ∈ [0 : n+1], i ∈ [0 : n+1], j ∈ [0 : n+1] and g2 ∈ [0 : n+1]}
that correspond to the possible adjacencies. A boolean variable eg1,i,j,g2 ∈ E has
of four indices: genes g1 and g2, and positions i and j. For each eg1,i,j,g2 ∈ E , we
have eg1,i,j,g2 = 1 iff (i) genes g1 and g2 create an adjacency and (ii) T1(g1) = i,
T2(g1) = j , and T1(g2) = i + 1. The objective function is defined as the sum of
variables eg1,i,j,g2 ∈ E .

We define constraints (C”.01) to (C”.09) to check correctness of program
Adj-2PO. First, we use again the common constraints (C.a) to (C.c). Here, we
must use these constraints for x in {1, 2} in order to define two linear extensions.
We refer to these constraints as constraints (C”.01) to (C”.06). Then, we check
the assignment of variables eg1,i,j,g2 for i 6= n+1 and j /∈ {0, n+1} with constraint
(C”.07). To this aim, for each eg1,i,j,g2 , we have eg1,i,j,g2 = 1 iff the two following
conditions hold: (i) a1

g1,i = 1, a2
g1,j = 1, and a1

g2,i+1 = 1, and (ii) a2
g2,j+1 = 1

Program Adj-1PO

Objective: Maximize
P

0≤g≤n

P

0≤i≤n+1

dg,i

Constraints:

C’.01 ∀ 0 ≤ g ≤ n + 1,
P

0≤i≤n+1

a1
g,i = 1

C’.02 ∀ 0 ≤ i ≤ n + 1,
P

0≤g≤n+1

a1
g,i = 1

C’.03 ∀ 0 ≤ g1 ≤ n + 1, 0 ≤ g2 ≤ n + 1, g1 ≺0 g2, 0 < j ≤ i ≤ n + 1,

a1
g1,i + a1

g2,j ≤ 1

C’.04 ∀ 0 ≤ g ≤ n, 1 ≤ i ≤ n,

if s1(g) = “ + ” and s1(g + 1) = “ + ” then a1
g,i + a1

g+1,i+1 − dg,i ≤ 1
and 3dg,i − a1

g,i − a1
g+1,i+1 ≤ 1

if s1(g) = “ − ” and s1(g + 1) = “ − ” then a1
g,i + a1

g+1,i−1 − dg,i ≤ 1
and 3dg,i − a1

g,i − a1
g+1,i+1 ≤ 1

else dg,i = 0

C’.05 ∀ 0 ≤ g ≤ n,
if s1(g) = “ + ” and s1(g + 1) = “ + ” then a1

g,0 + a1
g+1,1 − dg,0 ≤ 1

and 3dg,0 − a1
g,0 − a1

g+1,1 ≤ 1
else dg,0 = 0

C’.06 ∀ 0 ≤ g ≤ n,
if s1(g) = “ − ” and s1(g + 1) = “ − ” then a1

g,n+1 + a1
g+1,n − dg,n+1 ≤ 1

and 3dg,n+1 − a1
g,n+1 − a1

g+1,n ≤ 1
else dg,n+1 = 0

Fig. 3. Program Adj-1PO computes a linear extension of a partially ordered genome
that maximizes the number of adjacencies between this linear extension and the iden-
tity.

(case 1) or a2
g2,j−1 = 1 (case 2) (these two cases depend on the sign of g1 and

g2). Finally, we add constraints (C”.08) and (C”.09) to ensure the validity of
variables eg1,i,0,g2 and eg1,i,n+1,g2 that correspond to possible adjacencies located
at the extremities. These two constraints are similar to (C”.07) but constraints
(C”.08) is for case 1 only and (C”.09) is for case 2 only.

Speeding-up the program. Program CI-1PO has O(n3) variables and O(n3) con-
straints. Program Adj-1PO has O(n2) variables and O(n2) constraints, while
program Adj-2PO has O(n4) variables and O(n4) constraints. In order to speed-
up the running time of the programs, we present here some simple rules for
reducing the number of variables and constraints involved in the programs or
for computing in a fast preprocessing step some of the variables.

Program Adj-2PO

Objective: Maximize
P

0≤g≤n+1

P

0≤i≤n+1

P

0≤j≤n+1

P

0≤y≤n+1

eg,i,j,y

Constraints:

C”.01 ∀ 0 ≤ g ≤ n + 1,
P

0≤i≤n+1

a1
g,i = 1

C”.02 ∀ 0 ≤ i ≤ n + 1,
P

0≤g≤n+1

a1
g,i = 1

C”.03 ∀ 0 ≤ g1 ≤ n+1, 0 ≤ g2 ≤ n+1, g1 ≺0 g2, 0 < j ≤ i ≤ n+1, a1
g1,i+a1

g2,j ≤ 1

C”.04 ∀ 0 ≤ g ≤ n + 1,
P

0≤i≤n+1

a2
g,i = 1

C”.05 ∀ 0 ≤ i ≤ n + 1,
P

0≤g≤n+1

a2
g,i = 1

C”.06 ∀ 0 ≤ g1 ≤ n+1, 0 ≤ g2 ≤ n+1, g1 ≺1 g2, 0 < j ≤ i ≤ n+1, a2
g1,i+a2

g2,j ≤ 1

C”.07 ∀ 0 ≤ g1 ≤ n + 1, 0 ≤ i ≤ n + 1, 1 ≤ j ≤ n, 0 ≤ g2 ≤ n + 1,

if s1(g1) = s2(g1) and s1(g2) = s2(g2) then
a1
g1,i + a2

g1,j + a1
g2,i+1 + a2

g2,j+1 − 4eg1,i,j,g2 ≥ 0
and a1

g1,i + a2
g1,j + a1

g2,i+1 + a2
g2,j+1 − 4eg1,i,j,g2 ≤ 3

if s1(g1) = −s2(g1) and s1(g2) = −s2(g2) then
a1
g1,i + a2

g1,j + a1
g2,i+1 + a2

g2,j−1 − 4eg1,i,j,g2 ≥ 0
and a1

g1,i + a2
g1,j + a1

g2,i+1 + a2
g2,j−1 − 4eg1,i,j,g2 ≤ 3

else eg1,i,j,g2 = 0

C”.08 ∀ 0 ≤ g1 ≤ n + 1, 0 ≤ i ≤ n + 1, 0 ≤ g2 ≤ n + 1,

if s1(g1) = s2(g1) and s1(g2) = s2(g2) then
a1
g1,i + a1

g1,0 + a2
g2,i+1 + a2

g2,1 − 4eg1,i,0,g2 ≥ 0
and a1

g1,i + a1
g1,0 + a2

g2,i+1 + a2
g2,1 − 4eg1,i,0,g2 ≤ 3

else eg1,i,0,g2 = 0

C”.09 ∀ 0 ≤ g1 ≤ n + 1, 0 ≤ i ≤ n + 1, 0 ≤ g2 ≤ n + 1,

if s1(g1) = −s2(g1) and s1(g2) = −s2(g2) then
a1
g1,i + a1

g1,n+1 + a2
g2,i+1 + a2

g2,n − 4eg1,i,n+1,g2 ≥ 0
and a1

g1,i + a1
g1,n+1 + a2

g2,i+1 + a2
g2,n − 4eg1,i,n+1,g2 ≤ 3

else eg1,i,n+1,g2 = 0

Fig. 4. Program Adj-2PO computes two linear extensions of two partial orders maxi-
mizing the number of adjacencies.

Restricted position. In Tx, for each gene g, Tx(g) must be in POSx(g). According
to this remark, some variables can be pre-computed:

– ∀x ∈ {1, 2}, ∀ ax
g,i ∈ Ax, ax

g,i = 0 if i /∈ POSx(g);

– ∀ bg,i,t ∈ B, bg,i,t = 0 if T1(g) cannot be in [i : i + t], and bg,i,t = 1 if T1(g) is
necessarily in [i : i + t];

– ∀ dg,i ∈ D, dg,i = 0 if i /∈ POS1(g);
– ∀ eg1,i,j,g2 ∈ E , eg1,i,j,g2 = 0 if one of the four following conditions holds: (i)

i /∈ POS1(g1), (ii) i + 1 /∈ POS1(g2), (ii) i + 1 /∈ POS2(g2) and s1(g1) =
s1(g2), (iv) i − 1 /∈ POS2(g2) and s1(g1) = −s1(g2).

For each gene g that is i-nailx (i.e., g is necessarily at a known position i in
the linear extension), some variables can also be pre-computed:

– ∀x ∈ {1, 2}, ∀ ax
g,i ∈ Ax, ax

g,i = 1 if g is i-nailx;
– ∀ dg,i ∈ D, dg,i = 1 if gene g is i-nail1 and if one of the following conditions is

satisfied: (i) gene (g+1) is (i+1)-nail2 with s1(g) = “+” and s1(g+1) = “+”,
or (ii) gene (g+ 1) is (i − 1)-nail2 with s1(g) = “− ” and s1(g+ 1) = “− ”.

– ∀ eg1,i,j,g2 ∈ E , eg1,i,j,g2 = 1 if gene g1 is i-nail1 and j-nail2, gene g2 is a
(i + 1)-nail1, and one of the two following conditions holds: (i) g2 is (j + 1)-
nail2 with s1(g1) = s1(g2), (ii) g2 is (j − 1)-nail2 with s1(g1) = −s1(g2).

Specific rules for CI-1PO. By definition, each interval of size 1 and n + 2 is a
common interval. Therefore, cg,i,0 = 1 and cg,0,n+2 = 1 for 0 ≤ g ≤ n + 1, and
we add n+2 to the objective function. Also, we can delete all variables cg,i,0 and
cg,i,n+1 in the program as well as their related constraints. The second reduction
consists in removing some variables cg,i,t. We do not generate a variable cg,i,t
and its related constraints if cg,i,t = 1 is not possible. Indeed, if there exists
an integer k ∈ [0 : t] such that T1(g + k) cannot be in [i : i + t] (i.e., gene
g + k cannot be between i and i + t in the linear extension), then the interval
{g, g + 1, . . . , g + t} is certainly not a common interval.

Specific rules for Adj-1PO. Constraint C’.06 defines the adjacency created by
genes g and (g + 1) at positions n + 1 and n, respectively, in T1. Since we have
artificially added gene n+1 at the end of partial order, then the gene at position
n + 1 is n + 1. Therefore, dg,n+1 = 0 for g in [0 : n] and the constraints C’.06

are deleted. Moreover, if no adjacency is possible between two genes that are
nails, then the total order between these genes has no impact on the number
of adjacencies. Specifically, let g1 and g2 be two genes such that g1 is i1-nail1
and g2 is i2-nail1 (i1 < i2). Notice that no adjacency can be create between the
positions i1 and i2 between a linear extension of P1 and the identity if, for each
gene g3 such that POS1(g3) ⊆ [i1 : i2], one of the three following conditions
hold: (i) s1(g3) 6= s1(g3 + 1), (ii) s1(g3) = “ + ” and s1(g3 + 1) = “ + ” and
(g3, g3 + 1) is not adjoining in P1, or (iii) s1(g3) = “ − ” and s1(g3 + 1) = “ − ”
and (g3 + 1, g3) is not adjoining in P1. Hence, if each such gene g3 satisfies at
least one condition, we can define arbitrarily a total order between i1 and i2
without adding an adjacency.

4 Experimental results

Following the example of [4], we have tested our algorithms on simulated data
to assess the performance of our programs for different parameters inherent to

partial orders. The rationale for this choice is two-fold. For one, the presented
algorithms are quite complicated and using parameterized data allows us to tune
the programs to best solve the problems. For another, using the dataset of [4]
makes comparisons easier with previous works. Our linear program solver en-
gine is powered by the minisat+ solver [5]. All computations were carried out
on a Duo Intel CPU GHz with 2 Gb of memory running under Linux. The
reference data set is from [4]. Blin et al. have generated partial orders Px ac-
cording to three parameters: the size n, the order rate p that determines the
number of adjoining in the expression, and the gene distribution rule q that
corresponds to the probability of possible adjacencies with respect to the iden-
tity. We use 19 different instances for each triplet of parameters (n, p, q) with
n ∈ {30, 40, 50, 60, 70, 80, 90}, p ∈ {0.7, 0.9} and q ∈ {0.4, 0.6, 0.8}, so that we
have 798 genomes for each program. The results of the three programs on this
dataset are presented below. We evaluated two criteria: the running time and
the given measure (number of common intervals or number of adjacencies) in-
duced by the returned linear extension. The width of partial orders will be also
considered. Then, we study the advantages of program Adj-1PO to Adj-2PO for
the comparison of a partial order and the identity.

Results for CI-1PO. For program CI-1PO, the minisat+ engine resolves 264
instances out of 342 inputs (77.2%) with n ∈ {30, 40, 50}, p ∈ {0.7, 0.9}, and
q ∈ {0.4, 0.6, 0.8} (Table 1) in less than 5 hours. The 83 remaining cases have
been stopped after 30 minutes. We note that CI-1PO reaches its limits even for
small instances. As shown in Table 2, the width of an instance is an important
parameter that certainly contributes to the complexity of the instances. Indeed,
we remark that the number of obtained results decreases according to the width
of the instances. In the same way, the average running time increases with the
width. We also notice that the width is correlated with the complexity of the
problem, which is not surprising since combinatorial difficulty is clearly contained
in the greatest sets of non-comparable genes.

Size Number of results Number of instances Running time

30 95 114 1h 48m

40 85 114 1h 19m

50 79 114 1h 44m

Total 259 342 4h 41m

Table 1. Results of CI-1PO obtained in less than thirty minutes.

Results for Adj-1PO. We applied Adj-1PO on 19 genomes for each triplet (n, p, q)
with n ∈ {30, 40, 50, 60, 70, 80, 90}, p ∈ {0.7, 0.9} and q ∈ {0.4, 0.6, 0.8}. We
obtained 778 results out of 798 (97, 5%) after 2 months and 13 days. Due to
huge memory requirements, a Quadri Intel(R) Xeon(TM) CPU 3,00 GHz with

Width 1 2 3 4 5 6 7 8 9 10 11

Number of instances 5 63 63 50 44 31 26 18 13 7 9

Number of solved instances 5 63 63 44 36 26 15 5 1 1 0

% of solved instances 100% 100% 100% 88% 82% 84% 58% 28% 8% 15% 0%

Average running time (sec) 2 13 28 60 88 154 201 311 73 490

Table 2. Impact of width for CI-1PO.

16Gb of memory running Linux was required for 14 of the runs. We note that
parameter p has the largest impact on the running time. It is indeed significantly
higher when p = 0.7 rather than when p = 0.9, i.e., when the partial orders have
less adjoining. The width also affects the running time. Parameter q seems,
however, to have no impact on the running time. For the 70 cases where the
running time exceeds 1 hour, we note that the corresponding genomes contain
50 genes or more, with an order rate p equals to 0.7 (58 times out of 70), but
without specific gene distribution (21 times 0.4, 27 times 0.6 and 22 times 0.8).
Their width ranges from 5 to 22 and is on average equal to 11.6. For 19 genomes,
the linear program could not been solved by minisat+ because the number of
constraints and variables is too large for this solver. For these genomes, we
observe that their size is greater than or equal to 70, that p is equal to 0.7 and
that q is variable (9 times 0.4, 3 times 0.6 and 8 times 0.8). Their width is also
large: 17.5 on average (from 11 to 29), compared to 6 for all genomes.

Results for Adj-2PO. For each triplet, we compare 19 genomes by pairs. At the
present time, we have obtained the results for the following triplets: {30, 0.7, 0.8},
{30, 0.9, 0.4}, {30, 0.9, 0.6}, {30, 0.9, 0.8}, {40, 0.9, 0.4}, {40, 0.9, 0.6}, {40, 0.9, 0.8},
{50, 0.9, 0.6}, {50, 0.9, 0.8}, {60, 0.9, 0.6}, {60, 0.9, 0.8}, and {70, 0.9, 0.8}. Before
discussing the 11 triplets for which p = 0.9, let us look at the results obtained
with the triplet {30, 0.7, 0.8}. The running time is clearly more important when
p = 0.7 rather than p = 0.9 (2 days and 21 hours for the triplet {30, 0.7, 0.8} and
40 minutes for the triplet {30, 0.9, 0.8}). Moreover, fewer results were obtained
(90 results for the triplet {30, 0.7, 0.8} and 171 for the triplet {30, 0.9, 0.8}). For
the 11 triplets for which p = 0.9, we made 1881 comparisons (19 genomes com-
pared with 18 genomes of the same triplet). We manage to obtain in 1668 results
(i.e., 88.6%) in a little over 38 days. For the 213 unfinished runs, two types of
problems have emerged: either the linear program has too many variables and
constraints for the solver minisat+, or the memory requested is too large for
the Duo Intel 2Gb of memory. The width clearly influences the running time.
Indeed, when the sum of width of both partials orders P1 and P2 is less than 5,
the average running time is 14 seconds, while it is of 56 minutes when this sum
is more than 5. Parameter q has an impact on the number of adjacencies only.

Comparison between Adj-1PO and Adj-2PO. To evaluate Adj-1PO, we compare
its running time with Adj-2PO when P2 is the identity. For the 19 instances
of each triplet (n, p, q) such that n is in {30, 40}, p is in {0.7, 0.9} and q is in

{0.4, 0.6, 0.8}, the sum of running times is 2 hours and 30 minutes (minimum =
0.1 second, maximum = 15 minutes 25s) for Adj-1PO and 67 hours (minimum =
0.1 second, maximum = 14 hours 42m) for Adj-2PO. Clearly, Adj-1PO is much
faster than Adj-2PO from the viewpoint of running time (a diminution of 96.3%).
If we compare the running time for each case, we note that both programs have
a running time more important for the same genome. We can infer that both
programs are facing the same difficulties. This is not surprising in view of the
similarities of variables and constraints of linear programming of Adj-1PO and
Adj-2PO.

5 Conclusion and future works

Our results are quite preliminary and there is still a great amount of work to be
done. Among other things, one can cite: (i) for each case, determine other strong
and relevant rules for speeding-up the process by avoiding the generation of too
many variables and constraints, (ii) generalize the program CI-1PO to compute
the number of common intervals between two partial orders, and (iii) define and
evaluate heuristics for these problems. Indeed, we do think that our approach
is useful for providing exact reference results to which new developed heuristics
can be compared.

References

1. S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. Efficient tools for
computing the number of breakpoints and the number of adjacencies between two
genomes with duplicate genes. J. Computational Biology, 15(8):1093–1115, 2008.

2. S. Angibaud, G. Fertin, I. Rusu, and S. Vialette. A pseudo-boolean general frame-
work for computing rearrangement distances between genomes with duplicates. J.
Computational Biology, 14(4):379–393, 2007.

3. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its appli-
cations to genome comparison. In Proc. 9th International Computing and Combi-
natorics Conference (COCOON ’03), volume 2697 of LNCS, pages 68–79, 2003.

4. G. Blin, E. Blais, D. Hermelin, P. Guillon, M. Blanchette, and N. El-Mabrouk.
Gene maps linearization using genomic rearrangement distances. J. Computational
Biology, 14(4):394–407, 2007.

5. N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

6. Z. Fu and T. Jiang. Computing the breakpoint distance between partially ordered
genomes. J. Bioinformatics and Computational Biology, 5(5):1087–1101, 2007.

7. A. Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1998.
8. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two

permutations. Algorithmica, 26(2):290–309, 2000.
9. G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome

inversion problem. Journal of Theoretical Biology, 99(1):1–7, 1982.
10. C. Zheng, A. Lenert, and D. Sankoff. Reversal distance for partially ordered

genomes. Bioinformatics, 21(1):502–508, 2005.

