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This paper adresses the general issue of estimating the sensitivity of the expectation of a random variable with respect to a parameter characterizing its evolution. In finance for example, the sensitivities of the price of a contingent claim are called the Greeks. A new way of estimating the Greeks has been recently introduced by Elie, Fermanian and Touzi [6] through a randomization of the parameter of interest combined with non parametric estimation techniques. This paper studies another type of those estimators whose interest is to be closely related to the score function, which is well known to be the optimal Greek weight. This estimator relies on the use of two distinct kernel functions and the main interest of this paper is to provide its asymptotic properties. Under a little more stringent condition, its rate of convergence equals the one of those introduced in [6] and outperforms the finite differences estimator. In addition to the technical interest of the proofs, this result is very encouraging in the dynamic of creating new type of estimators for sensitivities.

Introduction

This paper is closely related to the work of Elie, Fermanian and Touzi [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF] and we will try to follow their notations. Let λ be some given parameter in R d , and define the function

V φ (λ) := E [φ (Z(λ))] ,
where Z(.) is a parameterized random variable with values in R n and φ : R n → R is a measurable function. A well understood issue is the numerical computation of the function V φ (λ) by means of a Monte Carlo procedure for example. A more difficult problem consists in approximating the sensitivity of V φ with respect to the parameter λ. For some given parameter λ 0 , we denote by β 0 the expression of interest defined by

β 0 := ∇ λ V φ (λ 0 ) = ∇ λ E[φ(Z(λ))] |λ=λ 0 (1.1)
In financial applications, V φ interprets as the no-arbitrage price of a contingent claim, defined by the payoff φ (Z(λ)), in the context of a complete market with prices measured in terms of the price of the non-risky asset. The sensitivities of V φ with respect to the parameter λ are often called Greeks, and their interest to practitioners is now well established.

To our knowledge, as for the computation of those sensitivities, mainly three methods are considered. They are compared in detail in the survey paper of Kohatsu-Higa and Montero [START_REF] Kohatsu-Higa | Malliavin Calculus in Finance[END_REF] and we just present briefly here their construction and main properties. First, the finite differences method consists in approximating the derivative of the price by its variation in response to a small perturbation ǫ of the parameter of interest λ :

β 0 ∼ V φ (λ 0 + ε) -V φ (λ 0 ) ε . (1.2)
Given a number of Monte Carlo simulation for the prices, the choice of ǫ is related to an equilibrium between the bias and the variance of the estimator. For discontinuous payoff functions φ, this method appears inefficient due to the poor precision of approximation (1.2). A theoretical study of those estimators is reported in L'Ecuyer and Perron [START_REF] L'ecuyer | On the Convergence Rates of IPA and FDC derivative Estimators[END_REF], Detemple, Garcia and Rindisbacher [START_REF] Detemple | Asymptotic Properties of Monte Carlo Estimators of Derivatives[END_REF] or Milstein and Tretyakov [12]. Second, one can invert the differentiation and the expectation operators to obtain the pathwise estimator given by a Monte Carlo estimation based on the representation

β 0 = E φ ′ (Z(λ 0 ))∇ λ Z(λ 0 ) .
This method, introduced by Broadie and Glasserman [START_REF] Broadie | Estimating security prices using simulation[END_REF], therefore requires a lot of regularity on the payoff function φ as well as the computation of the tangent process ∇ λ Z of the underlying. Efficient numerical schemes for the implementation of this method can be found in Giles and Glasserman [START_REF] Glasserman | Smoking adjoints: fast Monte Carlo Greeks[END_REF]. Finally, one can compute β 0 by reporting the differentiation operator on the regular distribution of the underlying Z(λ). Whenever this random variable admits a density f (λ, .)
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The application of this trick in finance has also been introduced by Broadie and Glasserman [START_REF] Broadie | Estimating security prices using simulation[END_REF]. This type of representation has been generalized by Fourni, Lasry, Lebuchoux, Lions and Touzi [START_REF] Fourni | Applications of Malliavin Calculus to Monte Carlo Methods in Finance[END_REF] who studied the properties of the random variables π satisfying E φ(Z(λ 0 ))π , for any function φ ∈ L ∞ (R n , R) .

By means of a Malliavin integration-by-parts argument, they characterized the set of the so called greek weights π, allowing their tedious computation in some particular cases.

Nevertheless, beyond all those greek weight based estimators, the one related to the score function s and given by (1.3) leads to the smallest variance.

As in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], the main purpose of this paper is to study estimators of the Greek β 0 whenever the payoff function lacks regularity and the density f of the underlying is unknown.

As detailed in the next section, a randomization of the parameter of interest λ allows to rewrite the sensitivity β 0 given by (1.3) as a conditional expectation. Combining a non parametric estimation of this conditional expectation with a truncation argument and a kernel estimation of the unknown score function s leads to our estimator βn . A slightly different form of βn , without the useful truncation modification, is presented in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], where it serves as a basis to introduce other ones through an integration by part argument. The main contribution of this paper is the presentation of the rather demanding derivation of its asymptotic properties suggested in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF]. The use of a truncated version of the classical kernel estimator allows to reduce the induced required assumptions on the coefficients. We provide the asymptotic mean square error and distribution of the proposed estimator, leading to the common calibration of the different parameters of simulation.

Despite the more general form of βn , it surprisingly achieves the same rate of convergence rate as the one introduced in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF]. From a practical perspective, we have to admit that, as argued in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], its numerical implementation is more demanding. Nevertheless, the choice of the two distinct Kernel functions increases significantly the class of possible sensitivity estimators. From a technical point of view, the asymptotics of the estimator require a precise derivation of the properties of a kernel estimator of the score function, which appear to be of great interest in themselves. Therefore, this paper offers a new contribution to the literature of the combination of several non-parametric estimators, and its particular application to the computation of the Greeks is furthermore promising in the development of competitive numerical computation of sensitivities.

The paper is organized as follows. In section 2, we present in detail the construction of this estimator. Its asymptotic properties as well as its practical implementation are discussed in Section 3. Finally, for ease of presentation, the proofs are reported in the last section.

Construction of the estimator

Throughout this paper, we consider a complete probability space (Ω, F, P ) supporting a Brownian Motion W valued in R m . We assume that F is the P -completion of the σ-algebra generated by W . Let Z(λ) be a given random variable valued in R n and parameterized by λ ∈ R d and φ ∈ L ∞ (R n , R) be a payoff function . The purpose of this paper is to construct an estimator of β 0 defined in (1.1) as the sensitivity of V φ with respect to λ at a given point λ 0 .

We shall demonstrate in this section the intuition behind the construction of the suggested estimator. We first identify the score function s defined in (1.3) as the optimal Greek weight in the sens of [START_REF] Fourni | Applications of Malliavin Calculus to Monte Carlo Methods in Finance[END_REF]. Considering the realistic case where the score function is unknown, we propose to approximate it through a kernel estimation procedure. Combining Monte Carlo simulations with the randomization of the parameter λ, we are able to construct a nonparametric estimator of the score function leading naturally to the estimation of β 0 . The reader interested by the asymptotic properties of the estimator should report directly to the next section.

The score function as the optimal Greek weight

We assume that the distribution of Z(λ) is absolutely continuous with respect to the Lebesgue measure, and denote by f (λ, .) the associated density. As announced in the introduction, under mild smoothness assumptions on the density f , we directly compute that

β 0 = E φ[Z(λ 0 )]s[λ 0 , Z(λ 0 )] , with s := ∇ λ f f = ∇ λ ln f . (2.4)
In the context of the Black Scholes model, Broadie and Glasserman [START_REF] Broadie | Estimating security prices using simulation[END_REF] noticed that this representation allows to compute β 0 by a direct Monte Carlo procedure. It is important to notice that the score function s only depends on the distribution of the underlying Z(λ 0 ). In a more general framework, Fournie, Lasry, Lebuchoux, Lions and Touzi [START_REF] Fourni | Applications of Malliavin Calculus to Monte Carlo Methods in Finance[END_REF] considered the set

W := π ∈ L 2 (Ω, R d ) : ∇ λ V φ (λ 0 ) = E φ(Z 0 )π for all φ ∈ L ∞ (R n , R) .
Assuming that E s[λ 0 , Z(λ 0 )] 2 < ∞, we already notice that s[λ 0 , Z(λ 0 )] ∈ W. In [START_REF] Fourni | Applications of Malliavin Calculus to Monte Carlo Methods in Finance[END_REF], the authors construct a new characterization of the set W by means of a Malliavin integration by parts argument. After rather tedious computations, this representation allows sometimes to produce some alternative Greek weights π to the score s[λ 0 , Z(λ 0 )]. When the density f and therefore the score function s of the underlying are unknown, those alternative weights appear to be very helpful.

Nevertheless, their obtention is unfortunately still limited to particular cases and the following argument demonstrate that the estimator based on the score s[λ 0 , Z(λ 0 )] is of minimal variance beyond the class of Greek weight based estimators. Indeed, from the arbitrariness of φ ∈ L ∞ (R n , R), we rewrite

W = π ∈ L 2 (Ω, R d ) : E[π|Z(λ 0 )] = s[λ 0 , Z(λ 0 )] .
We then deduce that, for any π ∈ W,

Var φ[Z(λ 0 )]π = E φ[Z(λ 0 )] 2 E[ππ ′ |Z(λ 0 )] -∇V φ (λ 0 )∇V φ (λ 0 ) ′ ≥ E φ[Z(λ 0 )] 2 E[π|Z(λ 0 )]E[π|Z(λ 0 )] ′ -∇V φ (λ 0 )∇V φ (λ 0 ) ′ = E φ[Z(λ 0 )] 2 s[λ 0 , Z(λ 0 )]s[λ 0 , Z(λ 0 )] ′ -∇V φ (λ 0 )∇V φ (λ 0 ) ′ = Var φ[Z(λ 0 )]s[λ 0 , Z(λ 0 )] ,
where ′ denotes the transposition operator. Hence

s[λ 0 , Z(λ 0 )] ∈ W is a minimizer of Var φ[Z(λ 0 )]π , π ∈ W .
As in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], we intend in this paper to construct a non parametric estimator based on the approximation of the optimal Greek weight given by the unknown score s[λ 0 , Z(λ 0 )].

Randomization of the parameter

In order to be able to estimate the unknown score function s, the idea is to create an artificial density around the parameter λ 0 , on which we can report the differentiation operation. This well known technique in the non-parametric statistics litterature, see eg [START_REF] Ait-Sahalia | Non parametric pricing of interest rate derivative securities[END_REF], is based on the randomization of the parameter of interest λ. One may for example interpret the classical finite difference operator (1.2) as a particular case of a randomizing distribution of λ with two dirac masses at points λ 0 and λ 0 + ε.

We then introduce ℓ : R d -→ R some given probability density function, with support containing the origin in its interior and set

ϕ(λ, z) := ℓ(λ 0 -λ) f (λ, z) for λ ∈ R d and z ∈ R n .
Considering a couple of random variable (Λ, Z) with density ϕ, we therefore rewrite β 0 as

β 0 = E φ(Z)s(Λ, Z) | Λ = λ 0 . (2.5)
Although we restrict to the case where the density f of the underlying Z(λ) is unknown, we still consider that we can simulate Z(λ). This not a limitation in practice since Z(λ) is typically characterized by a stochastic differential equation, which can be classically discretized. Hence, we introduce a sequence

(Λ i , Z i ) 1≤i≤N of N independent r.v. with distribution ϕ , (2.6) 
so that, for any i ≤ N , ℓ(λ 0 -.) is the density of Λ i and f (Λ i , .) is the conditional density of Z i given Λ i .

We now introduce a kernel function K : R d → R, i.e. such that

R d K = 1. Given the N observations (Λ i , Z i ) 1≤i≤N
, the conditional expectation given by (2.5) can be approximated by the classical kernel estimator

βN := 1 ℓ(0) N h d N i=1 φ(Z i ) s(Λ i , Z i ) K λ 0 -Λ i h , (2.7) 
where the bandwidth h > 0 of the estimator is a small parameter.

This estimator is of course not implementable since the score function s is unknown. Nevertheless, as detailed in the next paragraph, the extra regular source of randomness introduced by ℓ allows us to approximate s and leads to a computable estimator of β 0 .

The double kernel based estimator

In order to approximate the score function s, we shall first estimate the unknown density ϕ of (Λ, Z). For this purpose, we introduce a second kernel function H : R n → R. Given N -1 observations (Λ j , Z j ) 1≤j≤N ,j =i , we define φ-i the classical non-parametric estimator of the density ϕ given by

φ-i (λ, z) := h -d-n N -1 N j=1,j =i K λ -Λ j h H z -Z j h . (2.8) 
We denote φλ -i (λ, z) the derivative of this estimator with respect to λ and we deduce

φλ -i (λ, z) := ∇ λ φ-i (λ, z) = h -d-n-1 N -1 N j=1,j =i ∇K λ -Λ j h H z -Z j h .
Observe now that s and ϕ are closely related since we easily compute

s(λ, z) = ∇ λ f f (λ, z) = ∇ λ ϕ ϕ (λ, z) - ∇ℓ ℓ (λ 0 -λ) , for λ ∈ R d and z ∈ R n .
Given the observations (Λ j , Z j ) 1≤j≤N ,j =i , this naturally leads to the following estimator ŝ-i N of the score function s given by

ŝ-i N (λ, z) := φλ -i φ-i + (δ/3 -φ-i )1 | φ-i |<δ/3 (λ, z) + ∇ℓ(λ 0 -λ) ℓ(λ 0 -λ) , (2.9) 
with δ some small fixed parameter ensuring that the estimator φ-i stays away from zero. This technical truncation will simply ensure the non explosion of the estimator, and the convergence of the estimator will necessitate some control on the small values of the true density ϕ detailed in Assumption S below.

In order to construct an estimator of β 0 , we now replace in (2.7) each score s(Λ i , Z i ) by the approximation ŝ-i N (Λ i , Z i ) based on the N -1 remaining observation. Our estimator is thus defined by

βN := 1 ℓ(0) N h d N i=1 φ(Z i ) ŝ-i N (Λ i , Z i ) K λ 0 -Λ i h . (2.10)
Based on this type of representation, Elie, Fermanian and Touzi [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF] introduce two other estimators by means of an integration by parts argument. Even if the representations proposed in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF] appears more simple, we surprisingly show in the next section that our estimator (2.10) achieves a similar rate of convergence, under a few more stringent conditions. Even if the practical implementation and computation of βN is more time consuming, the general form of (2.9) offers a large class of possible estimators, related to different Kernel functions K and H. Since the rate of convergence of these estimators is similar, we sincerely believe that this result is very encouraging in the dynamic of creating new type of estimator for sensitivities. Moreover the technical proof for the convergence of the estimator appears to be of great interest in itself.

Asymptotic properties

This section presents the main results of the paper. We first provide the asymptotic properties of the estimator βN defined in (2.10). In particular, the obtention of the asymptotic mean square error of the estimator leads to the common optimal choice of the number of simulations N and the bandwidth h of the two kernel functions K and H.

Notations

Before stating our results, we recall that the order of a kernel function K : R d → R is defined as the smallest non zero integer p such that there exist some integers (j 1 , . . . , j p ), with j k ∈ {1, . . . , d}, satisfying l α 1 . . . l αr K(l)dl = 0 for 0 < r < p, α k ∈ {1, . . . , d}, and

l j 1 . . . l jp K(l)dl = 0.
Typically, if K is the product of d even univariate kernels, then it is (at least) of order p = 2.

In the subsequent subsections, the kernel functions K and H will be respectively of order p and q, and we shall use the notations

ξ p K [ψ](λ, z) := (-1) p p! d j 1 ,...,jp=1 l j 1 . . . l jp K(l)dl ∇ p λ j 1 ...λ jp ψ(λ, z) , (3.11) 
ξ q H [ψ](λ, z) := (-1) q q! d j 1 ,...,jq=1 v j 1 . . . v jq H(v)dv ∇ q z j 1 ...z jq ψ(λ, z) , (3.12) 
for every smooth function ψ defined on R d × R n . We shall also denote A ⊗ := AA ′ for every matrix A, and C denotes a constant whose value may change from line to line.

Asymptotic moments and distribution of the estimator

We shall work under the following three assumptions concerning respectively the kernels K and H, the payoff function φ and the unknown density function f .

Assumption KH K and H are the product of some univariate compactly supported lipschitz kernels with orders respectively p and q, and ∇K has bounded variation.

Assumption S φ is continuous and has compact support. Moreover, there exist δ > 0 such that, for every

z ∈ R n , inf ϕ(λ, z) : (λ, z) ∈ V(λ 0 ) × C φ > δ,
for some neighborhood V(λ 0 ) of λ 0 , and some compact subset

C φ of R n with Supp(φ) ⊂ int(C φ ).
Assumption R For every λ, the function ∇ λ f (λ, •) is q times differentiable, and for every integer j ≤ q, the function λ -→ ∇ j z ∇ λ ϕ(λ, z) is continuous at λ = λ 0 uniformly with respect to z ∈ S, for some subset S s.t. Supp(φ) ⊂ int(S).

Assumption R For every z, the functions f (•, z) and ℓ are p + 1 times differentiable, and for every integer i ≤ p + 1, the function λ -→ ∇ i λ f (λ, z) is continuous at λ 0 uniformly with respects to z ∈ S, for some subset S s.t. Supp(φ) ⊂ int(S). Remark 3.1 We have to admit that Assumption S is at first glance rather restrictive on the class of possible payoff functions for financial applications. Nevertheless, we observe that most of the classical ones can be included. In particular, the call option can be considered here even if the payoff does not have compact support. One just need to approximate the greeks associated to the associated Put option and use the correspondence provided by the Call-Put parity relation satisfied in any arbitrage free market.

We first present the asymptotic bias and variance of the estimator. Proposition 3.1 Under Assumptions KH, S and R, choose N and h so that

h -→ 0 and (ln N ) 4 N h d+n+n∨2 -→ 0 as N → ∞ .
(3.13) Double Kernel estimation of sensitivities Then, the bias and the variance of βN satisfy

E βN -β 0 ∼ C 1 h p + C 2 h q + C 3 N h d+n+1 and Var βN ∼ Σ N h d+2 , (3.14) 
where

C 1 := 1 ℓ(0) ξ p K ℓ(λ 0 -.)f λ + ϕ λ - ϕ λ ϕ ξ p K [ϕ] (λ 0 , z)φ(z) dz C 2 := 1 ℓ(0) ξ q H [ϕ λ ] - ϕ λ ϕ ξ q H [ϕ] (λ 0 , z) φ(z) dz C 3 := 1 ℓ(0) φ(z) ϕ(λ 0 , z) K(l 2 -l 1 )K(l 1 )∇K(l 1 )H 2 (v) dl 1 dl 2 dv dz Σ := E[φ 2 (Z 0 )] ℓ(0) K(l 2 -l 1 )∇K(l 1 ) dl 1 ⊗ dl 2 .
We now turn to the asymptotic distribution of the estimator.

Theorem 3.1 (i) Under the conditions of Proposition 3.1, we have

√ N h d+2 βN -E[ βN ] law -→ N →∞ N 0, Σ .
(ii) If in addition N h d+2+2(p∧q) → 0, then the bias vanishes and

√ N h d+2 βN -β 0 law -→ N →∞ N 0, Σ .
The technical proofs of Proposition 3.1 and Theorem 3.1 are reported in Section 4.

Remark 3.2 Note that the condition n < (p ∧ q) + 1 is necessary in order to satisfy (3.13) and the condition of (ii). Thus, for basket derivatives or bermudean options in finance, it is necessary to consider high-order kernels, which is not a limitation in practice.

Dependence with respect to the price process dynamics

One should typically imagine the random variable Z as the terminal value of a price process X λ , whose dynamics are given by a parametrized stochastic differential equation of the form:

X λ 0 = x(λ) , dX λ u = µ(u, λ, X λ u )du + σ(u, λ, X λ u )dW u , . (3.15) 
where

x : R d → R n , µ : [0, T ] × R d × R n → R n and σ : [0, T ] × R d × R n → M n,m
R are deterministic lipschitz functions. In this case, Z = X λ T can be simulated easily via any time discretization scheme, even if its density f is unknown.

We detail in this paragraph how the regularity of f required in Assumption R can be induced from conditions on the coefficients x, µ and σ. First, the absolute continuity of

X λ
T is ensured by the classical uniform ellipticity condition: suppose the matrix σσ ⊤ is symetric, positive and there exists a constant c σ > 1 such that

1 c σ I d (x) ≤ σσ ⊤ (t, λ, x) ≤ c σ I d (x) ∀(t, λ, x) ∈ [0, T ] × R d × R n . (3.16)
Second, the density f of X λ T inherits the regularity of the coefficients x, µ and σ through the properties of the corresponding transition densities. Following the arguments of Theorem A.2.2 p.478 in [START_REF] Azencott | Densit des diffusions en temps petit: dveloppements asymptotiques[END_REF], see also Proposition 5.1 in [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF], Assumption R is satisfied whenever (3.16) holds, ℓ is of class C 1 , x is of class C q+2 , and the coefficients µ and σ are of class C 1 in (t, λ, x), C p+2 in λ as well as C q+2 in x.

It is worth noticing that this analysis gives rise to more tractable assumptions for Proposition 3.1 and Theorem 3.1 in the realistic framework where Z is the terminal value of a price process with dynamics of the form (3.15).

Optimal choice of N and h

We investigate in this section the optimal balance between the number of simulations N and the bandwidth h. As announced in remark 3.2, we suppose that n < (p ∧ q) + 1. Under this condition and the assumptions of proposition 3.1, we obtain a simplification in the asymptotic expression of the bias and the mean square error of the estimator rewrites

MSE( βN ) := E | βN -β 0 | 2 ∼ Tr( Σ) N h d+2 + |C 1 | 2 h 2p + |C 2 | 2 h 2q .
Minimizing the MSE in h, we get the asymptotically optimal bandwidth selector :

h = (d + 2)T r( Σ) 2(p ∧ q)|C 1 1 p≤q + C 2 1 q≤p | 2 N 1/(d+2(p∧q)+2)
.

(3.17) Therefore h is of order N -1/(d+2(p∧q)+2) , leading to a MSE of order N -2(p∧q)/(d+2(p∧q)+2) . Consequently, despite its more complicated form, the double kernel estimator achieves the same rate of convergence as the one introduced in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF]. The only constraint is the use of kernel functions of order sufficiently large, i.e. satisfying p ∧ q > n -1. Since, given a large number of simulations, one should always use a kernel function of high order, this constraint is not relevant in practice.

Remarks and extensions

In this section, we regroup some remarks and possible extensions of the method, which unfortunately go beyond the scope of the paper.

Considering a randomizing distribution ℓ with radius equal to the bandwidth h, we can improve the rate of convergence of the estimator. Indeed, the asymptotic variance of the estimator then reduces to a term of order 1/ √ N h 2 , leading to a MSE of order N -(p∧q)/(p∧q)+1 .

Remarkably, the speed of convergence of the estimator does not depend in this case on the dimension of the underlying X. For a continuous payoff function, the best finite differences estimator achieves an MSE of order N -4/5 , see [START_REF] Detemple | Asymptotic Properties of Monte Carlo Estimators of Derivatives[END_REF]. Therefore this estimator outperforms the finite differences one as soon as p ∧ q > 4 ∨ (n -1). We choose to omit the proof of this result which is technically rather demanding.

With no doubt, the choice of the randomizing function ℓ is crucial for the precision of the estimator presented here. In the particular case of a uniform randomizing distribution ℓ, the analytical form of the estimator simplifies and, after tedious asymptotic developments, we can see that the optimal choice for the radius of the distribution ℓ is the bandwidth h of the kernel function K, i.e. the particular case discussed above. From an empirical point of view, the optimal choice of the randomizing density ℓ should be intimately related to the choice of the Kernel function K. A simple example where these two density functions are identical can naturally be considered.

As for the practical calibration of the optimal bandwidth h given by (3.17), we need to estimate the constants C 1 , C 2 and Σ. As for the choice of the bumping parameter of the finite differences estimator, they can be approximated by a preliminary Monte Carlo procedure with very few simulations. For example, the procedure proposed in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], can be directly adapted to this setting.

Finally, a generalization of the above estimator could be considered by taking two different bandwidths. Intuitively, the bandwidth for the estimation of the score function introduced in (2.8) should be smaller than the one considered for the approximation of the conditional expectation in (2.7). Indeed, the signification of those two parameters are rather different, but this question is left for further research.

Proofs

This section is dedicated to the proof of Proposition 3.1 and Theorem 3.1, characterizing the asymptotic behavior of βN . In this section, we shall always work under the Assumptions of Proposition 3.1.

Preliminaries

Recall that

βN := 1 ℓ(0) N h d N i=1 φ(Z i ) ŝ-i N (Λ i , Z i ) K λ 0 -Λ i h , (4.18) 
where

ŝ-i N (λ, z) := φλ -i φ-i,δ (λ, z) + ∇ℓ ℓ (λ 0 -λ) , with φ-i,δ := φ-i + (δ/3 -φ-i )1 | φ-i |≤δ/3 a truncated version of φ-i (λ, z) defined by φ-i (λ, z) := h -d-n N -1 N j=1,j =i K λ -Λ j h H z -Z j h and φλ -i = ∇ λ φ-i .
For every λ, z, we set φ(λ, z)

:= E[ φ-1 (λ, z)] = K(l)H(v)ϕ(λ -hl, z -hv) dl dv ,
and its derivative is given by

φλ (λ, z) = h -1 ∇K(l)H(v)ϕ(λ -hl, z -hv) dl dv
Arguing as in the proof of Proposition 4.1 in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], a Taylor expansion combined with a classical change of variable leads to 

φ(λ, z) -ϕ(λ, z) = ξ p K [ϕ](λ, z) h p + ξ q H [ϕ](λ, z) h q + o(h p∧q ). (4.19) Similarly, we get φλ (λ, z) -ϕ λ (λ, z) = ξ p K [ϕ λ ](λ, z) h p + ξ q H [ϕ λ ](λ, z) h q + o(h p∧q ) . ( 4 
p K [ϕ], ξ q H [ϕ], ξ p K [ϕ λ ] and ξ q H [ϕ λ ] are uniformly bounded so that : φ -ϕ ∞ = O h p∧q and φλ -ϕ λ ∞ = O h p∧q . ( 4 

.21)

We now study further the tails of the estimators φ-i and we obtain the following estimates.

Lemma 4.1 There exists α 1 and α 2 such that

sup i≤N P[| φ-i -φ|(λ, z) > t] ≤ 2e -t 2 α 1 +α 2 t N h d+n , (λ, z) ∈ C K × C φ . (4.22)
Furthermore, for any t > 0, there exists C t > 0 and c t > 0 satisfying

P sup i≤N φ-i -φ ∞ > t ≤ C t N 3 e -ctN h d+n . (4.23)
Finally, for any integer r ≥ 1, we have

sup 1≤i≤N φ-i -φ ∞ 2r = O ln(N ) √ N h d+n . (4.24)
Proof. Observe first that there exists α 1 and α 2 such that, for any (λ, z) We now turn to the proof of the second estimate and first observe that

∈ C K × C φ , the random variables K[(λ -Λ i )/h]H[(z -z i )/h]
P sup i≤N φ-i -φ ∞ > t ≤ N P[ φ -φ ∞ > t], (4.25) 
where, for ease of notation in this proof, we introduce φ := φ-1 . Applying the Liebscher strategy, see [START_REF] Liebscher | Strong convergence of sums of α-mixing random variables with applications to density estimation Stochastic processes and their applications[END_REF], we recover the compact set

C K × C φ by C 0 (R N,h ) -d-n balls B j := B((λ j , z j ), R N,h
), with C 0 a constant chosen large enough. On each ball B j , we have sup

B j | φ -φ| ≤ | φ -φ|(λ j , z j ) + sup (λ,z)∈B j | φ(λ, z) -φ(λ j , z j )| (4.26) + sup (λ,z)∈B j | φ(λ, z) -φ(λ j , z j )|
According to Assumption KH, the kernel functions K and H are lipschitz and compactly supported. Therefore, there exists M > 0 such that sup

(λ,z)∈B j | φ(λ, z) -φ(λ j , z j )| ≤ C R N,h h ψ(λ j , z j ),
where ψ is the classical histogram kernel estimator of the density ϕ defined by

ψ(λ, z) := 1 4M 2 N h d+n N i=1 1 |Λ i -λ|≤M h 1 |Z i -z|≤M h .
Introducing the notation ψ := E[ ψ] and choosing R N,h such that R N,h = o(h), we then deduce from (4.26) that sup

B j | φ -φ| ≤ | φ -φ|(λ j , z j ) + | ψ -ψ|(λ j , z j ) + 2C R N,h h ψ(λ j , z j ) .
Summing up over all the balls B j , we get

P[ φ -φ ∞ > t] ≤ C 0 R -(d+n) N,h P[| φ -φ|(λ j , z j ) > t/3] + P[| ψ -ψ|(λ j , z j ) > t/3] +C 0 R -(d+n) N,h P[2Ch -1 R N,h | ψ|(λ j , z j ) > t/3] .
Therefore, applying estimate (4.22) to both kernel estimators φ and ψ, we deduce the existence of γ 1 and γ 2 satisfying

P[ φ -φ ∞ > t] ≤ CR -(d+n) N,h e -t 2 γ 1 +γ 2 t N h d+n + P 2C R N,h h | ψ|(λ j , z j ) > t/3 . (4.27)
But ψ is bounded so that for any given t the last term on the right hand side equals 0 for h small enough. Since N h d+n → ∞ according to (3.13), choosing R N,h = h 2 , we deduce (4.23) from (4.25).

We now turn to the moment inequalities and introduce the notation

Y N := √ N h d+n ln(N ) sup i≤N φ-i -φ ∞ ,
so that we simply need to prove Y N 2r < ∞ for all integer r ≥ 1. Fix r ∈ N * and observe that

E Y 2r N = ∞ 0 2rs 2r-1 P[Y N > s]ds ≤ C a + ∞ a 2rs 2r-1 P[Y N > s]ds , (4.28)
for any a¿0. We now fix s large enough and take R N,h = h ln(N )/ √ N h d+n in (4.27) and (4.25), so that we get, for N large enough, the existence of δ 1 and δ 2 satisfying

P[Y N > s] ≤ CN √ N h d+n h ln(N ) d+n e - s ln(N) 2 δ 1 +δ 2 s ln(N)/ √ Nh d+n .
Since ln(N )/ √ N h d+n → 0 and h → 0, we deduce that for N large enough, we have

P[Y N > s] ≤ CN d+n e - s ln(N) 2 δ 1 +δ 2 s ln(N)/

√

Nh d+n ≤ Ce (d+n) ln(N )-s(ln N ) 3/2 ≤ Ce -s .

Plugging this estimate into (4.28) completes the proof. 2

Since ∇K has bounded variation, the exact same reasoning can apply to the estimators φ-i λ and we similarly derive

sup 1≤i≤N φλ -i -φλ ∞ 2r = O ln N h √ N h d+n , r ∈ N * . (4.29)
The estimates of the previous lemma also allow to control the error due to the truncation of φ-i . Indeed, since the function ϕ admits δ as a lower bound according to Assumption S, it follows from (4.21) that that φ > 2δ/3 for h small enough, and (4.22) leads to

P[| φ-1 (λ, z)| < δ/3] ≤ P[| φ-1 -φ|(λ, z) > δ/3] ≤ 2 e -CN h d+n . (4.30) Introducing φδ := E φ-1,δ , we derive φδ -φ ∞ ≤ δ 3 sup C K ×C φ P[| φ-1 |(λ, z) < δ/3] ≤ 2δ 3 e -CN h d+n , (4.31) 
and combining (3.13) and (4.21), we deduce

φδ -ϕ ∞ = O h p∧q . (4.32)
Similarly, applying (4.23), we get

sup 1≤i≤N φ-i,δ -φ-i ∞ 2r ≤ δ P sup i≤N φ-i -φ ∞ > δ/3 ≤ CδN 3 e -CN h d+n , r ∈ N . (4.33) 
Observe also that (4.31) and (4.33) combined with (3.13) allows to derive

sup 1≤i≤N φ-i,δ -φδ ∞ 2r = O ln N √ N h d+n , for any r ∈ N * . (4.34) 
Finally, since (λ, z) vary in a compact subset, Assumptions R and S imply that

ϕ ∞ + ϕ λ ∞ + 1/ϕ ∞ < ∞ . (4.35) 
It then follows from equation (4.21), (4.32) and the truncation procedure that

φ ∞ + φδ ∞ + φλ ∞ + 1/ φ ∞ + 1/ φδ ∞ + sup 1≤i≤N 1/ φ-i,δ ∞ < ∞ . (4.36)

A suitable decomposition

For any N ∈ N and i ≤ N , we define the following functions t 1 i,N , . . . , t 9 i,N on R d × R n × Ω :

t 1 i,N := s , t 2 i,N := φλ -ϕ λ ϕ , t 3 i,N := (ϕ -φδ ) ϕ λ ϕ 2 , t 4 i,N := (ϕ -φδ ) ( φλ ϕ -φδ ϕ λ ) ϕ 2 φδ , t 5 i,N := φλ -i -φλ ϕ , t 6 i,N := ( φδ -φ-i,δ ) φλ ( φδ ) 2 , t 7 i,N := ( φλ -i -φλ ) (ϕ δ -φδ ) ϕ δ φδ , t 8 i,N := ( φδ -φ-i,δ )( φλ -i -φλ ) φ-i,δ φδ and t 9 i,N := ( φδ -φ-i,δ ) 2 φλ φ-i,δ ( φδ ) 2 , so that ŝ-i N (Λ i , Z i ) = 9 j=1 t j i,N (Λ i , Z i ) .
This implies the following decomposition of the estimator βN :

βN = 9 j=1 T j N , where T j N := 1 ℓ(0) N h d N i=1 φ(Z i ) t j i,N (Λ i , Z i ) K λ 0 -Λ i h , (4.37) 
for every j = 1, . . . , 9. By (4.35) and (4.36), we observe that

t j i,N ∞
< ∞ , for all j = 1, . . . , 4 .

Lemma 4.2 For any j = 1, . . . , 4, we have

E T j N = O t j 1,N ∞ .
Proof. The result is derived from the following inequality:

E[T j N ] ≤ 1 ℓ(0) h d E φ(Z 1 ) t j 1,N (Λ 1 , Z 1 ) K λ 0 -Λ 1 h ≤ 1 ℓ(0) φ(z) t j 1,N (λ 0 -hl, z) K(l) dl dv ≤ C ||t j 1,N || ∞ . 2 Lemma 4.3 For every j = 1, . . . , 4, Var(T j N ) = O N -1 h -d t j 1,N 2 
∞ .
Proof. For any j =, 1 . . . , 4, the N random variables T j N (Λ i , Z i ) are independent and

Var[T j N ] = 1 ℓ(0) 2 N h 2d Var φ(Z 1 ) t j 1,N (Λ 1 , Z 1 ) K λ 0 -Λ 1 h ≤ 1 ℓ(0) 2 N h 2d E φ 2 (Z 1 ) t j 1,N (Λ 1 , Z 1 ) 2 K 2 λ 0 -Λ 1 h ≤ t j 1,N 2 ∞ ℓ(0) 2 N h d φ 2 (z) K 2 (l) dl dv .
2 The analysis of T j N , for j > 4, requires more effort because of the dependence between the random variables t j i,N (Λ i , Z i ). Proof. We introduce for any i = 1, . . . , N and j = 1, . . . , N :

T ij := φ(Z i ) ϕ(Λ i , Z i ) K λ 0 -Λ i h ∇ λ K Λ i -Λ j h H Z i -Z j h -h d+n+1 φλ (Λ i , Z i ) ,
so that T 5 N can be re-written in

T 5 N = h -2d-n-1 ℓ(0) N (N -1) i<j (T ij + T ji ) .
By definition, for any i = 1, . . . , N and j = 1, . . . , N with i = j, we have

φλ (Λ i , Z i ) = 1 h d+n+1 E ∇ λ K Λ i -Λ j h H Z i -Z j h | Λ i , Z i .
Therefore, E[T ij ] = 0 whenever i = j, leading to E[T 5 N ] = 0.

Since the T ij are not independent, the computation of the variance requires to decompose T 5 N into

T 5 N = T 5,1 N + T 5,2 N , (4.38) 
where

T 5,1 N := h -2d-n-1 ℓ(0) N (N -1) i<j (T ij + T ji -b(Λ i , Z i ) -b(Λ j , Z j )) , T 5,2 N := h -2d-n-1 ℓ(0) N (N -1) i<j (b(Λ i , Z i ) + b(Λ j , Z j )) . and b(λ, z) := E [T 12 |Λ 2 = λ, Z 2 = z].
1. Let first study the term T 5,1

N . Setting Υ ij := T ij + T jib(Λ i , Z i )b(Λ j , Z j ), we derive the key property :

E[Υ ij |Λ i , Z i ] = E[Υ ij |Λ j , Z j ] = 0 .
(4.39) Therefore T 5,1 N has zero mean and we derive :

Var[T 5,1 N ] = h -4d-2n-2 ℓ(0) 2 N 2 (N -1) 2 i<j E[Υ ij Υ ′ ij ] = h -4d-2n-2 2ℓ(0) 2 N (N -1) E[Υ 12 Υ ′ 12 ].
By (4.39), we compute :

E[Υ 12 Υ ′ 12 ] = 2 E[T 12 T ′ 12 ] + 2 E[T 12 T ′ 21 ] -2E[b 2 (Λ 1 , Z 1 )] .
We next estimate that |E[T 12 T ′ 12 ]| is dominated by

E φ 2 (Z 1 ) ϕ 2 (Λ 1 , Z 1 ) K 2 λ 0 -Λ 1 h |∇ λ K| 2 Λ 1 -Λ 2 h H 2 Z 1 -Z 2 h + h 2d+n φ 2 (z) K 2 (l 1 )|∇ λ K| 2 (l 2 )H 2 (v) ϕ(λ 0 -hl 1 -hl 2 , z -hv) ϕ(λ 0 -hl 1 , z) dl 1 dl 2 dz dv ,
by the usual change of variables. Clearly, the first term on the right hand-side is of order O(h 2d+n ), while the second one is a O(h 3d+2n+2 ) by (4.36). Similarly, we have

E[T 12 T ′ 21 ] = O(h 2d+n ). Moreover, E[b 2 (Λ 1 , Z 1 )] = O(N -2 h -d-2
). We deduce that

Var(T 5,1 N ) = O 1 N 2 h 2d+n+2 = o 1 N h 2+d , (4.40) 
using the relations between N and h given by (3.13).

2. We next rewrite T 5,2 N as

T 5,2 N = h -2d-n-1 ℓ(0) N i b(Λ i , Z i ) .
By the usual change of variables,

b(λ, z) = h d+n φ(z + hv) K λ 0 -λ h -l ∇K(l)H(v) dl dv -h n+1 φ(z) φλ (λ 0 -hl, z)K(l) dl.
By direct calculation, it is easily checked that the second term is negligible. Then, by the usual change of variables, it follows that

E[b(Λ i , Z i )b(Λ i , Z i ) ′ ] ∼ h 3d+2n φ(z + hv)K(l 2 -l 1 )∇K(l 1 )H(v) dl 1 dv ⊗ ϕ(λ 0 -hl 2 , z) dl 2 dz .
By Assumptions S and R, we deduce from the dominated convergence theorem together with the fact that 

E[b(Λ i , Z i )] = 0 that Var[T 5,2 N ] ∼ 1 N h d+2 φ 2 (z) K(l 2 -l 1 )∇K(l 1 ) dl 1 ⊗ ϕ(λ 0 , z) dl 2 dz . ( 4 
) = o(N -1 h -d-2 ).
Proof. We decompose t 6 i,N into the sum of t 6,1 i,N := ( φφ-i ) φλ ( φδ ) 2 , t 6,2 i,N := ( φ-iφ-i,δ ) φλ ( φδ ) 2 and t 6,3 i,N := ( φδφ) φλ ( φδ ) 2 , and we study the corresponding T 6,1 N , T 6,2 N and T 6,3 N separately. 1. It can be checked easily that T 6,1

N can be dealt with as T 5 N . By the same calculation, we get E[T 6,1 N ] = 0 and

Var(T 6,1 N ) ∼ h -4d-2n ℓ(0) 2 N 2 i Var( b(Λ i , Z i ))
where b(λ, z) is given by :

E φ(Z i )ϕ λ (Λ i , Z i ) ϕ(Λ i , Z i ) 2 K λ 0 -Λ i h K Λ i -λ h H Z i -z h -h d+n φ(Λ i , Z i )
The variables b(Λ i , Z i ) have also zero mean and, as in the proof of Lemma 4.4, the usual change of variables implies that

h -3d-2n Var( b(Λ i , Z i )) ∼ [G 6 (l 2 , z)] ⊗ ϕ(λ 0 -hl 2 , z) dl 2 dz , with G 6 (l 2 , z) := φ(z + hv) ϕ λ ϕ (λ 0 + hl 1 -hl 2 , z + hv)K(l 2 -l 1 )K(l 1 )H(v) dl 1 dv.

Double Kernel estimation of sensitivities

By the continuity and the uniform boundedness of φ and ϕ λ /ϕ implied by Assumptions S and R, we derive

Var(T 6,1 n ) = O 1 N h d = o 1 N h d+2 .
2. We now turn to T 6,2 N and compute

|T 6,2 N | ≤ C sup i≤N φ-i,δ -φ-i ∞ 1 N h d N i=1 φ(Z i )K λ 0 -Λ i h .
Therefore, we deduce from Cauchy-Schwarz inequality that

E T 6,2 N ≤ C sup i≤N φ-i,δ -φ-i ∞ 2 E   1 N h d N i=1 φ(Z i )K λ 0 -Λ i h 2   1/2
, and (3.13) combined with (4.33) lead to E T 6,2

N

= o (h p∧q ). Similarly, we get

V ar(T 6,2 N ) ≤ C sup i≤N φ-i,δ -φ-i ∞ 4 E   1 N h d N i=1 φ(Z i )K λ 0 -Λ i h 4   1/4 , which leads to Var(T 6,2 n ) = o N -1 h -d-2 . 3. We finally observe that T 6,3
N is treated similarly thanks to (4.31). 2 Proof. Observe that

t 7 N (λ, z) = t 5 N (λ, z)ψ(λ, z) where ψ := ϕ -φδ φδ •
Following the lines of the proof of Lemma 4.4, we see that E[T 7 N ] = 0, and we estimate

N h d+2 Var(T 7 N ) ∼ [G 7 (u, z)] ⊗ ϕ(λ 0 -hu, z) du dz , with G 7 (u, z) := φ(z + hv)ψ(λ 0 + hl -hu, z + hv)K(u -l)∇K(l)H(v) dl dv .
By (4.32) and (4.36) it follows that ψ ∞ = O(h p∧q ) and, since ϕ and φ are uniformly bounded, we deduce that

Var(T 7 N ) = O h p∧q N h d+2 = o 1 N h d+2 . 2 Lemma 4.7 E T 8 N ∼ h -d-n-1 ℓ(0)N φ H 2 K(l 1 -l 2 )K(l 2 )∇K(l 2 )dl 1 dl 2 and Var(T 8 N ) = o(N -1 h -d-2 ).
Proof. We split the proof it two steps. 1. We first estimate E T 8 N . We rewrite t 8 N (λ, z) as t 8,1 N (λ, z) + t 8,2 N (λ, z) + t 8,3 N (λ, z) with

t 8,1 i,N = ( φ -φ-i )( φλ -i -φλ ) ϕ 2 , t 8,2 i,N = ( φδ -φ)( φλ -i -φλ ) ϕ 2 + ( φ-i -φ-i,δ )( φλ -i -φλ ) ϕ 2 , t 8,3 i,N = ( φδ -φ-i,δ ) 2 ( φλ -i -φλ ) φ-i,δ ( φδ ) 2 + ( φδ -φ-i,δ )( φλ -i -φλ )(ϕ 2 -( φδ ) 2 ) ϕ 2 ( φδ ) 2 . Then T 8 N = T 8,1 N + T 8,2 N + T 8,3
N , where

T 8,k N := 1 ℓ(0) N h d N i=1 φ(Z i ) t 8,k i,N (Λ i , Z i ) K λ 0 -Λ i h , for k = 1, 2, 3 .
We now introduce

U ij := ∇ λ K Λ i -Λ j h H Z i -Z j h -E ∇ λ K Λ i -Λ j h H Z i -Z j h |Λ i , Z i , V ij := K Λ i -Λ j h H Z i -Z j h -E K Λ i -Λ j h H Z i -Z j h |Λ i , Z i , so that E [U ij V ik |Λ i , Z i ] = E [U ij |Λ i , Z i ] E [V ik |Λ i , Z i ] = 0 whenever j = k .
Using this property, we compute directly that

E t 8,1 N (Λ 1 , Z 1 )|Λ 1 , Z 1 = h -2d-2n-1 (N -1) 2 ϕ 2 (Λ 1 , Z 1 ) E   j =1 k =1 U 1j V 1k |Λ 1 , Z 1   = h -2d-2n-1 (N -1)ϕ 2 (Λ 1 , Z 1 ) E [U 12 V 12 |Λ 1 , Z 1 ] .
Since the expectation of T 8,1 N is given by :

E T 8,1 N = h -d ℓ(0) E φ(Z 1 )K λ 0 -Λ 1 h E t 8,1 1,N (Λ 1 , Z 1 )|Λ 1 , Z 1 ,
we derive by the usual change of variables,

ℓ(0)N h d+n+1 E T 8,1 N ∼ G 8 (l 2 , z)ϕ(λ 0 -hl 2 , z) dl 2 dz , with G 8 (l 2 , z) := φ(z + hv) ϕ(λ 0 + hl 1 -hl 2 , z + hv) K(l 2 -l 1 )K(l 1 )∇K(l 1 )H 2 (v) dl 1 dv .
Finally, by the continuity and the uniform boundedness of ϕ and φ, we derive :

E T 8,1 N ∼ h -d-n-1 ℓ(0)N φ(z)K(l 2 -l 1 )K(l 1 )∇K(l 1 )H 2 (v) dl 1 dv dl 2 dz . (4.42)
Furthermore, by Cauchy-Schwarz inequality and (3.13), we have Proof. It can be easily checked that T 9 N can be dealt as T 8 N and, following the lines of the proof of Lemma 4.7, we obtain the announced result.

E T 8,k N ≤ sup i≤N t 8,k i,N ∞ 2 E   1 N h d N i=1 φ(Z i )K λ 0 -Λ i h 2   1/2 (4.43) ≤ C sup i≤N t 8,k i,N ∞ 2 , k = 2, 3. ( 4 

Asymptotic bias and variance

This section is devoted to the proof of Proposition 3.1 characterizing the asymptotic bias and variance of the double kernel based estimator βN .

Proof of Proposition 3.1. We split the proof in two steps. 1. We first derive the expectation of βN . Notice that T 1 N = βN as defined in (2.7) which satisfies E βN = 1 ℓ(0) φ(z)K(l)s(λ 0hl, z)ϕ(λ 0hl, z) dt dz .

The regularity of the function sϕ given by assumption R enables us to derive E[T Hence, Cov(T j N , T k N ) = o(N -1 h -d-2 ) unless j = k = 5 and Var( βN ) is given by expression (4.46). 2

Central limit theorem

This section is devoted to the proof of Theorem 3.1, which provides a central limit theorem for the double kernel based estimator βN .

Proof of Proposition 3.1. As we saw in the proof of Proposition 3.1, the variance of βN is given by the variance of

T 5,2 N = h -2d-n-1 ℓ(0) N i b(Λ i , Z i ) ,
where b(λ, z) := h d+n φ(z + hv) K λ 0λ h l ∇K(l)H(v) dl dv h n+1 φ(z) φλ (λ 0hl, z)K(l) dl.

As in the proofs of Theorems 4.1 or 4.2 in [START_REF] Fermanian | Kernel estimation of greek weights by parameter randomization[END_REF], using Kolmogorov's condition with the fourth moment of b and the Cramer-Wold device, we derive that T 5,2 N is asymptotically normal. We then finally deduce that

√ N h d+2 βN -E[ βN ] law -→ N →∞ N 0, Σ .
Under the additional condition N h d+2+2(p∧q) → 0, we conclude the proof denoting that the bias vanishes in the previous expression. 2

Lemma 4 . 4 E[T 5 N

 445 ] = 0 and Var(T 5 N ) ∼ Σ/(N h d+2 ) where Σ is defined in Proposition 3.1.

Lemma 4 . 6 E[T 7 N

 467 ] = 0 and Var(T7 N ) = o(N -1 h -d-2 ).

2 4 8 N = O ln 4 N N 2 h 2d+2n+2 = o 1 N h d+2 . 2

 28412 But, using again Cauchy-Schwarz inequality and relations (3.13), (4.21), (4.36) and (4.34), we deduce thatVar T Lemma 4.8 E[T 9 N ] = O(N -1 h -d-n ) and Var(T 9 N ) = o(N -1 h -d-2) .

2 - 2 . 4 .From 2 -l 1 )∇K(l 1 )dl 1 ⊗f

 224211 2 leads to E(T 4 N ) = o(h p∧q ) . From Lemmas 4.4, 4.5 and 4.6, we have E(T j N ) = 0 for j = 5 . . . 7 and Lemma 4.7 gives l 1 )K(l 1 )∇K(l 1 )H 2 (v) dl 1 dv dl 2 dz . Finally, Lemma 4.8 tells us E[T 9 N ] = o(N -1 h -d-n-1 ). We then obtain E[ βN ] by summing up the E[T j N ] for j = 1, . . . , 9. We then analyze the variance of βN . For any j = 1, . . . , 4, expressions (4.21), (4.32), (4.35) and (4.36) imply ||t j N || ∞ = O (1) . Then, Lemma 4.3 leads to Var(T j N ) = o(N -1 h -d-2 ) for every j = 1, . . . , (λ 0 , z) dz dl 2 . (4.46) Indeed, Lemmas 4.5 to 4.8 imply also Var(T j N ) = o(N -1 h -d-2 ) for every j = 5, . . . , 9 .

  are bounded by 3α 2 /2 and, by the usual change of variable, their variance are bounded from above by α 1 h d+n /2. Therefore (4.22) follows directly from the Bernstein inequality.

  [ϕ λ ] (λ 0 , z)φ(z) dz + o(h p∧q ) . , z)φ(z) dz + o(h p∧q ) ,and we directly deduce from (3.13) and (4.31) that E[T3,2 N ] = o(h p∧q ).Then, using (4.21), (4.32), (4.35) and (4.36), we derive ||t 4 i,N || ∞ = o (h p∧q ) and Lemma 4.

	1 N ] -β ∼	h p ℓ(0)	ξ p K [ ℓf λ ] (λ 0 , z)φ(z) dz .	(4.45)
	Using remark 4.2, we deduce from (4.20) that we have
	E[T 2 N ] = H We now rewrite t 3 h p ℓ(0) ξ p K [ϕ λ ] (λ 0 , z)φ(z) dz + h q ℓ(0) ξ q i,N as the sum of
	t 3,1 i,N :=	(ϕ -φ) ϕ λ ϕ 2	and t 3,2 i,N :=	( φδ -φ) ϕ λ ϕ 2	,
	and study separately the corresponding T 3,1 N and T 3,2 N . From (4.19), we derive
	E[T 3,1 N ] = -(λ 0 Note that h p ℓ(0) ϕ λ ξ p K [ϕ] ϕ (λ 0 , z)φ(z) dz -h q ℓ(0) ϕ λ ξ q H [ϕ] ϕ t 4 i,N = (ϕ -φδ ) 2 ϕ λ ϕ 2 φδ + ( φλ -ϕ λ )(ϕ -φδ ) ϕ φδ .