
HAL Id: hal-00416446
https://hal.science/hal-00416446v1

Submitted on 15 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Tools for Computing the Number of
Breakpoints and the Number of Adjacencies between

two Genomes with Duplicate Genes
Sébastien Angibaud, Guillaume Fertin, Irena Rusu, Annelyse Thevenin,

Stéphane Vialette

To cite this version:
Sébastien Angibaud, Guillaume Fertin, Irena Rusu, Annelyse Thevenin, Stéphane Vialette. Effi-
cient Tools for Computing the Number of Breakpoints and the Number of Adjacencies between
two Genomes with Duplicate Genes. Journal of Computational Biology, 2008, 15 (8), pp.1093-1115.
�10.1089/cmb.2008.0061�. �hal-00416446�

https://hal.science/hal-00416446v1
https://hal.archives-ouvertes.fr


Efficient Tools for Computing the Number of

Breakpoints and the Number of Adjacencies between

two Genomes with Duplicate Genes
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Abstract

Comparing genomes of different species is a fundamental problem in comparative

genomics. Recent research has resulted in the introduction of different measures be-

tween pairs of genomes: reversal distance, number of breakpoints, number of common

or conserved intervals, etc. However, classical methods used for computing such mea-

sures are seriously compromised when genomes have several copies of the same gene
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scattered across them. Most approaches to overcome this difficulty are based either on

the exemplar model, which keeps exactly one copy in each genome of each duplicated

gene, or on the maximum matching model, which keeps as many copies as possible

of each duplicated gene. The goal is to find an exemplar matching, respectively a

maximum matching, that optimizes the studied measure. Unfortunately, it turns out

that, in presence of duplications, this problem for each above-mentioned measure is

NP-hard.

In this paper, we propose to compute the minimum number of breakpoints and the

maximum number of adjacencies between two genomes in presence of duplications us-

ing two different approaches. The first one is a (exact) generic 0–1 linear programming

approach, while the second is a collection of three heuristics. Each of these approaches

is applied on each problem and for each of the following models: exemplar, maximum

matching and intermediate model, that we introduce here. All these programs are run

on a well-known public benchmark dataset of γ-Proteobacteria, and their performances

are discussed.

Keywords: genome rearrangements, number of breakpoints, number of adjacen-

cies, exemplar/matching/intermediate models, 0–1 linear programming
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1 Introduction

It is a well-known fact that, between different species, the order of genes in the genomes is

not conserved. Hence, it appears natural to exploit this information, in order for instance

to infer the phylogenetic relationships between those species. Comparison of gene orders

is usually done between pairs of genomes, and can be undertaken in many different ways,

which fall into two main categories. The first one consists in defining different types of

rearrangement operations, and to find a most parsimonious rearrangement scenario that,

using these operations, allows to go from one genome to the other. Probably the most

famous example is the reversal distance problem, in which only one operation, reversal, is

allowed (see for instance (Hannenhalli and Pevzner, 1999)). The second category consists in

computing a (dis-)similarity measure between two genomes, that is a number which reflects

the proximity (or not) of the two considered genomes. In that case, the measure is computed

regardless of any possible rearrangement scenario that would lead from one genome to the

other. Several (dis-)similarity measures between two whole genomes have been proposed in

the past: number of breakpoints (Watterson et al., 1982), number of common intervals (Uno

and Yagiura, 2000), number of conserved intervals (Bergeron and Stoye, 2003), Maximum

Adjacency Disruption (MAD) number (Sankoff and Haque, 2005).

In this paper, we will only be interested in the latter category. Moreover, our study focuses

on genomes where genes possibly have several copies. When such duplications are present,

in order to compute any measure between two genomes, one first needs to disambiguate the

data by inferring orthologs, i.e., a non-ambiguous one-to-one mapping between the genes of

the two genomes. In order to achieve this, two approaches have been considered recently: the

exemplar model and the maximum matching model. In the exemplar model (Sankoff, 1999),
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for all gene families, all but one occurrence in each genome are deleted. In the maximum

matching model (Blin et al., 2004), the goal is to map as many genes as possible. These

two models can be considered as the extremal cases of the same generic homolog assignment

approach.

Unfortunately, it has been shown that, for each of the above mentioned measures, and for

each model (exemplar or maximum matching), the problem of finding the non-ambiguous

one-to-one mapping that optimizes the studied (dis-)similarity measure becomes NP-hard

as soon as duplicates are present in genomes (Bryant, 2000; Blin et al., 2004; Blin and Rizzi,

2005; Blin et al., 2007) ; several inapproximability results are known (Thach, 2005; Chen

et al., 2006b; Chen et al., 2006a; Blin et al., 2007; Angibaud et al., 2008), and in some

cases, heuristic (hence, not exact) methods have been devised to obtain good solutions in a

reasonable amount of time (Blin et al., 2005; Bourque et al., 2005; Angibaud et al., 2007b).

The main goal of this paper is to study two measures, the number of breakpoints and

the number of adjacencies, under three different models: the exemplar model, the maximum

matching model and a model we introduce here, the intermediate model, in which, for all gene

families, at least one occurrence in each genome is kept. In other words, in this model, one is

allowed to modulate the number of conserved copies of each duplicated gene in each genome.

Indeed, it seems natural to take this new model into account, because it is a generalization

of both the exemplar and maximum matching models. We will actually discuss the interest

of the intermediate model later in the paper, according to the results that will be presented.

We will then focus on methods to answer the problems: given two genomes, find the

exemplar (respectively intermediate, maximum) matching that maximizes the number of

adjacencies (or minimizes the number of breakpoints). Extending research initiated in (An-
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gibaud et al., 2007b), we propose, for each problem, a generic 0–1 linear programming

method that exactly (though not always quickly) answers the question. We then provide,

for each problem, several heuristics and compare them with results obtained by 0–1 linear

programming on a dataset of γ-Proteobacteria. In addition, we show strong evidence that

our fast and simple heuristics based on iteratively finding Longest Common Subsequences

provide very good results on our dataset.

The paper is organized as follows. In Section 2, we present some preliminaries and

definitions. In Section 3, we reduce our study, that we wish to perform for two measures and

three models, to only three main problems. In Section 4, for each of these three problems, we

provide the corresponding 0–1 linear programming encoding, together with some reduction

rules that help speed-up the computation. In Section 5, we present and discuss the results

that we have obtained by running our 0–1 linear programming methods on a dataset of

γ-Proteobacteria. In Section 6, a collection of three heuristics is proposed and their results

are compared to the exact results obtained in Section 5.
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2 Preliminaries

From an algorithmic perspective, a unichromosomal genome is a signed sequence over a finite

alphabet, referred hereafter as the alphabet of gene families. Each element of the sequence is

called a gene. DNA has two strands, and genes on a genome have an orientation that reflects

the strand on which the genes lie. We represent the order and orientation of the genes on

each genome as a sequence of signed genes, i.e., genes with a sign, “+” or “−”. Let G1 and

G2 be two genomes, and let nx, x ∈ {1, 2} be the number of genes in genome Gx. For each

x ∈ {1, 2}, Gx[i] denotes the gene at position i (1 ≤ i ≤ nx) in Gx, and occx(g, i, j) denotes

the number of genes g (and −g) in Gx between positions i and j, 1 ≤ i ≤ j ≤ nx. To

simplify notations, we abbreviate occx(g, 1, nx) to occx(g). As we shall only be concerned

here with pairs of genomes (G1, G2) having the same gene content, we shall ignore those

genes that occur in one genome but not in the other.

In order to deal with the inherent ambiguity of duplicate genes, we now precisely define

what is a matching between two genomes. Roughly speaking, a matching between two

genomes can be seen as a way to describe a putative assignment of orthologous pairs of genes

between the two genomes (see for example (Chen et al., 2005)). More formally, a matching

M between genomes G1 and G2 is a set of pairwise disjoint pairs (G1[i], G2[j]), where G1[i]

and G2[j] belong to the same gene family regardless of the sign, i.e., |G1[i]| = |G2[j]|. Genes

of G1 and G2 that belong to a pair of the matching M are said to be saturated by M, or

M-saturated for short. The size of a matching M is noted by |M|. A matching M between

G1 and G2 is said to be maximum if for any gene family, there are no two genes of this family

that are unmatched for M and belong to G1 and G2, respectively.

The above definition allows us a large degree of freedom in the choice of a matching
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between two genomes. Two types of matchings are usually considered and specify the un-

derlying model to focus on for computing the desired measure. In the exemplar model, the

matching M is required to saturate exactly one gene of each gene family ; thus, the size of

the matching is the number of gene families. In the maximum matching model, the matching

M is required to be maximum, i.e., to saturate as many genes of any gene family as possible.

Here again, the size of M can be easily computed in advance, from the two input genomes.

In this paper, we present and study a third model, that we call the intermediate model. In

this model, the matching M is required to saturate at least one gene of each gene family.

In that sense, this new model lies between the two extrema that are the exemplar and the

maximum matching models.

Let M be any matching between G1 and G2 that fulfills the requirements of a given model

(exemplar, intermediate or maximum matching). By first deleting non-saturated genes and

next renaming genes in G1 and G2 according to the matching M, we may now assume that

both G1 and G2 are duplication-free, i.e. G2 is a signed permutation of G1. We call the

resulting genomes M-pruned.

Let G1 and G2 be two duplication-free genomes of size n. Without loss of generality,

we may assume that G1 is the identity positive permutation, i.e., G1 = +1 + 2 . . . + n.

We say that there is a breakpoint after gene G1[i], 1 ≤ i < n − 1, in G1 if neither G1[i]

and G1[i + 1] nor −G1[i + 1] and −G1[i] are consecutive genes in G2, otherwise we say that

there is an adjacency after gene G1[i]. In order to take into account the breakpoints and/or

adjacencies that arise at the extremities of the genomes, we artificially add, for each genome

in the studied pair, a unique (i.e., non-duplicated) gene at both extremities. For simplicity,

the artificial gene added before the first gene in both genomes will always be +0, while the
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one added after the last gene will always be +(n + 1).

For example, if G1 = +1 + 2 + 3 + 4 + 5 + 6 and G2 = +1 −6 −5 −4 + 3 + 2,

we modify both genomes in order to obtain: G′
1 = +0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 and

G′
2 = +0 + 1 −6 −5 −4 + 3 + 2 + 7. In this example, we have breakpoints in G′

1 after

genes 1, 2, 3 and 6 and hence we have adjacencies in G′
1 after genes 0, 4 and 5. Thus, the

number of breakpoints between G1 and G2 is equal to 4, while the number of adjacencies

between G1 and G2 is equal to 3.

8



3 The problems

Given two genomes G1 and G2 and a model (exemplar, intermediate or maximum matching),

we wish to find a matching which (1) is appropriate to the model, and (2) yields the optimal

number of breakpoints/adjacencies, where optimal means minimum for breakpoints and

maximum for adjacencies. Not all of the six resulting problems are essentially different. In

fact, only three of them are.

3.1 From six problems to four

Let G1 and G2 be two genomes and M be a matching between G1 and G2 under any model

(exemplar, intermediate or maximum matching). We define bkp(M) to be the number of

breakpoints between the two M-pruned genomes. The number of adjacencies between two

M-pruned genomes is denoted by adj(M).

It is easy to see, but important to notice, that for any matching M between two genomes

G1 and G2, we have

adj(M) + bkp(M) = |M| + 1. (1)

Hence, for any given instance, if the size of the matching M is fixed, then finding the

matching which minimizes the number of breakpoints is equivalent to finding the matching

that maximizes the number of adjacencies, because of equality (1). As a consequence, we

have the following proposition.

Proposition 1 Minimizing the number of breakpoints under the exemplar model is equiv-

alent to maximizing the number of adjacencies ; the same result holds for the maximum
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matching model.

For the intermediate model, the same result does not hold anymore, since the cardinality

of the matching cannot be inferred from the input.

3.2 From four problems to three

Another, less straightforward, equivalence holds between two of our remaining problems.

Proposition 2 Minimizing the number of breakpoints under the exemplar model is equiva-

lent to minimizing the number of breakpoints under the intermediate model.

Proof. Let G1 and G2 be two genomes. Denote by bkp
opt
E and bkp

opt
I the minimum num-

ber of breakpoints obtained for G1 and G2 under the exemplar and intermediate models,

respectively.

Obviously, we have bkp
opt
E ≥ bkp

opt
I since any solution for the exemplar model is also a

solution for the intermediate problem. What is left is thus to prove bkp
opt
E ≤ bkp

opt
I .

To this end, consider an optimal solution of the problem for the intermediate model,

that is, a matching between genes of G1 and G2 yielding bkp
opt
I breakpoints. We then

construct a solution (G′
1, G

′
2) for the exemplar model that has at most bkp

opt
I breakpoints.

This is done using the following greedy algorithm: while there exists two saturated genes

in G1 that belong to the same gene family (regardless of the sign), delete one of the two

genes arbitrarily, together with the corresponding gene in G2. The above algorithm certainly

results in a solution for the exemplar model. We claim that this solution has at most as

many breakpoints as the solution for the intermediate model, that is bkp
opt
I . To this aim,

we consider any iteration of the above algorithm and show that the obtained matching has
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at most as many breakpoints as the initial one. Four cases need distinct examination. For

all genes a, the notation a
N

denote the presence of a breakpoint after the gene a.

1. G1 = . . . a X b . . ., G2 = . . . a X b . . . or G2 = . . . −b −X −a . . .

Deleting X in both genomes results in genomes G′
1 = . . . a b . . ., G′

2 = . . . a b . . . or

G′
2 = . . . −b −a . . . where no additional breakpoint is introduced.

2. G1 = . . . a
N
X b . . ., G2 = . . . c X b . . . or G2 = . . . −b −X c . . .

Deleting X in both genomes results in genomes G′
1 = . . . a

N
b . . ., G′

2 = . . . c b . . . or

G′
2 = . . . −b c . . . where no additional breakpoint is introduced.

3. G1 = . . . a X
N
b . . ., G2 = . . . c X b . . . or G2 = . . . b −X −c . . .

Deleting X in both genomes results in genomes G′
1 = . . . a

N
b . . ., G′

2 = . . . c b . . . or

G′
2 = . . . b −c . . . where no additional breakpoint is introduced.

4. G1 = . . . a
N
X

N
b . . .

For any arbitrary G2, deleting X in both genomes induces either genome G′
1 = . . . a b . . .

or genome G′
1 = . . . a

N
b . . .. In both cases, the number of breakpoints strictly decreases,

which contradicts the optimality of the solution under the intermediate model. There-

fore, this case cannot happen.

For each case, deleting X in both genomes induces two genomes where no additional

breakpoint is introduced. Therefore, the generated solution cannot admit more breakpoints

than bkp
opt
I , and hence we have bkp

opt
I = bkp

opt
E . ✷
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3.3 The three main problems

We are now in position to formally define the optimization problems we are interested in.

As before, G1 and G2 are two genomes.

Let optE (respectively optM) be the problem of finding an exemplar (respectively max-

imum) matching M such that the corresponding M-pruned of G1 and G2 has a maximum

number of adjacencies. Proposition 1 insures that the same matching M also minimizes,

after M-pruning G1 and G2, the number of breakpoints. We denote by adj
opt
E and bkp

opt
E

(resp. adj
opt
M and bkp

opt
M ) the number of adjacencies and the number of breakpoints in an

optimal solution to optE (resp. optM).

Let optIA (respectively optIB) be the problem of finding an intermediate matching M

such that the corresponding M-pruned of G1 and G2 has a maximum number of adjacencies

(minimum number of breakpoints, respectively).

According to Proposition 2, as long as we are mainly interested in minimizing the number

of breakpoints, we do not need to specifically solve optIB, assuming we solve optE. We denote

by adj
opt
I and bkp

opt
I adj

opt
I and bkp

opt
I are the number of adjacencies and the number of

breakpoints in an optimal solution to optIA and optIB, respectively.
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4 An exact 0–1 linear programming approach

4.1 Introduction

Minimizing the number of breakpoints between two genomes with duplicated genes is an

NP-hard problem for the exemplar model, even when occ1(g) = 1 for all genes g in G1

and occ2(g) ≤ 2 for all genes g in G2 (Bryant, 2000). Consequently, the NP-hardness

also holds for both the intermediate and the maximum matching models, which means that

problems optE (and thus optIB, see Proposition 2) and optM are NP-hard. Moreover, a

recent result (Chen et al., 2007) implies that optIA is NP-hard as well.

Aiming at precise evaluations of heuristics, we develop in this section an exact generic

approach as initiated in (Angibaud et al., 2007a). More precisely, our approach relies on

expressing the different problems as 0–1 linear programs (Schrijver, 1998) and using powerful

solvers to obtain optimal solutions.

For ease of exposition, we first present the complete 0–1 linear program for maximizing

the number of adjacencies for the maximum matching problem (problem optM). Next we give

some data reduction rules for reducing the input size, and hence speeding-up the program.

Finally, we show how to adapt this program to optE and optIA.

4.2 Maximizing the number of adjacencies under the maximum

matching model: Problem optM

The 0–1 linear program we propose here (referred in the sequel to as Program Adjacency-

-Maximum-Matching) takes as input two genomes with duplicated genes, and solves problem

optM. We denote by G the set of all gene families. The program is presented in Figure 1. How
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to adapt the program for dealing with other problems of interest is deferred to Subsection 4.4.

Here, Figure 1

Program Adjacency-Maximum-Matching considers two genomes G1 and G2 of respective

lengths n1 and n2. The objective function, the variables and the constraints involved are

now discussed.

Variables:

• Variables a(i, k), 1 ≤ i ≤ n1 and 1 ≤ k ≤ n2, define a matching M: ai,k = 1 iff G1[i]

is matched with G2[k] in M.

• Variables bx(i), x ∈ {1, 2} and 1 ≤ i ≤ nx, represent the M-saturated genes: bx(i) =

1 if and only if Gx[i] is saturated by the matching M. Clearly,
∑

1≤i≤n1
b1(i) =

∑
1≤k≤n2

b2(k), and this is precisely the size of M.

• Variables cx(i, j), x ∈ {1, 2} and 1 ≤ i < j ≤ nx, represent consecutive genes according

to M: cx(i, j) = 1 iff Gx[i] and Gx[j] are both saturated by M and no gene Gx[p],

i < p < j, is saturated by M.

• Variables d(i, j, k, ℓ), 1 ≤ i < j ≤ n1 and 1 ≤ k < ℓ ≤ n2, represent adjacencies

according to M: d(i, j, k, ℓ) = 1 iff

– either (G1[i], G2[k]) and (G1[j], G2[ℓ]) belong to M, G1[i] = G2[k] and G1[j] =

G2[ℓ], or (G1[i], G2[ℓ]) and (G1[j], G2[k]), and belong to M, G1[i] = −G2[ℓ] and

G1[j] = −G2[k], and
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– G1[i] and G1[j] are consecutive in G1 according to M, and

– G2[k] and G2[ℓ] are consecutive in G2 according to M.

Constraints:

Assume x ∈ {1, 2}, 1 ≤ i < j ≤ n1 and 1 ≤ k < ℓ ≤ n2.

• Constraint C.01 ensures that each gene of G1 and of G2 is matched at most once,

i.e., b1(i) = 1 (respectively b2(k) = 1) iff gene i (respectively k) is matched in G1

(respectively G2) ; see Figure 2 for an illustration of this constraint. Observe that in

any matching, any two genes that are mapped together necessarily belong to the same

gene family, and hence we do not have to explicitly ask for a(i, k) = 0 in case G1[i]

and G2[k] are two genes belonging to different gene families.

• Constraint C.02 actually defines the considered model (here the maximum matching

model). For each gene family g, min(occ1(g), occ2(g)) occurrences of genes belonging

to g must be M-saturated in both G1 and G2 (see Figure 2).

• Constraints in C.03 and C.04 are concerned with our definition of consecutive genes.

Variable cx(i, j) is equal to 1 iff there exists no p such that i < p < j and bx(p) = 1. It

is worth noticing here that, according to these constraints, one may have cx(i, j) = 1

even if one of the genes Gx[i] or Gx[j] is not M-saturated.

• Constraints in C.05 to C.10 define variables d. In the case where G1[i] = G2[k] and

G1[j] = G2[ℓ], Constraints C.05 and C.06 ensure that we have d(i, j, k, ℓ) = 1 if and

only if all variables a(i, k), a(j, ℓ), c1(i, j) and c2(k, ℓ) are equal to 1. In the case

where G1[i] = −G2[ℓ] and G1[j] = −G2[k], Constraints C.07 and C.08 ensure that
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we have d(i, j, k, ℓ) = 1 iff all variables a(i, ℓ), a(j, k), c1(i, j) and c2(k, ℓ) are equal to

1. Constraint C.09 sets variable d(i, j, k, ℓ) to 0 if none of the two above cases holds.

Finally, thanks to Constraint C.10, one must have at most one adjacency for every

pair (i, j). See Figure 3 for a simple illustration.

The objective of Program Adjacency-Maximum-Matching is to maximize the number of

adjacencies between the two considered genomes. According to the above, this objective

thus reduces in our model to maximizing the sum of all variables d(i, j, k, ℓ).

Here, Figure 2

Here, Figure 3

4.3 Speeding-up the program

Program Adjacency-Maximum-Matching has O((n1 · n2)
2) variables and O((n1 · n2)

2) con-

straints. Aiming at speeding-up the execution of the program, we present here some simple

rules for reducing the number of variables and constraints involved.

Pre-processing the genomes. The genomes are pairwise pre-processed to delete all genes

that do not appear in both genomes. For instance, for the γ-Proteobacteria benchmark set

studied in Section 5, the average size of a genome reduces from 3000 to 1300.

16



Reducing the number of variables and constraints. For non-duplicated genes, i.e.,

genes g for which occ1(g) = occ2(g) = 1, the corresponding variable ai,k is set directly to

1, as well as the two variables b1(i) and b2(k). Also, if two non-duplicated genes occur

consecutively or in reverse order with opposite signs, the corresponding variable d is set

directly to 1 and the related constraints are discarded. If for two genes, say occurring at

positions i and j in G1, at least one gene occurring between position i and j in G1 must

be saturated in any matching M (for example if one family has all occurrences between

i and j in G1), then the corresponding variable c1(i, j) and the variable d(i, j, k, ℓ) for all

1 ≤ k < ℓ ≤ n2 are set directly to 0 and the related constraints are discarded. We can use

the same reasoning for two positions k and ℓ in G2 and the variables c2(k, ℓ) and d(i, j, k, ℓ)

for all 1 ≤ i < j ≤ n1.

4.4 Dealing with other measures and models

Program Adjacency-Maximum-Matching allows us to solve problem optM. We describe here

how to adapt this 0–1 linear program for dealing with the two remaining problems, namely

optE and optIA. As we shall see, only a few modifications are needed.

Exemplar Model (Problem optE). As observed before, Constraint C.02 explicits the

model under consideration. For the exemplar model, exactly one occurrence in each gene

family must be saturated. Therefore, Constraint C.02 should be rewritten as follows.

C.02 ∀ x ∈ {1, 2},∀ g ∈ G,
∑

1≤i≤nx

|Gx[i]|=|g|

bx(i) = 1
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Moreover, for efficiency, a simple additional rule can be considered for simplifying the pro-

gram. Indeed, we must have exactly one occurrence of each gene in each genome. Therefore,

for all 0 ≤ i < j ≤ nx, x ∈ {1, 2}, if |Gx[i]| = |Gx[j]| then cx(i, j) = 0. The corresponding

variables d are set directly to 0 and the related constraints are discarded.

Intermediate Model (Problem optIA). Again, we are here concerned with Constraint

C.02. For the intermediate model, at least one gene of each gene family must be saturated.

This simply reduces in rewriting Constraint C.02 as follows.

C.02 ∀ x ∈ {1, 2},∀ g ∈ G,
∑

1≤i≤nx

|Gx[i]|=|g|

bx(i) ≥ 1

As seen in the previous section, computing the minimum number of breakpoints or the

maximum number of adjacencies are not equivalent problems in the intermediate model.

To compute the minimum number of breakpoints (problem optIB), the objective must be

modified as follows (correctness follows from relation (1)).

Minimize
∑

0≤i<n1

b1(i) −
∑

0≤i<n1

∑

i<j≤n1

∑

0≤k<n2

∑

k<ℓ≤n2

d(i, j, k, ℓ) − 1

One may argue that this latter 0–1 linear program is useless since optIB and optE have

been shown to be equivalent problems (see Proposition 2). However, as we shall see in

Section 5, the intermediate model gives us the opportunity, for the same minimum number

of breakpoints as in the exemplar model, to obtain more adjacencies. As a simple illustration

of this point, consider the two genomes G1 = +0 + 1 − 4 + 2 − 1 + 2 − 3 + 4 and

G2 = +0 + 3 + 1 + 2 − 1 − 3 + 4. We have bkp
opt
E = 0 as shown by the exemplarization
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G′
1 = G′

2 = +0 + 1 + 2 − 3 + 4 ; this solution yields 4 adjacencies. However, the solution

under the intermediate model G′′
1 = G′′

2 = +0 +1 +2 −1 −3 +4 still induces 0 breakpoint,

but yields 5 adjacencies.
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5 Experimental results

Based on our generic 0–1 linear programming approach (see Section 4), we present in this

section a computation campaign for obtaining almost all results for problems optM, optIA

and optE (note that problem optIB will also be discussed for reasons developed at the end of

the previous section). The rationale of this is threefold. First, we aim at testing the relevance

of our generic 0–1 linear programming approach on real biological data. In particular, we

are interested in identifying non-artificial hard to solve instances, and more generally in

estimating the intrinsic limits of the proposed approach. Second, we seek at comparing on

a real biological dataset the three problems optM, optIA and optE, and at comparing the

three models. Finally, in order to evaluate heuristics (see Section 6), we provide here an

almost complete set of exact results to which we can refer to, and we also believe these

results could be of interest for the community in the design of new heuristic approaches.

Our linear program solver engine is powered by CPLEX1. All computations were carried

out on a Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16Gb of memory running under

Linux.

5.1 Dataset

We conducted our computation campaign on a dataset of γ-Proteobacteria genomes, origi-

nally studied in (Lerat et al., 2003). For one, this dataset is becoming a standard reference

dataset in comparative genomics (Lerat et al., 2005; Blin et al., 2005; Angibaud et al.,

2007b). For another, this dataset is composed of genomes of moderate sizes, and hence is

a good candidate for intensive time consuming computations. More precisely, our reference

1http://www.ilog.com/products/cplex/
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dataset is composed of twelve complete genomes of γ-Proteobacteria out of the thirteen orig-

inally studied in (Lerat et al., 2003). Indeed, the thirteenth genome (V.cholerae) was not

considered, since it is composed of two chromosomes, and hence does not fit in the model

we considered here for representing genomes. More precisely, the dataset is composed of the

following genomes:

• Buchnera aphidicola APS (Baphi, Genbank accession number NC 002528),

• Escherichia coli K12 (Ecoli, NC 000913),

• Haemophilus influenzae Rd (Haein, NC 000907),

• Pseudomonas aeruginosa PA01 (Paeru, NC 002516),

• Pasteurella multocida Pm70 (Pmult, NC 002663),

• Salmonella typhimurium LT2 (Salty, NC 003197),

• Xanthomonas axonopodis pv. citri 306 (Xaxon, NC 003919),

• Xanthomonas campestris (Xcamp, NC 0 03902),

• Xylella fastidiosa 9a5c (Xfast, NC 002488),

• Yersinia pestis CO 92 (Ypest-CO92, NC 003143),

• Yersinia pestis KIM5 P12 (Ypest-KIM, NC 004088) and

• Wigglesworthia glossinidia brevipalpis (Wglos, NC 004344).

The determination of the gene families, where each family is supposed to represent a

group of homologous genes, is taken from (Blin et al., 2005) and hence, although a crucial
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preliminary step, will not be further discussed here. Initially, the sizes of the genomes range

from 565 to 5474 genes (see Table 1). Moreover, 8% of the gene families are, on average,

duplicated (these duplications cover, on average, 20% of the genes of a genome).

Here, Table 1

5.2 Results

After the pre-processing step (see Section 4.3), 8% of the gene families are, on average, dupli-

cated and these duplications cover, on average, 26% of the genes of a genome. Furthermore,

pre-processing the dataset by pairs of genomes drastically reduces the size of the genomes.

For example, focusing on comparing Baphi and Ecoli, their size reduces from 565 and 4119

genes to 531 and 721, respectively. Table 2 gives all reduced sizes for pairwise compar-

isons for the exemplar model and Table 3 gives all reduced sizes for pairwise comparisons

for the maximum matching model. Notice that this latter table also gives all reduced sizes

for pairwise comparisons for the intermediate model (indeed, concerning the pre-processing

step, a maximum matching can be seen as the “worst” case over all possible intermediate

matchings).

Here, Table 2
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Here, Table 3

The computation campaign, in which all 0–1 linear programs have been extended with

speed-up rules as described in 4.3, has given the results presented in Table 4 (symbol X

denotes unsolved instances).

Here, Table 4

Maximum matching model. Recall first that computing the minimum number of break-

points and the maximum number of adjacencies for the maximum matching model are equiv-

alent problems (see Proposition 1). This problem turned out out to be the easiest case for

our γ-Proteobacteria dataset. The CPLEX engine indeed computed all pairwise distances

(Table 4) in less than 2 minutes (1.7 second, on average, per pairwise genome comparison).

Exemplar model. Again, recall here that computing the minimum number of breakpoints

and the maximum number of adjacencies are equivalent problems for the exemplar model

(see Proposition 1). However, oppositely to the maximum matching model, we were not

able to compute all pairwise distances. More precisely, 61 out of 66 results (see Table 4)

have been obtained thanks to our 0–1 linear programming program in less than 1 minute,

except for two cases, for which several hours of computation were necessary. Our attempts

for computing the remaining 5 last cases resulted in CPLEX memory exhausted crashes. We

note that a similar combinatorial explosion was observed in (Angibaud et al., 2007b) in the
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context of maximizing the number of common intervals between two genomes by means of

a 0–1 linear program. Unfortunately, we still have no formal explanation for this surprising

and counter-intuitive situation. However, we believe this fact to be not related to the CPLEX

engine - seen as a black box here.The only obvious observation that can be made for these 5

unsolved cases is that they always take as input two genomes of relatively large sizes (roughly,

between 2500 and 3500 genes in each case). However, this is not a sufficient explanation since

there are pairs of genomes that have more or less the same size and that went through our

program (see for instance Salty/Ypest-KIM). This is why we strongly suspect the structure

of the genomes to play a role concerning this problem.

Intermediate model. Recall first that minimizing the number of breakpoints and max-

imizing the number of adjacencies are not equivalent problems for the intermediate model.

Concerning the problem of maximizing the number of adjacencies, 63 out of 66 results have

been obtained in about 3 minutes. As for minimizing the number of breakpoints, 59 out of

66 results have been obtained in less than two minutes.

A justification should be given here for having computed the minimum number of break-

points for the intermediate model (problem optIB). Indeed, minimizing the number of break-

points for the exemplar and the intermediate models were shown to be equivalent problems

in Section 3 (see Proposition 2), and thus the rightmost column of Table 4 might appear

just superfluous ; indeed it might be verified in Table 4 that column bkp(M) (exemplar

model optE) and column bkp(M) (intermediate model optIB) are always equal. The main

reason for having presented both results is to draw the attention of the reader to the fact

that, although obtaining the same minimum number of breakpoints as the exemplar model,

a matching minimizing the number of breakpoints for the intermediate model might result
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in a solution with more adjacencies (see the example at the end of Section 4 for a simple

illustration). This could be helpful for obtaining a solution that achieves a double objective:

minimizing the number of breakpoints (primary objective) and, among those optimal solu-

tions, maximizing the number of adjacencies (secondary objective). This latter goal should

be, however, modulated here since the secondary objective is not explicitly stated in the

0–1 linear program, i.e., there is no guarantee that the maximum number of adjacencies is

achieved.

We now turn to comparing the results for the different models. First, the following two

(average) ratios can be computed from Table 4:

bkp
opt
E

bkp
opt
M

= 0.89 and
adj

opt
E

adj
opt
M

= 0.92.

These two ratios illustrate the fact that (i) the minimum number of breakpoints for the

exemplar and the maximum matching models differ in about 10%, and (ii) the maximum

number of adjacencies for the exemplar and the maximum matching models also differ in

about 10%. In the light of these factual ratios, it should thus be emphasized here that, for

most practical applications, the choice of the model (exemplar or maximum matching) to

focus on should not be underestimated, since noticeable differences might result from this

decision.

As for the intermediate model, we already showed that bkpopt
E = bkp

opt
I . We compare in

Table 5 the results for the intermediate model with the results for the two other models. To

complement Table 5, we indicate in Table 6 how often the same optimal measure (number of

breakpoints or number of adjacencies) is found for the intermediate model and for another

25



model (exemplar or maximum matching). It should be noticed here that, for most cases,

we obtain more adjacencies using the intermediate model. The situation is more contrasted

when considering the number of breakpoints: for one, we have bkp
opt
E = bkp

opt
I (denoted by

100% in Table 6), and for another, for 1/3 of the comparisons, we obtain the same number

of breakpoints when maximizing the number of adjacencies for the intermediate model as

we obtain for the exemplar model.

Here, Table 5

Here, Table 6

To compare adj
opt
I and bkp

opt
I , the two following (average) ratios can be computed (see

Table 5):

adj(Mopt
I,bkp)

adj
opt
I

= 0.94 and
bkp

opt
I

bkp(Mopt
I,adj)

= 0.97.

The intermediate model gives us opportunity to drive the computation with a double objec-

tive (minimum number of breakpoints and maximum number of adjacencies). According to

the above, one may be tempted to argue that, for the intermediate model, maximizing the

number of adjacencies is better than minimizing the number of breakpoints since the obtained

solution certainly maximizes the number of adjacencies yet giving about 1/0.97 ≈ 103% of

the minimum number of breakpoints (minimizing the number of breakpoints gives about
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94% of the maximum number of adjacencies). We however do think that the two ratios are

too close to draw any definitive conclusion here on the ≪adj
opt
I versus bkp

opt
I

≫ question.
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6 Heuristic algorithms

Though our 0–1 linear programming approach presented in Section 4 allows us to obtain

almost all the expected exact results in the exemplar, intermediate and maximum matching

models on the studied set of γ-Proteobacteria (see Section 5), it should be said that the

limits of this method have been attained. Indeed, especially in the intermediate model,

some results could not be obtained in reasonable time using this method, and one of the

reasons for this is that the sizes of the genomes were too large for the 0–1 linear programming

method to be able to handle it. In other words, while this method seems to be promising

for “small” genomes (i.e. genomes which, after pre-processing, do not exceed, roughly, two

thousand genes), there is a crucial need for faster (and thus not necessarily exact) algorithms

in case genomes are of substantially larger sizes ; of course, these heuristic algorithms should

provide results of high quality, that is as close as possible from the exact results. In that

sense, thanks to the results presented in the previous section, we will be able to compare

several heuristics to the exact results and to validate the accuracy of the heuristics provided

in this section.

In the following, altogether nine heuristics will be presented and studied (three for each

model) ; each of these heuristics fall into one of the two following categories: (i) heuristics

based on finding iteratively the Longest Common Subsequence (or LCS, for short) of two

genomes, and (ii) heuristics which are a hybrid between category (i) above and the 0–1

linear programming method.
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6.1 Description of the Heuristics

Before describing in detail our heuristics, we recall that under the intermediate model, two

different problems exist: either we wish to find a matching that maximizes the number of

adjacencies, or one that minimizes the number of breakpoints. However, we have seen that

minimizing the number of breakpoints in the intermediate model is equivalent to minimizing

the number of breakpoints in the exemplar model (see Proposition 2). Thus any heuristic

that aims at minimizing the number of breakpoints in the exemplar model will of course apply

for minimizing the number of breakpoints in the intermediate model. Consequently, when

we turn to the intermediate model, we will only focus on heuristics that aim at maximizing

the number of adjacencies.

6.1.1 IILCS heuristics

We first describe here the main ideas that lie behind heuristics based on finding iteratively

the Longest Common Subsequence (or LCS, for short), that we have called IILCS heuristics.

Let G1 and G2 be two genomes: an LCS of (G1, G2) is a longest common word S of G1 and

G2, up to a complete reversal. The idea here is to match, at each iteration, all the genes

that are present in an LCS, until the desired matching is obtained.

We note that this idea is not new: it has already been used, for instance, in (Marron et al.,

2004). In (Angibaud et al., 2007b), this heuristic has been improved in the following way:

at each iteration, not only we match all the genes that are contained in an LCS (Rule 1),

but we also remove each unmatched gene of a genome for which there is no unmatched gene

of same family in the other genome (Rule 2).

The three heuristics that we are going to present use the two above mentioned rules.
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Since the difference between the problems lies in the matching that we wish to obtain, our

three heuristics will differ on that specific point.

Maximum matching model. We apply iteratively Rule 1 and Rule 2 until the algo-

rithm stops. By definition of Rule 1 and Rule 2, this implies that the resulting matching

is maximum. We call this heuristic IILCS M.

Intermediate model. We also apply iteratively Rule 1 and Rule 2. The difference here

is the stop condition: the algorithm stops as soon as each gene family has been matched at

least once. We call this heuristic IILCS IA.

Exemplar model. We apply iteratively Rule 1 and Rule 2 again, but we apply extra

deletions of genes at each iteration. Indeed, we need to make sure that only one gene from

each family is matched on each genome. In that case, at each iteration, for the duplicate

genes which are contained in the current LCS, we arbitrarily keep (and match) the first

occurrence ; while for those genes g who are outside LCS, we apply the following rule: if g

is present in the LCS (and thus kept in the matching), then we remove all the other occur-

rences of g in the rest of both genomes. When this heuristic stops, we are thus guaranteed

to obtain an exemplar matching. We call this heuristic IILCS E.

Remark that, for each of those three heuristics, at each iteration, there might exist sev-

eral LCS ; in that case, we have decided to randomly choose one of them. Due to this, if one

runs IILCS M (respectively IILCS IA, IILCS E) several times on the same instance, it could

result in different matchings, and thus the number of breakpoints and adjacencies may vary.
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Hence, for each pair of genomes, we have decided to run ten times the heuristics IILCS M,

IILCS IA and IILCS E and to keep the best result.

6.1.2 Hybrid method

Let us now describe the other category of heuristics we propose for solving our problems in

the three models: this method is a hybrid method using the appropriate IILCS heuristic,

followed by the 0–1 linear programming algorithm. The principle is to compute a part of

the matching by iterating of the appropriate heuristic IILCS until the size of the LCS is

strictly smaller than a given parameter k. Once this is done, we complete the matching by

invoking the appropriate 0–1 linear programming algorithm. This heuristic is called HYB M(k)

(respectively HYB IA(k), HYB E(k)) in the maximum matching (respectively intermediate,

exemplar) model.

For each of the three models, we have tested the hybrid heuristic described above for

two different values of k, namely k = 2 and k = 3. We deliberately chose small values

of k, because when k gets bigger, invoking the exact algorithm for completing the partial

matching might take too long, which is something we want to avoid. Moreover, we will see

in the next section that the results obtained with k = 2 and k = 3 are already extremely

good.

6.2 Non-exact results

Each of the nine heuristics has been tested on the dataset of γ-Proteobacteria described

in Section 5.1. A synthesis of all these results is given in Table 7, where we show, for the

nine heuristics, how close they lie to the exact results on average, at worse and at best.
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The complete set of results is given in Tables 8, 9 and 10 for problems optM, optIA and

optE, respectively. A graphical representation showing, for each problem, how each heuristic

compares to the exact results is provided in Figures 4, 5 and 6 (note that, in each figure, the

results are presented in the same arbitrary order than Tables 8, 9 and 10).

Concerning heuristics based on IILCS, their running time is approximately 40 minutes

for each of the three problems (we recall that, for each pair of genomes, any given heuristic of

this type is run 10 times, thus it takes approximately 4 minutes for each heuristic to achieve

all the 66 pairwise comparisons).

As said before, concerning the heuristics based on the hybrid method, we have run them,

for each of the three models (i) with parameter k set to 2 and (ii) with parameter k set to

3. The running time, for each of those six heuristics, is roughly five minutes.

Here, Table 7

Here, Figure 4

Here, Figure 5

Here, Figure 6
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Here, Table 8

Here, Table 9

Here, Table 10

6.3 Discussion

Globally, the nine heuristics that we have proposed perform very well on our dataset. For

each of the three problems, the appropriate IILCS heuristic returns results that are on

average at least 90% of the optimal value. It can be seen that IILCS IA is relatively less

effective than IILCS E and IILCS M: IILCS IA returns on average results that are 90.56% of

the optimal value, while IILCS E (respectively IILCS M) reaches 99.36% (respectively 99%).

This can be explained by the fact that IILCS IA, which relies on iteratively finding and

matching the genes of a Longest Common Subsequence, is in fact well-fitted for minimizing

the number of breakpoints, but not necessarily for maximizing the number of adjacencies.

Still, its performances, though not as good as the ones of IILCS E and IILCS M, remain

satisfying.
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Non surprisingly, our hybrid methods, with parameter k = 2, give better results than

their corresponding IILCS heuristics (we are on average 99.48% close to the optimal values

for the less effective heuristic). Non surprisingly again, when we set parameter k to 3, the

hybrid methods get even better (we are on average 99.82% close to the optimal values for

the less effective heuristic). In each case, we are on average closer to the optimal values, and

much more exact values are obtained.

There are two main conclusions that can be drawn from this set of results.

First, any of the nine presented heuristics is good on the studied dataset, and in that

sense they are all validated. Of course, when possible, better results should be obtained

using the hybrid method HYB(3), or HYB(2). However, even after having computed a partial

matching by running IILCS down to k = 3 or k = 2, we cannot obtain in reasonable time all

results with the 0–1 linear program. In particular, this situation might occur when genomes

are of very large sizes. In that case, the good performances of the IILCS heuristics show

that they still can be used to obtain fast and accurate results.

Second, these results show that the rather intuitive idea consisting of iteratively finding

and matching the genes of a Longest Common Subsequence is very effective for both measures

(number of breakpoints and number of adjacencies) and for the three models. It should be

said that the same conclusion was drawn in (Angibaud et al., 2007b) concerning the measure

“number of common intervals” under the maximum matching model. In that sense, it tends

to prove that comparing gene orders should probably, in the future, be studied under this

angle.
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7 Discussion and future works

This paper developed out of an attempt to build more accurate models for comparative

genomics and to design accurate and fast heuristics for breakpoints and adjacencies based

measures.

In that sense, the results we have obtained are very satisfying: for one, virtually all the

results have been obtained through our 0–1 linear programming approach (though it seems

hard to push it further for genomes of larger sizes). For the other, all the heuristics we have

proposed perform very well on our dataset.

Another aspect of our work was to focus on the intermediate model. Indeed, our main

motivation for this lies on the fact that both the exemplar and the maximum matching might

be too restrictive for practical applications. More precisely, if both the exemplar and the

maximum matching models provide a clear and simple algorithmic framework, we believe

the intermediate model to be well-suited and more accurate for comparative genomics. From

this point of view, one of our goals was to observe whether this new model would give very

different results from the exemplar and maximum matching models. It turns out that the

results are not conclusive: (i) optIB is equivalent to optE (see Proposition 2), and (ii) solving

optIA returns results which, in terms of adjacencies, are relatively close to both optE and

optM (see Tables 5 and 6). Hence, studying the pertinence of the intermediate model on

our dataset and for our measures would require a deeper study, and in particular a study of

the structure of the output genomes (how many genes of each family are kept and what are

their locations, for instance). This specific study is one that we will undertake in the next

future.

Though we were not able to clearly distinguish, using the number of breakpoints or the
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number of adjacencies, whether the intermediate model radically differs from the others, we

still believe this model to be of interest. First, giving more freedom in the structure of the

solution is certainly an advantage for practical applications. Second, as illustrated in Table 4,

the intermediate model actually gives rise to two combinatorial problems (minimizing the

number of breakpoints and maximizing the number of adjacencies). A complementary line of

research is thus to develop a 0–1 linear based program for achieving such a double objective.

Note that such a program could be obtained by the following procedure: compute the

minimum number of breakpoints for the intermediate model, transform this objective into an

additional constraint to obtain a modified linear program, and finally compute the maximum

number of adjacencies according to the modified 0–1 linear program. Conversely, we can add

a constraint to obtain the maximum number of adjacencies, then compute the minimum of

breakpoints. These approaches would give us more precise results for the intermediate model

than those in Table 4 but its time computation should be more important.
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Program Adjacency-Maximum-Matching

Objective :

Maximize
∑

0≤i<n1

∑
i<j≤n1

∑
0≤k<n2

∑
k<ℓ≤n2

d(i, j, k, ℓ)

Constraints :

C.01 ∀ 1 ≤ i ≤ n1,
∑

1≤k≤n2

|G1[i]|=|G2[k]|

a(i, k) = b1(i)

∀ 1 ≤ k ≤ n2,
∑

1≤i≤n1

|G1[i]|=|G2[k]|

a(i, k) = b2(k)

C.02 ∀ x ∈ {1, 2}, ∀ g ∈ G,
∑

1≤i≤nx

|Gx[i]|=|g|

bx(i) = min(occ1(g), occ2(g))

C.03 ∀ x ∈ {1, 2}, ∀ 1 ≤ i ≤ j − 1 < nx, cx(i, j) +
∑

i<p<j

bx(p) ≥ 1

C.04 ∀ x ∈ {1, 2}, ∀ 1 ≤ i < p < j ≤ nx, cx(i, j) + bx(p) ≤ 1
C.05 ∀ 1 ≤ i < j ≤ n1, ∀ 1 ≤ k < ℓ ≤ n2,

such that G1[i] = G2[k] and G1[j] = G2[ℓ],
a(i, k) + a(j, ℓ) + c1(i, j) + c2(k, ℓ) − d(i, j, k, ℓ) ≤ 3

C.06 ∀ 1 ≤ i < j ≤ n1, ∀ 1 ≤ k < ℓ ≤ n2,

such that G1[i] = G2[k] and G1[j] = G2[ℓ],
a(i, k) − d(i, j, k, ℓ) ≥ 0
a(j, ℓ) − d(i, j, k, ℓ) ≥ 0
c1(i, j) − d(i, j, k, ℓ) ≥ 0
c2(k, ℓ) − d(i, j, k, ℓ) ≥ 0

C.07 ∀ 1 ≤ i < j ≤ n1, ∀ 1 ≤ k < ℓ ≤ n2,

such that G1[i] = −G2[ℓ] and G1[j] = −G2[k],
a(i, ℓ) + a(j, k) + c1(i, j) + c2(k, ℓ) − d(i, j, k, ℓ) ≤ 3

C.08 ∀ 1 ≤ i < j ≤ n1, ∀ 1 ≤ k < ℓ ≤ n2,

such that G1[i] = −G2[ℓ] and G1[j] = −G2[k],
a(i, ℓ) − d(i, j, k, ℓ) ≥ 0
a(j, k) − d(i, j, k, ℓ) ≥ 0
c1(i, j) − d(i, j, k, ℓ) ≥ 0
c2(k, ℓ) − d(i, j, k, ℓ) ≥ 0

C.09 ∀ 1 ≤ i < j ≤ n1, ∀ 1 ≤ k < ℓ ≤ n2,

such that {|G1[i]|, |G1[j]|} 6= {|G2[k]|, |G2[ℓ]|} or G1[i] − G1[j] 6= G2[k] − G2[ℓ],
d(i, j, k, ℓ) = 0

C.10 ∀ 1 ≤ i < j ≤ n1,∑
1≤k<n2

∑
k<ℓ≤n2

d(i, j, k, ℓ) ≤ 1

Domains :

∀ x ∈ {1, 2},∀ 1 ≤ i < j ≤ n1,∀ 1 ≤ k < ℓ ≤ n2,

a(i, k), bx(i), cx(i, k), d(i, j, k, ℓ) ∈ {0, 1}

Figure 1: Program Adjacency-Maximum-Matching for finding the maximum number of ad-
jacencies between two genomes under the maximum matching model.
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Genome G1

G1[1] G1[2] G1[i − 1] G1[i] G1[i + 1] G1[n1]

Genome G2

G2[1] G2[2] G2[k1] G2[kj] G2[kp] G2[n2]

|G1[i]| = |G2[k1]|

|G1[i]| = |G2[kj]|

|G1[i]| = |G2[kp]|

a(i, k1) = 0

a(i, kj) = 1

a(i, kp) = 0

b1(i) = 1

b2(k1) ∈ {0, 1} b2(kj) = 1 b2(kp) ∈ {0, 1}

b2(k1) + . . . + b2(kj) + . . . + b2(kp) = min{occ1(|G1[i]|), occ2(|G1[i]|)}

Figure 2: Illustration of the constraints on variable b1(i), 1 ≤ i ≤ n1. If gene G1[i] appears
in positions k1 < k2 < . . . < kp in G2 and gene G1[i] is mapped to gene G2[kj] in the solution
matching, then (i) a(i, kj) = 1, i.e., gene G1[i] is mapped to gene G2[kj], (ii) a(i, kq) = 0
for 1 ≤ q ≤ p and q 6= j, i.e., gene G1[i] is mapped to only one gene in G2, (iii) b1(i) = 1,
i.e., gene G1[i] is mapped to a gene of G2 and (iv) b2(kj) = 1, i.e., gene G2[kj] is mapped
to a gene of G1. Observe that one may have in addition b2(kq) = 1 for some 1 ≤ q ≤ p and
q 6= j if min(occ1(|G1[i]|), occ2(|G1[i]|) ≥ 1 (this observation is however no longer valid for
the exemplar model).
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d(i, j, k, ℓ) = 1

Genome G1

G1[1] G1[i − 1] G1[i] G1[i + 1] G1[j − 1] G1[j] G1[j + 1] G1[n1]

Genome G2

G2[1] G2[k − 1] G2[k] G2[k + 1] G2[ℓ − 1] G2[ℓ] G2[ℓ + 1] G2[n2]

G1[i] = G2[k]

a(i, k) = 1

G1[j] = G2[ℓ]

a(j, ℓ) = 1

b1(p) = 0
∀ i < p < j

b1(i) = 1 b1(j) = 1

b2(q) = 0
∀ k < q < ℓ

b2(k) = 1 b2(ℓ) = 1

c1(i, j) = 1

c2(k, ℓ) = 1

Figure 3: Illustration of the constraints on variable d(i, j, k, ℓ), 1 ≤ i < j ≤ n1 and 1 ≤ k <
ℓ ≤ n2, for G1[i] = G2[k] and G1[j] = G2[ℓ]. The two genes G1[i] and G1[j] are adjacent
according to a solution matching if there exist two genes G2[k] and G2[ℓ], G1[i] = G2[k] and
G1[j] = G2[ℓ], such that (i) G1[i] is mapped to G2[k], i.e., a(i, k) = 1, (ii) G1[j] is mapped
to G2[ℓ], i.e., a(j, ℓ) = 1, (iii) no gene between G1[i] and G1[j] is mapped to a gene of G2,
i.e., c1(i, j) = 1 and (iv) no gene between G2[k] and G2[ℓ] is mapped to a gene of G2, i.e.,
c2(k, ℓ) = 1. The above situation reduces in our model to d(i, j, k, ℓ) = 1.
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Figure 4: Graphical representation of ratio bkp
opt
M /bkpH

M under the maximum matching
model, for each of the 66 exact results that we have obtained. H is the studied heuristic
(i.e., either IILCS M, HYB M(2) or HYB M(3)), bkpH

M is the number of breakpoints computed
by H and bkp

opt
M is the minimum number of breakpoints under the maximum matching

model.
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Figure 5: Graphical representation of ratio adjH
I /adjopt

I under the intermediate model, for
each of the 63 exact results that we have obtained. H is the studied heuristic (i.e., either
IILCS IA, HYB IA(2) or HYB IA(3)), adjH

I is the number of adjacencies computed by H and
and adj

opt
I is the maximum number of adjacencies under the intermediate model.
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Figure 6: Graphical representation of ratio bkp
opt
E /bkpH

E under the exemplar model, for each
of the 61 exact results that we have obtained. H is the studied heuristic (i.e., either IILCS E,
HYB E(2) or HYB E(3)), bkpH

E is the number of breakpoints computed by H and bkp
opt
E is

the minimum number of breakpoints under the exemplar model.
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Genome Baphi Ecoli Haein Paeru Pmult Salty Wglos Xaxon Xcamp Xfast Ypest-CO92 Ypest-KIM

Size 565 4119 1975 5474 1981 4157 642 4105 3939 2631 3540 3788

Table 1: Size of genomes before pre-processing

46



Baphi Ecoli Haein Paeru Pmult Salty Wglos Xaxon Xcamp Xfast Ypest-CO92 Ypest-KIM

BAPHI 721 498 709 525 723 382 545 540 460 721 718
ECOLI 531 1227 2088 1370 3279 570 1365 1355 908 2427 2452
HAEIN 434 1490 1307 1403 1514 440 924 900 718 1384 1399
PAERU 470 1889 969 1078 1912 510 1675 1665 984 1776 1785
PMULT 448 1637 1390 1382 1660 465 967 945 748 1517 1537
SALTY 533 3253 1233 2066 1373 569 1365 1352 913 2448 2476
WGLOS 380 769 497 769 533 779 610 603 496 765 763
XAXON 416 1435 794 2005 860 1467 465 3445 1488 1328 1343
XCAMP 416 1437 791 2022 854 1470 464 3455 1470 1308 1321
XFAST 400 1096 711 1289 754 1117 437 1645 1623 1041 1050

Ypest-CO92 530 2536 1189 2014 1327 2566 537 1290 1268 881 3388
Ypest-KIM 523 2537 1185 2011 1323 2574 558 1286 1262 882 3362

Table 2: Reduced sizes of the genomes for pairwise comparisons under the exemplar model.
As an illustration, pre-processing the data for comparing Baphi with Ecoli reduces in two
genomes of size 531 (Baphi) and 721 (Ecoli).
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Baphi Ecoli Haein Paeru Pmult Salty Wglos Xaxon Xcamp Xfast Ypest-CO92 Ypest-KIM

BAPHI 745 504 733 533 738 389 564 559 465 745 748
ECOLI 535 1254 2129 1395 3320 582 1411 1398 927 2470 2525
HAEIN 437 1529 1338 1431 1540 451 964 939 734 1422 1455
PAERU 473 1931 987 1098 1942 522 1726 1711 1007 1815 1848
PMULT 451 1675 1426 1414 1688 477 1008 985 773 1556 1595
SALTY 537 3310 1263 2107 1399 581 1413 1395 931 2490 2547
WGLOS 381 791 508 800 542 794 639 631 502 792 799
XAXON 419 1476 809 2044 878 1495 477 3539 1522 1364 1395
XCAMP 419 1473 803 2057 869 1494 476 3541 1499 1339 1366
XFAST 403 1122 723 1316 769 1135 449 1697 1679 1073 1091

Ypest-CO92 534 2584 1220 2052 1353 2607 579 1333 1311 901 3473
Ypest-KIM 527 2587 1216 2048 1349 2613 570 1329 1305 902 3422

Table 3: Reduced sizes of the genomes for pairwise comparisons under the maximum match-
ing and intermediate models. As an illustration, pre-processing the data for comparing Baphi

with Ecoli reduces in two genomes of size 535 (Baphi) and 745 (Ecoli).
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BAPHI-ECOLI 368 152 377 156 378 154 372 152

BAPHI-HAEIN 157 265 161 270 162 267 158 265

BAPHI-PAERU 226 232 229 240 230 237 227 232

BAPHI-PMULT 182 254 188 259 189 256 184 254

BAPHI-SALTY 367 154 376 158 377 155 372 154

BAPHI-WGLOS 201 168 203 170 203 168 201 168

BAPHI-XAXON 183 222 188 226 188 223 184 222

BAPHI-XCAMP 183 222 188 226 188 223 183 222

BAPHI-XFAST 158 231 162 236 162 234 158 231

BAPHI-YPEST-CO92 352 166 361 170 362 167 355 166

BAPHI-YPEST-KIM 339 172 348 176 349 172 343 172

ECOLI-HAEIN 489 610 550 665 551 624 507 610

ECOLI-PAERU 570 847 651 1082 668 906 597 847

ECOLI-PMULT 593 622 662 703 670 647 612 622

ECOLI-SALTY X X 2875 277 X X X X

ECOLI-WGLOS 371 183 379 194 382 187 374 183

ECOLI-XAXON 380 675 425 842 437 718 390 675

ECOLI-XCAMP 378 678 420 845 432 717 386 678

ECOLI-XFAST 301 491 324 564 329 503 308 491

ECOLI-YPEST-CO92 1559 426 1744 596 1789 463 X 426

ECOLI-YPEST-KIM X X 1747 607 1798 464 X X

HAEIN-PAERU 301 550 333 615 337 567 309 550

HAEIN-PMULT 755 497 849 525 849 509 794 497

HAEIN-SALTY 492 612 550 676 553 635 515 612

HAEIN-WGLOS 159 267 165 277 165 271 163 267

HAEIN-XAXON 217 473 241 533 243 482 221 473

HAEIN-XCAMP 216 473 238 530 239 485 218 473

HAEIN-XFAST 191 424 205 468 207 440 194 424

HAEIN-YPEST-CO92 465 597 522 649 523 617 481 597

HAEIN-YPEST-KIM 460 598 517 653 518 622 479 598

PAERU-PMULT 340 592 373 681 380 627 347 592

PAERU-SALTY 559 862 644 1091 658 918 585 862

PAERU-WGLOS 246 248 251 260 253 249 249 248

PAERU-XAXON 536 802 610 1016 620 863 562 802

PAERU-XCAMP 536 801 597 1012 609 847 557 801

PAERU-XFAST 372 499 406 572 410 522 389 499

PAERU-YPEST-CO92 571 790 671 990 685 853 604 790

PAERU-YPEST-KIM 566 786 662 1004 681 855 598 786

PMULT-SALTY 597 622 670 704 677 650 620 622

PMULT-WGLOS 188 262 197 270 197 265 190 262

PMULT-XAXON 245 495 274 557 277 506 248 495

PMULT-XCAMP 241 495 267 555 270 507 245 495

PMULT-XFAST 213 436 234 481 238 451 221 436

PMULT-YPEST-CO92 582 597 648 671 654 621 602 597

PMULT-YPEST-KIM 574 601 639 676 644 631 588 601

SALTY-WGLOS 372 181 380 192 383 185 376 181

SALTY-XAXON 375 684 434 854 445 718 391 684

SALTY-XCAMP 375 684 427 854 440 716 389 684

SALTY-XFAST 300 497 325 569 329 509 310 497

SALTY-YPEST-CO92 1560 439 1758 591 1793 483 X 439

SALTY-YPEST-KIM X X 1761 606 1800 477 X X

WGLOS-XAXON 189 261 194 269 195 266 189 261

WGLOS-XCAMP 189 260 194 268 195 266 189 260

WGLOS-XFAST 158 264 163 272 164 267 160 264

WGLOS-YPEST-CO92 369 182 377 193 380 186 373 182

WGLOS-YPEST-KIM 356 186 364 197 367 187 361 186

XAXON-XCAMP X X 3257 181 X X X X

XAXON-XFAST 980 375 1076 400 1077 380 1026 375

XAXON-YPEST-CO92 372 624 420 760 432 654 386 624

XAXON-YPEST-KIM 368 624 422 760 432 661 385 624

XCAMP-XFAST 969 373 1061 404 1065 383 1005 373

XCAMP-YPEST-CO92 369 620 412 755 424 644 380 620

XCAMP-YPEST-KIM 365 618 412 749 420 655 379 618

XFAST-YPEST-CO92 298 473 323 542 327 485 306 473

XFAST-YPEST-KIM 292 477 315 545 318 487 298 477

YPEST-CO92-YPEST-KIM X X 3328 59 X X X X

OPT
E

OPT
M

OPT
IA

OPT
IB

G
1
 – G

2 adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M)

Table 4: Number of adjacencies adj(M) and number of breakpoints bkp(M) for problems
optE, optM, optIA and optIB. M always denotes the returned solution and X stands for the
unsolved cases.
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adj
opt
I adj(Mopt

I,bkp) bkp(Mopt
I,adj) bkp

opt
I

adj
opt
E 1.10 1.02 - -

adj
opt
M 1.01 0.95 - -

bkp
opt
E - - 1.03 1.00

bkp
opt
M - - 0.92 0.90

Table 5: Comparison of the results for adjopt
I : maximum number of adjacencies for the inter-

mediate model, adj(Mopt
I,bkp): number of adjacencies induced by a matching Mopt

I,bkp yielding

the minimum number of breakpoints for the intermediate model, bkp(Mopt
I,adj): number of

breakpoints induced by a matching Mopt
I,adj yielding the maximum number of adjacencies for

the intermediate model, bkpopt
I : minimum number of breakpoints the intermediate model,

adj
opt
E : maximum number of adjacencies for the exemplar model, adjopt

M : maximum num-
ber of adjacencies for the maximum matching model, bkpopt

E : minimum number of break-
points for the exemplar model, bkpopt

M : minimum number of breakpoints for the maximum
matching model. Bold values indicate cases where the intermediate model performs better
than the exemplar or maximum matching model. Shown here are the average ratios, e.g.,
adj

opt

I

adj
opt

E

= 1.10, and hence, on average, the number of adjacencies for the exemplar model is

about 1/1.10 = 90% of the number of adjacencies achieved by the intermediate model.
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adj
opt
I adj(Mopt

I,bkp) bkp(Mopt
I,adj) bkp

opt
I

adj
opt
E 0% 9% - -

adj
opt
M 11% 0% - -

bkp
opt
E - - 3% 100%

bkp
opt
M - - 0% 0%

Table 6: Shown here is the percentage that the same optimal measure (maximum number
of adjacencies and minimum number of breakpoints) is found for the intermediate models
and the two other models (exemplar and maximum matching). For example, for 5 out of 58
pairs of genomes i.e., 9%, it holds that adjopt

E = adj(Mopt
I,bkp) (see Table 5).
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Exemplar - adjopt

E
Intermediate - adjopt

I
Maximum matching - adjopt

M

Heuristic IILCS E HYB E(2) HYB E(3) IILCS IA HYB IA(2) HYB IA(3) IILCS M HYB M(2) HYB M(3)

Average 99.36% 99.97% 99.99% 90.56% 99.48% 99.82% 99.00% 99.89% 99.97%
Worst case 96.51% 99.53% 99.84% 82.09% 98.09% 98.78% 95.19% 99.50% 99.67%
Best case 100% 100% 100% 98.52% 100% 100% 100% 100% 100%

Number of instances
for which the exact 15 52 59 0 17 35 12 35 55
result is obtained (out of 66) (out of 63) (out of 61)

Table 7: Summary of the results for the nine studied heuristics and comparison to the exact
results. As an illustration, in the intermediate model, HYB IA(2) provides results that are
on average 99.48% of the optimal number of breakpoints, ranging from 98.09% to 100%.
Moreover, in 17 out 63 of the cases solved by our 0–1 linear program, HYB IA(2) returns the
optimal value.
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IILCS_M HYB_M(2) HYB_M(3)

BAPHI-ECOLI 377 156 376 157 377 156 377 156

BAPHI-HAEIN 161 270 161 270 161 270 161 270

BAPHI-PAERU 229 240 228 241 229 240 229 240

BAPHI-PMULT 188 259 188 259 188 259 188 259

BAPHI-SALTY 376 158 376 158 376 158 376 158

BAPHI-WGLOS 203 170 202 171 203 170 203 170

BAPHI-XAXON 188 226 188 226 188 226 188 226

BAPHI-XCAMP 188 226 188 226 188 226 188 226

BAPHI-XFAST 162 236 162 236 162 236 162 236

BAPHI-YPEST-CO92 361 170 355 176 361 170 361 170

BAPHI-YPEST-KIM 348 176 346 178 348 176 348 176

ECOLI-HAEIN 550 665 546 669 548 667 549 666

ECOLI-PAERU 651 1082 637 1096 648 1085 650 1083

ECOLI-PMULT 662 703 660 705 662 703 662 703

ECOLI-SALTY 2875 277 2861 291 2875 277 2875 277

ECOLI-WGLOS 379 194 377 196 379 194 379 194

ECOLI-XAXON 425 842 417 850 424 843 425 842

ECOLI-XCAMP 420 845 413 852 418 847 420 845

ECOLI-XFAST 324 564 319 569 323 565 324 564

ECOLI-YPEST-CO92 1744 596 1722 618 1742 598 1743 597

ECOLI-YPEST-KIM 1747 607 1724 630 1745 609 1745 609

HAEIN-PAERU 333 615 328 620 332 616 333 615

HAEIN-PMULT 849 525 845 529 848 526 849 525

HAEIN-SALTY 550 676 547 679 550 676 550 676

HAEIN-WGLOS 165 277 165 277 165 277 165 277

HAEIN-XAXON 241 533 240 534 241 533 241 533

HAEIN-XCAMP 238 530 237 531 238 530 238 530

HAEIN-XFAST 205 468 205 468 205 468 205 468

HAEIN-YPEST-CO92 522 649 516 655 522 649 522 649

HAEIN-YPEST-KIM 517 653 510 660 516 654 516 654

PAERU-PMULT 373 681 369 685 372 682 373 681

PAERU-SALTY 644 1091 632 1103 642 1093 644 1091

PAERU-WGLOS 251 260 248 263 251 260 251 260

PAERU-XAXON 610 1016 604 1022 608 1018 610 1016

PAERU-XCAMP 597 1012 586 1023 594 1015 595 1014

PAERU-XFAST 406 572 402 576 406 572 406 572

PAERU-YPEST-CO92 671 990 655 1006 669 992 671 990

PAERU-YPEST-KIM 662 1004 646 1020 660 1006 662 1004

PMULT-SALTY 670 704 668 706 669 705 670 704

PMULT-WGLOS 197 270 197 270 197 270 197 270

PMULT-XAXON 274 557 271 560 273 558 274 557

PMULT-XCAMP 267 555 263 559 267 555 267 555

PMULT-XFAST 234 481 233 482 233 482 234 481

PMULT-YPEST-CO92 648 671 641 678 648 671 647 672

PMULT-YPEST-KIM 639 676 630 685 637 678 637 678

SALTY-WGLOS 380 192 378 194 380 192 380 192

SALTY-XAXON 434 854 423 865 432 856 433 855

SALTY-XCAMP 427 854 419 862 425 856 425 856

SALTY-XFAST 325 569 324 570 324 570 325 569

SALTY-YPEST-CO92 1758 591 1743 606 1757 592 1758 591

SALTY-YPEST-KIM 1761 606 1737 630 1758 609 1759 608

WGLOS-XAXON 194 269 194 269 194 269 194 269

WGLOS-XCAMP 194 268 193 269 194 268 194 268

WGLOS-XFAST 163 272 163 272 163 272 163 272

WGLOS-YPEST-CO92 377 193 373 197 377 193 377 193

WGLOS-YPEST-KIM 364 197 361 200 364 197 364 197

XAXON-XCAMP 3257 181 3253 185 3257 181 3257 181

XAXON-XFAST 1076 400 1070 406 1074 402 1076 400

XAXON-YPEST-CO92 420 760 412 768 419 761 420 760

XAXON-YPEST-KIM 422 760 417 765 422 760 422 760

XCAMP-XFAST 1061 404 1056 409 1059 406 1061 404

XCAMP-YPEST-CO92 412 755 402 765 412 755 412 755

XCAMP-YPEST-KIM 412 749 403 758 410 751 412 749

XFAST-YPEST-CO92 323 542 315 550 321 544 323 542

XFAST-YPEST-KIM 315 545 309 551 314 546 315 545

YPEST-CO92-YPEST-KIM 3328 59 3328 59 3328 59 3328 59

OPT
M

G
1
 – G

2 adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M)

Table 8: Number of adjacencies adj(M) and number of breakpoints bkp(M) under the max-
imum matching model: exact results and results obtained by heuristics IILCS M, HYB M(2)

and HYB M(3). M is a maximum matching between the genomes G1 and G2.
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IILCS_IA HYB_IA(2) HYB_IA(3)

BAPHI-ECOLI 378 154 367 153 377 156 378 154

BAPHI-HAEIN 162 267 156 266 162 268 162 266

BAPHI-PAERU 230 237 225 233 230 235 230 237

BAPHI-PMULT 189 256 181 255 189 257 189 255

BAPHI-SALTY 377 155 367 154 376 158 377 156

BAPHI-WGLOS 203 168 200 169 203 169 203 169

BAPHI-XAXON 188 223 183 222 188 225 188 224

BAPHI-XCAMP 188 223 183 222 188 225 188 223

BAPHI-XFAST 162 234 158 231 162 235 162 234

BAPHI-YPEST-CO92 362 167 346 172 362 168 362 168

BAPHI-YPEST-KIM 349 172 337 174 349 173 349 174

ECOLI-HAEIN 551 624 488 611 548 644 549 645

ECOLI-PAERU 668 906 559 858 657 911 663 913

ECOLI-PMULT 670 647 590 625 668 664 669 651

ECOLI-SALTY X X 2464 154 2882 247 2889 240

ECOLI-WGLOS 382 187 368 186 380 191 381 190

ECOLI-XAXON 437 718 374 681 434 723 437 715

ECOLI-XCAMP 432 717 375 681 428 720 432 724

ECOLI-XFAST 329 503 298 494 328 511 329 508

ECOLI-YPEST-CO92 1789 463 1547 438 1764 518 1771 506

ECOLI-YPEST-KIM 1798 464 1545 437 1769 523 1776 503

HAEIN-PAERU 337 567 297 554 332 575 336 571

HAEIN-PMULT 849 509 755 497 848 517 849 515

HAEIN-SALTY 553 635 489 615 551 648 552 649

HAEIN-WGLOS 165 271 159 267 165 273 165 272

HAEIN-XAXON 243 482 217 473 242 488 243 505

HAEIN-XCAMP 239 485 216 473 238 488 239 502

HAEIN-XFAST 207 440 190 425 207 436 207 438

HAEIN-YPEST-CO92 523 617 461 601 523 627 523 633

HAEIN-YPEST-KIM 518 622 457 601 517 628 517 620

PAERU-PMULT 380 627 337 595 377 620 380 620

PAERU-SALTY 658 918 550 871 652 931 656 922

PAERU-WGLOS 253 249 243 251 253 251 253 251

PAERU-XAXON 620 863 532 806 613 876 618 866

PAERU-XCAMP 609 847 530 807 602 864 605 861

PAERU-XFAST 410 522 372 499 408 524 410 515

PAERU-YPEST-CO92 685 853 563 798 677 854 681 857

PAERU-YPEST-KIM 681 855 559 793 668 850 677 846

PMULT-SALTY 677 650 595 624 675 665 676 664

PMULT-WGLOS 197 265 188 262 197 267 197 267

PMULT-XAXON 277 506 245 495 275 514 277 523

PMULT-XCAMP 270 507 239 497 268 511 270 531

PMULT-XFAST 238 451 211 438 236 447 238 453

PMULT-YPEST-CO92 654 621 579 600 653 635 654 646

PMULT-YPEST-KIM 644 631 572 603 643 641 642 630

SALTY-WGLOS 383 185 371 182 381 189 382 188

SALTY-XAXON 445 718 374 686 438 726 442 724

SALTY-XCAMP 440 716 372 687 438 724 438 715

SALTY-XFAST 329 509 297 500 328 516 329 511

SALTY-YPEST-CO92 1793 483 1548 451 1773 526 1781 512

SALTY-YPEST-KIM 1800 477 1555 446 1776 528 1785 515

WGLOS-XAXON 195 266 189 261 195 263 195 265

WGLOS-XCAMP 195 266 189 260 195 262 195 265

WGLOS-XFAST 164 267 158 264 164 267 164 266

WGLOS-YPEST-CO92 380 186 365 186 378 190 379 188

WGLOS-YPEST-KIM 367 187 353 189 365 194 366 192

XAXON-XCAMP X X 2877 117 3270 157 3271 154

XAXON-XFAST 1077 380 977 378 1074 394 1076 396

XAXON-YPEST-CO92 432 654 368 628 430 664 431 661

XAXON-YPEST-KIM 432 661 363 629 428 667 431 664

XCAMP-XFAST 1065 383 966 376 1063 393 1064 394

XCAMP-YPEST-CO92 424 644 365 624 419 657 423 651

XCAMP-YPEST-KIM 420 655 361 622 417 656 420 655

XFAST-YPEST-CO92 327 485 295 476 325 489 327 491

XFAST-YPEST-KIM 318 487 287 482 317 494 318 495

YPEST-CO92-YPEST-KIM X X 2815 32 3330 56 3330 56

OPT
IA

G
1
 – G

2 adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M)

Table 9: Number of adjacencies adj(M) and number of breakpoints bkp(M) under the
intermediate model: exact results when we maximize the number of adjacencies and results
obtained by heuristics IILCS IA, HYB IA(2) and HYB IA(3). M is an intermediate matching
between the genomes G1 and G2. X stands for the unsolved cases.
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IILCS_E HYB_E(2) HYB_E(3)

BAPHI-ECOLI 368 152 367 153 368 152 368 152

BAPHI-HAEIN 157 265 156 266 157 265 157 265

BAPHI-PAERU 226 232 225 233 226 232 226 232

BAPHI-PMULT 182 254 181 255 182 254 182 254

BAPHI-SALTY 367 154 367 154 367 154 367 154

BAPHI-WGLOS 201 168 201 168 201 168 201 168

BAPHI-XAXON 183 222 183 222 183 222 183 222

BAPHI-XCAMP 183 222 183 222 183 222 183 222

BAPHI-XFAST 158 231 158 231 158 231 158 231

BAPHI-YPEST-CO92 352 166 346 172 352 166 352 166

BAPHI-YPEST-KIM 339 172 337 174 339 172 339 172

ECOLI-HAEIN 489 610 488 611 489 610 489 610

ECOLI-PAERU 570 847 559 858 570 847 570 847

ECOLI-PMULT 593 622 590 625 593 622 593 622

ECOLI-SALTY X X 2464 154 2465 153 2465 153

ECOLI-WGLOS 371 183 368 186 371 183 371 183

ECOLI-XAXON 380 675 373 682 379 676 380 675

ECOLI-XCAMP 378 678 374 682 378 678 378 678

ECOLI-XFAST 301 491 298 494 301 491 301 491

ECOLI-YPEST-CO92 1559 426 1545 440 1557 428 1559 426

ECOLI-YPEST-KIM X X 1543 439 1559 423 1560 422

HAEIN-PAERU 301 550 297 554 301 550 301 550

HAEIN-PMULT 755 497 755 497 755 497 755 497

HAEIN-SALTY 492 612 489 615 492 612 492 612

HAEIN-WGLOS 159 267 159 267 159 267 159 267

HAEIN-XAXON 217 473 217 473 217 473 217 473

HAEIN-XCAMP 216 473 216 473 216 473 216 473

HAEIN-XFAST 191 424 190 425 191 424 191 424

HAEIN-YPEST-CO92 465 597 461 601 465 597 465 597

HAEIN-YPEST-KIM 460 598 457 601 459 599 460 598

PAERU-PMULT 340 592 338 594 340 592 340 592

PAERU-SALTY 559 862 552 869 558 863 559 862

PAERU-WGLOS 246 248 242 252 246 248 246 248

PAERU-XAXON 536 802 533 805 535 803 536 802

PAERU-XCAMP 536 801 531 806 536 801 536 801

PAERU-XFAST 372 499 372 499 372 499 372 499

PAERU-YPEST-CO92 571 790 565 796 571 790 570 791

PAERU-YPEST-KIM 566 786 561 791 565 787 566 786

PMULT-SALTY 597 622 595 624 597 622 597 622

PMULT-WGLOS 188 262 188 262 188 262 188 262

PMULT-XAXON 245 495 245 495 245 495 245 495

PMULT-XCAMP 241 495 240 496 241 495 241 495

PMULT-XFAST 213 436 211 438 213 436 213 436

PMULT-YPEST-CO92 582 597 579 600 582 597 582 597

PMULT-YPEST-KIM 574 601 572 603 574 601 574 601

SALTY-WGLOS 372 181 371 182 372 181 372 181

SALTY-XAXON 375 684 373 687 376 684 376 684

SALTY-XCAMP 375 684 372 687 375 684 375 684

SALTY-XFAST 300 497 297 500 300 497 300 497

SALTY-YPEST-CO92 1560 439 1551 448 1558 441 1560 439

SALTY-YPEST-KIM X X 1553 448 1561 440 1562 439

WGLOS-XAXON 189 261 189 261 189 261 189 261

WGLOS-XCAMP 189 260 189 260 189 260 189 260

WGLOS-XFAST 158 264 158 264 158 264 158 264

WGLOS-YPEST-CO92 369 182 365 186 369 182 369 182

WGLOS-YPEST-KIM 356 186 353 189 356 186 356 186

XAXON-XCAMP X X 2878 116 2879 115 2879 115

XAXON-XFAST 980 375 978 377 980 375 980 375

XAXON-YPEST-CO92 372 624 367 629 371 625 371 625

XAXON-YPEST-KIM 368 624 364 628 367 625 368 624

XCAMP-XFAST 969 373 966 376 969 373 969 373

XCAMP-YPEST-CO92 369 620 364 625 369 620 369 620

XCAMP-YPEST-KIM 365 618 361 622 365 618 365 618

XFAST-YPEST-CO92 298 473 294 477 298 473 298 473

XFAST-YPEST-KIM 292 477 287 482 292 477 292 477

YPEST-CO92-YPEST-KIM X X 2815 32 2815 32 2815 32

OPT
E

G
1
 – G

2 adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M) adj(M) bkp(M)

Table 10: Number of adjacencies adj(M) and number of breakpoints bkp(M) under the
exemplar model: exact results and results obtained by heuristics IILCS E, HYB E(2) and
HYB E(3). M is an exemplar matching between the genomes G1 and G2. X stands for the
unsolved cases.
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