Sébastien Angibaud
email: sebastien.angibaud@univ-nantes.fr

Guillaume Fertin
email: guillaume.fertin@univ-nantes.fr

Irena Rusu
email: irena.rusu@univ-nantes.fr

Annelyse Thévenin
email: thevenin@lri.fr

Stéphane Vialette
email: vialette@univ-mlv.fr

Efficient Tools for Computing the Number of Breakpoints and the Number of Adjacencies between two Genomes with Duplicate Genes

Keywords: genome rearrangements, number of breakpoints, number of adjacencies, exemplar/matching/intermediate models, 0-1 linear programming

Comparing genomes of different species is a fundamental problem in comparative genomics. Recent research has resulted in the introduction of different measures between pairs of genomes: reversal distance, number of breakpoints, number of common or conserved intervals, etc. However, classical methods used for computing such measures are seriously compromised when genomes have several copies of the same gene

It is a well-known fact that, between different species, the order of genes in the genomes is not conserved. Hence, it appears natural to exploit this information, in order for instance to infer the phylogenetic relationships between those species. Comparison of gene orders is usually done between pairs of genomes, and can be undertaken in many different ways, which fall into two main categories. The first one consists in defining different types of rearrangement operations, and to find a most parsimonious rearrangement scenario that, using these operations, allows to go from one genome to the other. Probably the most famous example is the reversal distance problem, in which only one operation, reversal, is allowed (see for instance [START_REF] Hannenhalli | Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals[END_REF]). The second category consists in computing a (dis-)similarity measure between two genomes, that is a number which reflects the proximity (or not) of the two considered genomes. In that case, the measure is computed regardless of any possible rearrangement scenario that would lead from one genome to the other. Several (dis-)similarity measures between two whole genomes have been proposed in the past: number of breakpoints [START_REF] Watterson | The chromosome inversion problem[END_REF], number of common intervals [START_REF] Uno | Fast algorithms to enumerate all common intervals of two permutations[END_REF], number of conserved intervals [START_REF] Bergeron | On the similarity of sets of permutations and its applications to genome comparison[END_REF], Maximum Adjacency Disruption (MAD) number [START_REF] Sankoff | Power boosts for cluster tests[END_REF].

In this paper, we will only be interested in the latter category. Moreover, our study focuses on genomes where genes possibly have several copies. When such duplications are present, in order to compute any measure between two genomes, one first needs to disambiguate the data by inferring orthologs, i.e., a non-ambiguous one-to-one mapping between the genes of the two genomes. In order to achieve this, two approaches have been considered recently: the exemplar model and the maximum matching model. In the exemplar model [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], for all gene families, all but one occurrence in each genome are deleted. In the maximum matching model [START_REF] Blin | The breakpoint distance for signed sequences[END_REF], the goal is to map as many genes as possible. These two models can be considered as the extremal cases of the same generic homolog assignment approach.

Unfortunately, it has been shown that, for each of the above mentioned measures, and for each model (exemplar or maximum matching), the problem of finding the non-ambiguous one-to-one mapping that optimizes the studied (dis-)similarity measure becomes NP-hard as soon as duplicates are present in genomes [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Blin | The breakpoint distance for signed sequences[END_REF][START_REF] Blin | Conserved intervals distance computation between nontrivial genomes[END_REF][START_REF] Blin | Comparing genomes with duplications: a computational complexity point of view[END_REF] ; several inapproximability results are known [START_REF] Thach | Algorithms for calculating exemplar distances[END_REF][START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF]Chen et al., 2006a;[START_REF] Blin | Comparing genomes with duplications: a computational complexity point of view[END_REF][START_REF] Angibaud | On the approximability of comparing genomes with duplicates[END_REF], and in some cases, heuristic (hence, not exact) methods have been devised to obtain good solutions in a reasonable amount of time (Blin et al., 2005;[START_REF] Bourque | Maximizing synteny blocks to identify ancestral homologs[END_REF]Angibaud et al., 2007b).

The main goal of this paper is to study two measures, the number of breakpoints and the number of adjacencies, under three different models: the exemplar model, the maximum matching model and a model we introduce here, the intermediate model, in which, for all gene families, at least one occurrence in each genome is kept. In other words, in this model, one is allowed to modulate the number of conserved copies of each duplicated gene in each genome.

Indeed, it seems natural to take this new model into account, because it is a generalization of both the exemplar and maximum matching models. We will actually discuss the interest of the intermediate model later in the paper, according to the results that will be presented.

We will then focus on methods to answer the problems: given two genomes, find the exemplar (respectively intermediate, maximum) matching that maximizes the number of adjacencies (or minimizes the number of breakpoints). Extending research initiated in (An-method that exactly (though not always quickly) answers the question. We then provide, for each problem, several heuristics and compare them with results obtained by 0-1 linear programming on a dataset of γ-Proteobacteria. In addition, we show strong evidence that our fast and simple heuristics based on iteratively finding Longest Common Subsequences provide very good results on our dataset.

The paper is organized as follows. In Section 2, we present some preliminaries and definitions. In Section 3, we reduce our study, that we wish to perform for two measures and three models, to only three main problems. In Section 4, for each of these three problems, we provide the corresponding 0-1 linear programming encoding, together with some reduction rules that help speed-up the computation. In Section 5, we present and discuss the results that we have obtained by running our 0-1 linear programming methods on a dataset of γ-Proteobacteria. In Section 6, a collection of three heuristics is proposed and their results are compared to the exact results obtained in Section 5.

Preliminaries

From an algorithmic perspective, a unichromosomal genome is a signed sequence over a finite alphabet, referred hereafter as the alphabet of gene families. Each element of the sequence is called a gene. DNA has two strands, and genes on a genome have an orientation that reflects the strand on which the genes lie. We represent the order and orientation of the genes on each genome as a sequence of signed genes, i.e., genes with a sign, "+" or "-". Let G 1 and G 2 be two genomes, and let n x , x ∈ {1, 2} be the number of genes in genome G x . For each

x ∈ {1, 2}, G x [i] denotes the gene at position i (1 ≤ i ≤ n x) in G x ,
and occ x (g, i, j) denotes the number of genes g (and -g) in G x between positions i and j, 1 ≤ i ≤ j ≤ n x . To simplify notations, we abbreviate occ x (g, 1, n x) to occ x (g). As we shall only be concerned here with pairs of genomes (G 1 , G 2) having the same gene content, we shall ignore those genes that occur in one genome but not in the other.

In order to deal with the inherent ambiguity of duplicate genes, we now precisely define what is a matching between two genomes. Roughly speaking, a matching between two genomes can be seen as a way to describe a putative assignment of orthologous pairs of genes between the two genomes (see for example [START_REF] Chen | Assignment of orthologous genes via genome rearrangement[END_REF]). More formally, a matching

M between genomes G 1 and G 2 is a set of pairwise disjoint pairs (G 1 [i], G 2 [j]), where G 1 [i]
and G 2 [j] belong to the same gene family regardless of the sign, i.e., |G

1 [i]| = |G 2 [j]|. Genes
of G 1 and G 2 that belong to a pair of the matching M are said to be saturated by M, or M-saturated for short. The size of a matching M is noted by |M|. A matching M between G 1 and G 2 is said to be maximum if for any gene family, there are no two genes of this family that are unmatched for M and belong to G 1 and G 2 , respectively.

The above definition allows us a large degree of freedom in the choice of a matching between two genomes. Two types of matchings are usually considered and specify the underlying model to focus on for computing the desired measure. In the exemplar model, the matching M is required to saturate exactly one gene of each gene family ; thus, the size of the matching is the number of gene families. In the maximum matching model, the matching M is required to be maximum, i.e., to saturate as many genes of any gene family as possible.

Here again, the size of M can be easily computed in advance, from the two input genomes.

In this paper, we present and study a third model, that we call the intermediate model. In this model, the matching M is required to saturate at least one gene of each gene family.

In that sense, this new model lies between the two extrema that are the exemplar and the maximum matching models.

Let M be any matching between G 1 and G 2 that fulfills the requirements of a given model (exemplar, intermediate or maximum matching). By first deleting non-saturated genes and next renaming genes in G 1 and G 2 according to the matching M, we may now assume that both G 1 and G 2 are duplication-free, i.e. G 2 is a signed permutation of G 1 . We call the resulting genomes M-pruned.

Let G 1 and G 2 be two duplication-free genomes of size n. Without loss of generality, we may assume that G 1 is the identity positive permutation, i.e., G 1 = +1 + 2 . . . + n.

We say that there is a breakpoint after gene G 1

[i], 1 ≤ i < n -1, in G 1 if neither G 1 [i] and G 1 [i + 1] nor -G 1 [i + 1] and -G 1 [i] are consecutive genes in G 2 ,
otherwise we say that there is an adjacency after gene G 1 [i]. In order to take into account the breakpoints and/or adjacencies that arise at the extremities of the genomes, we artificially add, for each genome in the studied pair, a unique (i.e., non-duplicated) gene at both extremities. For simplicity, the artificial gene added before the first gene in both genomes will always be +0, while the For example, if G 1 = +1 + 2 + 3 + 4 + 5 + 6 and G 2 = +1 -6 -5 -4 + 3 + 2, we modify both genomes in order to obtain: G ′ 1 = +0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 and G ′ 2 = +0 + 1 -6 -5 -4 + 3 + 2 + 7. In this example, we have breakpoints in G ′ 1 after genes 1, 2, 3 and 6 and hence we have adjacencies in G ′ 1 after genes 0, 4 and 5. Thus, the number of breakpoints between G 1 and G 2 is equal to 4, while the number of adjacencies between G 1 and G 2 is equal to 3.

8

Given two genomes G 1 and G 2 and a model (exemplar, intermediate or maximum matching), we wish to find a matching which (1) is appropriate to the model, and (2) yields the optimal number of breakpoints/adjacencies, where optimal means minimum for breakpoints and maximum for adjacencies. Not all of the six resulting problems are essentially different. In fact, only three of them are.

From six problems to four

Let G 1 and G 2 be two genomes and M be a matching between G 1 and G 2 under any model (exemplar, intermediate or maximum matching). We define bkp(M) to be the number of breakpoints between the two M-pruned genomes. The number of adjacencies between two M-pruned genomes is denoted by adj(M).

It is easy to see, but important to notice, that for any matching M between two genomes G 1 and G 2 , we have

adj(M) + bkp(M) = |M| + 1. (1)
Hence, for any given instance, if the size of the matching M is fixed, then finding the matching which minimizes the number of breakpoints is equivalent to finding the matching that maximizes the number of adjacencies, because of equality (1). As a consequence, we have the following proposition.

Proposition 1 Minimizing the number of breakpoints under the exemplar model is equivalent to maximizing the number of adjacencies ; the same result holds for the maximum matching model.

For the intermediate model, the same result does not hold anymore, since the cardinality of the matching cannot be inferred from the input.

From four problems to three

Another, less straightforward, equivalence holds between two of our remaining problems. This is done using the following greedy algorithm: while there exists two saturated genes in G 1 that belong to the same gene family (regardless of the sign), delete one of the two genes arbitrarily, together with the corresponding gene in G 2 . The above algorithm certainly results in a solution for the exemplar model. We claim that this solution has at most as many breakpoints as the solution for the intermediate model, that is bkp opt I . To this aim, we consider any iteration of the above algorithm and show that the obtained matching has at most as many breakpoints as the initial one. Four cases need distinct examination. For all genes a, the notation a denote the presence of a breakpoint after the gene a. For each case, deleting X in both genomes induces two genomes where no additional breakpoint is introduced. Therefore, the generated solution cannot admit more breakpoints than bkp opt I , and hence we have bkp opt

I = bkp opt E . ✷

The three main problems

We are now in position to formally define the optimization problems we are interested in.

As before, G 1 and G 2 are two genomes.

Let opt E (respectively opt M) be the problem of finding an exemplar (respectively maximum) matching M such that the corresponding M-pruned of G 1 and G 2 has a maximum number of adjacencies. Proposition 1 insures that the same matching M also minimizes, after M-pruning G 1 and G 2 , the number of breakpoints. We denote by adj opt 4 An exact 0-1 linear programming approach

Introduction

Minimizing the number of breakpoints between two genomes with duplicated genes is an NP-hard problem for the exemplar model, even when occ 1 (g) = 1 for all genes g in G 1

and occ 2 (g) ≤ 2 for all genes g in G 2 [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF]. Consequently, the NP-hardness also holds for both the intermediate and the maximum matching models, which means that problems opt E (and thus opt IB , see Proposition 2) and opt M are NP-hard. Moreover, a recent result [START_REF] Chen | Non-breaking similarity of genomes with gene repetitions[END_REF] implies that opt IA is NP-hard as well.

Aiming at precise evaluations of heuristics, we develop in this section an exact generic approach as initiated in (Angibaud et al., 2007a). More precisely, our approach relies on expressing the different problems as 0-1 linear programs [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] and using powerful solvers to obtain optimal solutions.

For ease of exposition, we first present the complete 0-1 linear program for maximizing the number of adjacencies for the maximum matching problem (problem opt M). Next we give some data reduction rules for reducing the input size, and hence speeding-up the program.

Finally, we show how to adapt this program to opt E and opt IA . Here, Figure 1 Program Adjacency-Maximum-Matching considers two genomes G 1 and G 2 of respective lengths n 1 and n 2 . The objective function, the variables and the constraints involved are now discussed.

Variables:

• Variables a(i, k), 1 ≤ i ≤ n 1 and 1 ≤ k ≤ n 2 , define a matching M: a i,k = 1 iff G 1 [i] is matched with G 2 [k] in M. • Variables b x (i), x ∈ {1, 2} and 1 ≤ i ≤ n x , represent the M-saturated genes: b x (i) = 1 if and only if G x [i] is saturated by the matching M. Clearly, 1≤i≤n 1 b 1 (i) = 1≤k≤n 2 b 2 (k)
, and this is precisely the size of M.

• Variables c x (i, j), x ∈ {1, 2} and 1 ≤ i < j ≤ n x , represent consecutive genes according to M:

c x (i, j) = 1 iff G x [i] and G x [j] are both saturated by M and no gene G x [p], i < p < j, is saturated by M. • Variables d(i, j, k, ℓ), 1 ≤ i < j ≤ n 1 and 1 ≤ k < ℓ ≤ n 2 , represent adjacencies according to M: d(i, j, k, ℓ) = 1 iff -either (G 1 [i], G 2 [k]) and (G 1 [j], G 2 [ℓ]) belong to M, G 1 [i] = G 2 [k] and G 1 [j] = G 2 [ℓ], or (G 1 [i], G 2 [ℓ]) and (G 1 [j], G 2 [k]), and belong to M, G 1 [i] = -G 2 [ℓ] and G 1 [j] = -G 2 [k],
and

-G 1 [i] and G 1 [j] are consecutive in G 1 according to M, and -G 2 [k] and G 2 [ℓ] are consecutive in G 2 according to M.
Constraints:

Assume x ∈ {1, 2}, 1 ≤ i < j ≤ n 1 and 1 ≤ k < ℓ ≤ n 2 . • Constraint C.01 ensures that each gene of G 1 and of G 2 is matched at most once, i.e., b 1 (i) = 1 (respectively b 2 (k) = 1) iff gene i (respectively k) is matched in G 1
(respectively G 2) ; see Figure 2 for an illustration of this constraint. Observe that in any matching, any two genes that are mapped together necessarily belong to the same gene family, and hence we do not have to explicitly ask for

a(i, k) = 0 in case G 1 [i]
and G 2 [k] are two genes belonging to different gene families.

• Constraint C.02 actually defines the considered model (here the maximum matching model). For each gene family g, min(occ 1 (g), occ 2 (g)) occurrences of genes belonging to g must be M-saturated in both G 1 and G 2 (see Figure 2).

• Constraints in C.03 and C.04 are concerned with our definition of consecutive genes.

Variable c x (i, j) is equal to 1 iff there exists no p such that i < p < j and b x (p) = 1. It is worth noticing here that, according to these constraints, one may have

c x (i, j) = 1 even if one of the genes G x [i] or G x [j] is not M-saturated.
• Constraints in C.05 to C.10 define variables d. In the case where

G 1 [i] = G 2 [k] and G 1 [j] = G 2 [ℓ],
Constraints C.05 and C.06 ensure that we have d(i, j, k, ℓ) = 1 if and only if all variables a(i, k), a(j, ℓ), c 1 (i, j) and c 2 (k, ℓ) are equal to 1. In the case

where Finally, thanks to Constraint C.10, one must have at most one adjacency for every pair (i, j). See Figure 3 for a simple illustration.

G 1 [i] = -G 2 [ℓ] and G 1 [j] = -G 2 [k],
The objective of Program Adjacency-Maximum-Matching is to maximize the number of adjacencies between the two considered genomes. According to the above, this objective thus reduces in our model to maximizing the sum of all variables d(i, j, k, ℓ).

Here, Figure 2 Here, Figure 3 4.3 Speeding-up the program

Program Adjacency-Maximum-Matching has O((n 1 • n 2) 2) variables and O((n 1 • n 2) 2) con-
straints. Aiming at speeding-up the execution of the program, we present here some simple rules for reducing the number of variables and constraints involved.

Pre-processing the genomes. The genomes are pairwise pre-processed to delete all genes that do not appear in both genomes. For instance, for the γ-Proteobacteria benchmark set studied in Section 5, the average size of a genome reduces from 3000 to 1300.

Reducing the number of variables and constraints. For non-duplicated genes, i.e., genes g for which occ 1 (g) = occ 2 (g) = 1, the corresponding variable a i,k is set directly to 1, as well as the two variables b 1 (i) and b 2 (k). Also, if two non-duplicated genes occur consecutively or in reverse order with opposite signs, the corresponding variable d is set directly to 1 and the related constraints are discarded. If for two genes, say occurring at positions i and j in G 1 , at least one gene occurring between position i and j in G 1 must be saturated in any matching M (for example if one family has all occurrences between i and j in G 1), then the corresponding variable c 1 (i, j) and the variable d(i, j, k, ℓ) for all 1 ≤ k < ℓ ≤ n 2 are set directly to 0 and the related constraints are discarded. We can use the same reasoning for two positions k and ℓ in G 2 and the variables c 2 (k, ℓ) and d(i, j, k, ℓ)

for all 1 ≤ i < j ≤ n 1 .

Dealing with other measures and models

Program Adjacency-Maximum-Matching allows us to solve problem opt M . We describe here how to adapt this 0-1 linear program for dealing with the two remaining problems, namely opt E and opt IA . As we shall see, only a few modifications are needed.

Exemplar Model (Problem opt E). As observed before, Constraint C.02 explicits the model under consideration. For the exemplar model, exactly one occurrence in each gene family must be saturated. Therefore, Constraint C.02 should be rewritten as follows.

C.02 ∀ x ∈ {1, 2}, ∀ g ∈ G, 1≤i≤nx |Gx[i]|=|g| b x (i) = 1
Moreover, for efficiency, a simple additional rule can be considered for simplifying the program. Indeed, we must have exactly one occurrence of each gene in each genome. Therefore,

for all 0 ≤ i < j ≤ n x , x ∈ {1, 2}, if |G x [i]| = |G x [j]| then c x (i, j) = 0.
C.02 ∀ x ∈ {1, 2}, ∀ g ∈ G, 1≤i≤nx |Gx[i]|=|g| b x (i) ≥ 1
As seen in the previous section, computing the minimum number of breakpoints or the maximum number of adjacencies are not equivalent problems in the intermediate model.

To compute the minimum number of breakpoints (problem opt IB), the objective must be modified as follows (correctness follows from relation (1)).

Minimize

0≤i<n 1 b 1 (i) - 0≤i<n 1 i<j≤n 1 0≤k<n 2 k<ℓ≤n 2 d(i, j, k, ℓ) -1
One may argue that this latter 0-1 linear program is useless since opt IB and opt E have been shown to be equivalent problems (see Proposition 2). However, as we shall see in Section 5, the intermediate model gives us the opportunity, for the same minimum number of breakpoints as in the exemplar model, to obtain more adjacencies. As a simple illustration of this point, consider the two genomes G 1 = +0 + 1 -4 + 2 -1 + 2 -3 + 4 and G 2 = +0 + 3 + 1 + 2 -1 -3 + 4. We have bkp opt E = 0 as shown by the exemplarization

Experimental results

Based on our generic 0-1 linear programming approach (see Section 4), we present in this section a computation campaign for obtaining almost all results for problems opt M , opt IA

and opt E (note that problem opt IB will also be discussed for reasons developed at the end of the previous section). The rationale of this is threefold. First, we aim at testing the relevance of our generic 0-1 linear programming approach on real biological data. In particular, we are interested in identifying non-artificial hard to solve instances, and more generally in estimating the intrinsic limits of the proposed approach. Second, we seek at comparing on a real biological dataset the three problems opt M , opt IA and opt E , and at comparing the three models. Finally, in order to evaluate heuristics (see Section 6), we provide here an almost complete set of exact results to which we can refer to, and we also believe these results could be of interest for the community in the design of new heuristic approaches.

Our linear program solver engine is powered by CPLEX 1 . All computations were carried out on a Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16Gb of memory running under Linux.

Dataset

We conducted our computation campaign on a dataset of γ-Proteobacteria genomes, originally studied in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF]. For one, this dataset is becoming a standard reference dataset in comparative genomics [START_REF] Lerat | Evolutionary origins of genomic repertoires in bacteria[END_REF]Blin et al., 2005;Angibaud et al., 2007b). For another, this dataset is composed of genomes of moderate sizes, and hence is a good candidate for intensive time consuming computations. More precisely, our reference 1 http://www.ilog.com/products/cplex/ 20 dataset is composed of twelve complete genomes of γ-Proteobacteria out of the thirteen originally studied in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF]. Indeed, the thirteenth genome (V.cholerae) was not considered, since it is composed of two chromosomes, and hence does not fit in the model we considered here for representing genomes. More precisely, the dataset is composed of the following genomes:

• Buchnera aphidicola APS (Baphi, Genbank accession number NC 002528),

• Escherichia coli K12 (Ecoli, NC 000913),

• Haemophilus influenzae Rd (Haein, NC 000907),

• Pseudomonas aeruginosa PA01 (Paeru, NC 002516),

• Pasteurella multocida Pm70 (Pmult, NC 002663),

• Salmonella typhimurium LT2 (Salty, NC 003197),

• Xanthomonas axonopodis pv. citri 306 (Xaxon, NC 003919),

• Xanthomonas campestris (Xcamp, NC 0 03902),

• Xylella fastidiosa 9a5c (Xfast, NC 002488),

• Yersinia pestis CO 92 (Ypest-CO92, NC 003143),

• Yersinia pestis KIM5 P12 (Ypest-KIM, NC 004088) and

• Wigglesworthia glossinidia brevipalpis (Wglos, NC 004344).

The determination of the gene families, where each family is supposed to represent a group of homologous genes, is taken from (Blin et al., 2005) and hence, although a crucial preliminary step, will not be further discussed here. Initially, the sizes of the genomes range from 565 to 5474 genes (see Table 1). Moreover, 8% of the gene families are, on average, duplicated (these duplications cover, on average, 20% of the genes of a genome).

Here, Table 1 5

.2 Results

After the pre-processing step (see Section 4.3), 8% of the gene families are, on average, duplicated and these duplications cover, on average, 26% of the genes of a genome. Furthermore, pre-processing the dataset by pairs of genomes drastically reduces the size of the genomes.

For example, focusing on comparing Baphi and Ecoli, their size reduces from 565 and 4119 genes to 531 and 721, respectively. Table 2 gives all reduced sizes for pairwise comparisons for the exemplar model and Table 3 gives all reduced sizes for pairwise comparisons for the maximum matching model. Notice that this latter table also gives all reduced sizes for pairwise comparisons for the intermediate model (indeed, concerning the pre-processing step, a maximum matching can be seen as the "worst" case over all possible intermediate matchings).

Here, Table 2 The computation campaign, in which all 0-1 linear programs have been extended with speed-up rules as described in 4.3, has given the results presented in Table 4 (symbol X denotes unsolved instances).

Here, Table 4 Maximum matching model. Recall first that computing the minimum number of breakpoints and the maximum number of adjacencies for the maximum matching model are equivalent problems (see Proposition 1). This problem turned out out to be the easiest case for our γ-Proteobacteria dataset. The CPLEX engine indeed computed all pairwise distances (Table 4) in less than 2 minutes (1.7 second, on average, per pairwise genome comparison).

Exemplar model. Again, recall here that computing the minimum number of breakpoints and the maximum number of adjacencies are equivalent problems for the exemplar model (see Proposition 1). However, oppositely to the maximum matching model, we were not able to compute all pairwise distances. More precisely, 61 out of 66 results (see Table 4)

have been obtained thanks to our 0-1 linear programming program in less than 1 minute, except for two cases, for which several hours of computation were necessary. Our attempts for computing the remaining 5 last cases resulted in CPLEX memory exhausted crashes. We note that a similar combinatorial explosion was observed in (Angibaud et al., 2007b) in the context of maximizing the number of common intervals between two genomes by means of a 0-1 linear program. Unfortunately, we still have no formal explanation for this surprising and counter-intuitive situation. However, we believe this fact to be not related to the CPLEX engine -seen as a black box here.The only obvious observation that can be made for these 5 unsolved cases is that they always take as input two genomes of relatively large sizes (roughly, between 2500 and 3500 genes in each case). However, this is not a sufficient explanation since there are pairs of genomes that have more or less the same size and that went through our program (see for instance Salty/Ypest-KIM). This is why we strongly suspect the structure of the genomes to play a role concerning this problem.

Intermediate model. Recall first that minimizing the number of breakpoints and maximizing the number of adjacencies are not equivalent problems for the intermediate model.

Concerning the problem of maximizing the number of adjacencies, 63 out of 66 results have been obtained in about 3 minutes. As for minimizing the number of breakpoints, 59 out of 66 results have been obtained in less than two minutes.

A justification should be given here for having computed the minimum number of breakpoints for the intermediate model (problem opt IB). Indeed, minimizing the number of breakpoints for the exemplar and the intermediate models were shown to be equivalent problems in Section 3 (see Proposition 2), and thus the rightmost column of in a solution with more adjacencies (see the example at the end of Section 4 for a simple illustration). This could be helpful for obtaining a solution that achieves a double objective:

minimizing the number of breakpoints (primary objective) and, among those optimal solutions, maximizing the number of adjacencies (secondary objective). This latter goal should be, however, modulated here since the secondary objective is not explicitly stated in the 0-1 linear program, i.e., there is no guarantee that the maximum number of adjacencies is achieved.

We now turn to comparing the results for the different models. First, the following two (average) ratios can be computed from Table 4: These two ratios illustrate the fact that (i) the minimum number of breakpoints for the exemplar and the maximum matching models differ in about 10%, and (ii) the maximum number of adjacencies for the exemplar and the maximum matching models also differ in about 10%. In the light of these factual ratios, it should thus be emphasized here that, for most practical applications, the choice of the model (exemplar or maximum matching) to focus on should not be underestimated, since noticeable differences might result from this decision.

As for the intermediate model, we already showed that bkp opt E = bkp opt I . We compare in 6), and for another, for 1/3 of the comparisons, we obtain the same number of breakpoints when maximizing the number of adjacencies for the intermediate model as

we obtain for the exemplar model.

Here, Table 5 Here, Table 6 To compare adj opt I and bkp opt I , the two following (average) ratios can be computed (see

27

Though our 0-1 linear programming approach presented in Section 4 allows us to obtain almost all the expected exact results in the exemplar, intermediate and maximum matching models on the studied set of γ-Proteobacteria (see Section 5), it should be said that the limits of this method have been attained. Indeed, especially in the intermediate model, some results could not be obtained in reasonable time using this method, and one of the reasons for this is that the sizes of the genomes were too large for the 0-1 linear programming method to be able to handle it. In other words, while this method seems to be promising for "small" genomes (i.e. genomes which, after pre-processing, do not exceed, roughly, two thousand genes), there is a crucial need for faster (and thus not necessarily exact) algorithms in case genomes are of substantially larger sizes ; of course, these heuristic algorithms should provide results of high quality, that is as close as possible from the exact results. In that sense, thanks to the results presented in the previous section, we will be able to compare several heuristics to the exact results and to validate the accuracy of the heuristics provided in this section.

In the following, altogether nine heuristics will be presented and studied (three for each model) ; each of these heuristics fall into one of the two following categories: (i) heuristics based on finding iteratively the Longest Common Subsequence (or LCS, for short) of two genomes, and (ii) heuristics which are a hybrid between category (i) above and the 0-1 linear programming method.

Description of the Heuristics

Before describing in detail our heuristics, we recall that under the intermediate model, two different problems exist: either we wish to find a matching that maximizes the number of adjacencies, or one that minimizes the number of breakpoints. However, we have seen that minimizing the number of breakpoints in the intermediate model is equivalent to minimizing the number of breakpoints in the exemplar model (see Proposition 2). Thus any heuristic that aims at minimizing the number of breakpoints in the exemplar model will of course apply for minimizing the number of breakpoints in the intermediate model. Consequently, when we turn to the intermediate model, we will only focus on heuristics that aim at maximizing the number of adjacencies.

IILCS heuristics

We first describe here the main ideas that lie behind heuristics based on finding iteratively the Longest Common Subsequence (or LCS, for short), that we have called IILCS heuristics.

Let G 1 and G 2 be two genomes: an LCS of (G 1 , G 2) is a longest common word S of G 1 and G 2 , up to a complete reversal. The idea here is to match, at each iteration, all the genes that are present in an LCS, until the desired matching is obtained.

We note that this idea is not new: it has already been used, for instance, in (Marron et al., 2004). In (Angibaud et al., 2007b), this heuristic has been improved in the following way: at each iteration, not only we match all the genes that are contained in an LCS (Rule 1), but we also remove each unmatched gene of a genome for which there is no unmatched gene of same family in the other genome (Rule 2).

The three heuristics that we are going to present use the two above mentioned rules.

Since the difference between the problems lies in the matching that we wish to obtain, our three heuristics will differ on that specific point.

Maximum matching model. We apply iteratively Rule 1 and Rule 2 until the algorithm stops. By definition of Rule 1 and Rule 2, this implies that the resulting matching is maximum. We call this heuristic IILCS M.

Intermediate model. We also apply iteratively Rule 1 and Rule 2. The difference here is the stop condition: the algorithm stops as soon as each gene family has been matched at least once. We call this heuristic IILCS IA.

Exemplar model. We apply iteratively Rule 1 and Rule 2 again, but we apply extra deletions of genes at each iteration. Indeed, we need to make sure that only one gene from each family is matched on each genome. In that case, at each iteration, for the duplicate genes which are contained in the current LCS, we arbitrarily keep (and match) the first occurrence ; while for those genes g who are outside LCS, we apply the following rule: if g is present in the LCS (and thus kept in the matching), then we remove all the other occurrences of g in the rest of both genomes. When this heuristic stops, we are thus guaranteed to obtain an exemplar matching. We call this heuristic IILCS E.

Remark that, for each of those three heuristics, at each iteration, there might exist several LCS ; in that case, we have decided to randomly choose one of them. Due to this, if one runs IILCS M (respectively IILCS IA, IILCS E) several times on the same instance, it could result in different matchings, and thus the number of breakpoints and adjacencies may vary.

Hence, for each pair of genomes, we have decided to run ten times the heuristics IILCS M, IILCS IA and IILCS E and to keep the best result.

Hybrid method

Let us now describe the other category of heuristics we propose for solving our problems in the three models: this method is a hybrid method using the appropriate IILCS heuristic, followed by the 0-1 linear programming algorithm. The principle is to compute a part of the matching by iterating of the appropriate heuristic IILCS until the size of the LCS is strictly smaller than a given parameter k. Once this is done, we complete the matching by invoking the appropriate 0-1 linear programming algorithm. This heuristic is called HYB M(k)

(respectively HYB IA(k), HYB E(k)) in the maximum matching (respectively intermediate, exemplar) model.

For each of the three models, we have tested the hybrid heuristic described above for two different values of k, namely k = 2 and k = 3. We deliberately chose small values of k, because when k gets bigger, invoking the exact algorithm for completing the partial matching might take too long, which is something we want to avoid. Moreover, we will see in the next section that the results obtained with k = 2 and k = 3 are already extremely good.

Non-exact results

Each of the nine heuristics has been tested on the dataset of γ-Proteobacteria described in Section 5.1. A synthesis of all these results is given in Table 7, where we show, for the nine heuristics, how close they lie to the exact results on average, at worse and at best.

Here, Table 8 Here, Table 9 Here, Table 10 6

.3 Discussion

Globally, the nine heuristics that we have proposed perform very well on our dataset. For each of the three problems, the appropriate IILCS heuristic returns results that are on average at least 90% of the optimal value. It can be seen that IILCS IA is relatively less effective than IILCS E and IILCS M: IILCS IA returns on average results that are 90.56% of the optimal value, while IILCS E (respectively IILCS M) reaches 99.36% (respectively 99%).

This can be explained by the fact that IILCS IA, which relies on iteratively finding and matching the genes of a Longest Common Subsequence, is in fact well-fitted for minimizing the number of breakpoints, but not necessarily for maximizing the number of adjacencies.

Still, its performances, though not as good as the ones of IILCS E and IILCS M, remain satisfying.

Non surprisingly, our hybrid methods, with parameter k = 2, give better results than their corresponding IILCS heuristics (we are on average 99.48% close to the optimal values for the less effective heuristic). Non surprisingly again, when we set parameter k to 3, the hybrid methods get even better (we are on average 99.82% close to the optimal values for the less effective heuristic). In each case, we are on average closer to the optimal values, and much more exact values are obtained.

There are two main conclusions that can be drawn from this set of results.

First, any of the nine presented heuristics is good on the studied dataset, and in that sense they are all validated. Of course, when possible, better results should be obtained using the hybrid method HYB(3), or HYB(2). However, even after having computed a partial matching by running IILCS down to k = 3 or k = 2, we cannot obtain in reasonable time all results with the 0-1 linear program. In particular, this situation might occur when genomes are of very large sizes. In that case, the good performances of the IILCS heuristics show that they still can be used to obtain fast and accurate results.

Second, these results show that the rather intuitive idea consisting of iteratively finding and matching the genes of a Longest Common Subsequence is very effective for both measures (number of breakpoints and number of adjacencies) and for the three models. It should be said that the same conclusion was drawn in (Angibaud et al., 2007b) concerning the measure "number of common intervals" under the maximum matching model. In that sense, it tends to prove that comparing gene orders should probably, in the future, be studied under this angle.

34

This paper developed out of an attempt to build more accurate models for comparative genomics and to design accurate and fast heuristics for breakpoints and adjacencies based measures.

In that sense, the results we have obtained are very satisfying: for one, virtually all the results have been obtained through our 0-1 linear programming approach (though it seems hard to push it further for genomes of larger sizes). For the other, all the heuristics we have proposed perform very well on our dataset.

Another aspect of our work was to focus on the intermediate model. Indeed, our main motivation for this lies on the fact that both the exemplar and the maximum matching might be too restrictive for practical applications. More precisely, if both the exemplar and the maximum matching models provide a clear and simple algorithmic framework, we believe the intermediate model to be well-suited and more accurate for comparative genomics. From this point of view, one of our goals was to observe whether this new model would give very different results from the exemplar and maximum matching models. It turns out that the results are not conclusive: (i) opt IB is equivalent to opt E (see Proposition 2), and (ii) solving opt IA returns results which, in terms of adjacencies, are relatively close to both opt E and opt M (see Tables 5 and6). Hence, studying the pertinence of the intermediate model on our dataset and for our measures would require a deeper study, and in particular a study of the structure of the output genomes (how many genes of each family are kept and what are their locations, for instance). This specific study is one that we will undertake in the next future.

Though we were not able to clearly distinguish, using the number of breakpoints or the number of adjacencies, whether the intermediate model radically differs from the others, we still believe this model to be of interest. First, giving more freedom in the structure of the solution is certainly an advantage for practical applications. Second, as illustrated in 4 but its time computation should be more important.

G

1 [1] G 1 [2] G 1 [i -1] G 1 [i] G 1 [i + 1] G 1 [n 1] Genome G 2 G 2 [1] G 2 [2] G 2 [k 1] G 2 [k j] G 2 [k p] G 2 [n 2] |G 1 [i]| = |G 2 [k 1]| |G 1 [i]| = |G 2 [k j]| |G 1 [i]| = |G 2 [k p]| a(i, k 1) = 0 a(i, k j) = 1 a(i, k p) = 0 b 1 (i) = 1 b 2 (k 1) ∈ {0, 1} b 2 (k j) = 1 b 2 (k p) ∈ {0, 1} b 2 (k 1) + . . . + b 2 (k j) + . . . + b 2 (k p) = min{occ 1 (|G 1 [i]|), occ 2 (|G 1 [i]|)} Figure 2: Illustration of the constraints on variable b 1 (i), 1 ≤ i ≤ n 1 . If gene G 1 [i] appears in positions k 1 < k 2 < . . . < k p in G 2 and gene G 1 [i] is mapped to gene G 2 [k j] in the solution matching, then (i) a(i, k j) = 1, i.e., gene G 1 [i] is mapped to gene G 2 [k j], (ii) a(i, k q) = 0 for 1 ≤ q ≤ p and q = j, i.e., gene G 1 [i] is mapped to only one gene in G 2 , (iii) b 1 (i) = 1, i.e., gene G 1 [i] is mapped to a gene of G 2 and (iv) b 2 (k j) = 1, i.e., gene G 2 [k j] is mapped to a gene of G 1 .
Observe that one may have in addition b 2 (k q) = 1 for some 1 ≤ q ≤ p and q = j if min(occ

1 (|G 1 [i]|), occ 2 (|G 1 [i]|
) ≥ 1 (this observation is however no longer valid for the exemplar model).

d(i, j, k, ℓ) = 1 Genome G 1 G 1 [1] G 1 [i -1] G 1 [i] G 1 [i + 1] G 1 [j -1] G 1 [j] G 1 [j + 1] G 1 [n 1] Genome G 2 G 2 [1] G 2 [k -1] G 2 [k] G 2 [k + 1] G 2 [ℓ -1] G 2 [ℓ] G 2 [ℓ + 1] G 2 [n 2] G 1 [i] = G 2 [k] a(i, k) = 1 G 1 [j] = G 2 [ℓ] a(j, ℓ) = 1 b 1 (p) = 0 ∀ i < p < j b 1 (i) = 1 b 1 (j) = 1 b 2 (q) = 0 ∀ k < q < ℓ b 2 (k) = 1 b 2 (ℓ) = 1 c 1 (i, j) = 1 c 2 (k, ℓ) = 1 Figure 3: Illustration of the constraints on variable d(i, j, k, ℓ), 1 ≤ i < j ≤ n 1 and 1 ≤ k < ℓ ≤ n 2 , for G 1 [i] = G 2 [k] and G 1 [j] = G 2 [ℓ]. The two genes G 1 [i] and G 1 [j]
are adjacent according to a solution matching if there exist two genes G

2 [k] and G 2 [ℓ], G 1 [i] = G 2 [k] and G 1 [j] = G 2 [ℓ], such that (i) G 1 [i] is mapped to G 2 [k], i.e., a(i, k) = 1, (ii) G 1 [j] is mapped to G 2 [ℓ], i.

1.

 G 1 = . . . a X b . . ., G 2 = . . . a X b . . . or G 2 = . . . -b -X -a . . . Deleting X in both genomes results in genomes G ′ 1 = . . . a b . . ., G ′ 2 = . . . a b . . . or G ′ 2 = . . . -b -a . . . where no additional breakpoint is introduced. 2. G 1 = . . . a X b . . ., G 2 = . . . c X b . . . or G 2 = . . . -b -X c . . . Deleting X in both genomes results in genomes G ′ 1 = . . . a b . . ., G ′ 2 = . . . c b . . . or G ′ 2 = . . . -b c . . . where no additional breakpoint is introduced. 3. G 1 = . . . a X b . . ., G 2 = . . . c X b . . . or G 2 = . . . b -X -c . . . Deleting X in both genomes results in genomes G ′ 1 = . . . a b . . ., G ′ 2 = . . . c b . . . or G ′ 2 = . . . b -c . . . where no additional breakpoint is introduced. 4. G 1 = . . . a X b . . . For any arbitrary G 2 , deleting X in both genomes induces either genome G ′ 1 = . . . a b . . . or genome G ′ 1 = . . . a b In both cases, the number of breakpoints strictly decreases, which contradicts the optimality of the solution under the intermediate model. Therefore, this case cannot happen.

E

 and bkp opt E (resp. adj opt M and bkp opt M) the number of adjacencies and the number of breakpoints in an optimal solution to opt E (resp. opt M).Let opt IA (respectively opt IB) be the problem of finding an intermediate matching Msuch that the corresponding M-pruned of G 1 and G 2 has a maximum number of adjacencies (minimum number of breakpoints, respectively).According to Proposition 2, as long as we are mainly interested in minimizing the number of breakpoints, we do not need to specifically solve opt IB , assuming we solve opt E . We denote by adj opt I and bkp opt I adj opt I and bkp opt I are the number of adjacencies and the number of breakpoints in an optimal solution to opt IA and opt IB , respectively.

4. 2

 2 Maximizing the number of adjacencies under the maximum matching model: Problem opt M The 0-1 linear program we propose here (referred in the sequel to as Program Adjacency--Maximum-Matching) takes as input two genomes with duplicated genes, and solves problem opt M . We denote by G the set of all gene families. The program is presented in Figure 1. How to adapt the program for dealing with other problems of interest is deferred to Subsection 4.4.

 The corresponding variables d are set directly to 0 and the related constraints are discarded. Intermediate Model (Problem opt IA). Again, we are here concerned with Constraint C.02. For the intermediate model, at least one gene of each gene family must be saturated. This simply reduces in rewriting Constraint C.02 as follows.

Table 4

 4

	might appear

that, although obtaining the same minimum number of breakpoints as the exemplar model, a matching minimizing the number of breakpoints for the intermediate model might result

Table 5

 5 the results for the intermediate model with the results for the two other models. To complement Table5, we indicate in Table6how often the same optimal measure (number of breakpoints or number of adjacencies) is found for the intermediate model and for another model (exemplar or maximum matching). It should be noticed here that, for most cases, we obtain more adjacencies using the intermediate model. The situation is more contrasted when considering the number of breakpoints: for one, we have bkp opt E = bkp opt

	I	(denoted by

Table 5

 5 maximum number of adjacencies). We however do think that the two ratios are too close to draw any definitive conclusion here on the ≪ adj opt

):				
	adj(M opt I,bkp) adj opt I	= 0.94	and	bkp opt I bkp(M opt I,adj)	= 0.97.
	The intermediate model gives us opportunity to drive the computation with a double objec-
	tive (minimum number of breakpoints and maximum number of adjacencies). According to
	the above, one may be tempted to argue that, for the intermediate model, maximizing the
	number of adjacencies is better than minimizing the number of breakpoints since the obtained
	solution certainly maximizes the number of adjacencies yet giving about 1/0.97 ≈ 103% of
	the minimum number of breakpoints (minimizing the number of breakpoints gives about

I versus bkp opt I ≫ question.

Table 4 ,

 4 the intermediate model actually gives rise to two combinatorial problems (minimizing the number of breakpoints and maximizing the number of adjacencies). A complementary line of research is thus to develop a 0-1 linear based program for achieving such a double objective. Note that such a program could be obtained by the following procedure: compute the minimum number of breakpoints for the intermediate model, transform this objective into an additional constraint to obtain a modified linear program, and finally compute the maximum number of adjacencies according to the modified 0-1 linear program. Conversely, we can add a constraint to obtain the maximum number of adjacencies, then compute the minimum of breakpoints. These approaches would give us more precise results for the intermediate model than those in Table

Table 2 :

 2 Reduced sizes of the genomes for pairwise comparisons under the exemplar model. As an illustration, pre-processing the data for comparing Baphi with Ecoli reduces in two genomes of size 531 (Baphi) and 721 (Ecoli).

		1					
		0,995					
		0,99					
		0,985					
	M M /bkp H bkp opt	0,98 0,975 0,97						IILCS_M HYB_M(2) HYB_M(3)
		0,965					
		0,96					
		0,955					
		0,95					
		10	20	30	40	50	60	66
					66 runs		
	Figure 4: Graphical representation of ratio bkp opt M /bkp H M under the maximum matching
	model, for each of the 66 exact results that we have obtained. H is the studied heuristic
	(i.e., either IILCS M, HYB M(2) or HYB M(3)), bkp H M is the number of breakpoints computed by H and bkp opt M is the minimum number of breakpoints under the maximum matching
	model.						

e., a(j, ℓ) = 1, (iii) no gene between G 1 [i] and G 1 [j] is mapped to a gene of G 2 , i.e., c 1 (i, j) = 1 and (iv) no gene between G 2 [k] and G 2 [ℓ] is mapped to a gene of G 2 , i.e., c 2 (k, ℓ) = 1. The above situation reduces in our model to d(i, j, k, ℓ) = 1.

Table 3 :

 3 Reduced sizes of the genomes for pairwise comparisons under the maximum matching and intermediate models. As an illustration, pre-processing the data for comparing Baphi with Ecoli reduces in two genomes of size 535 (Baphi) and 745 (Ecoli).

	G 1 -G 2	adj(M)	bkp(M)	adj(M)	bkp(M)	adj(M)	bkp(M)	adj(M)	bkp(M)

Table 4 :

 4 Number of adjacencies adj(M) and number of breakpoints bkp(M) for problems opt E , opt M , opt IA and opt IB . M always denotes the returned solution and X stands for the unsolved cases.

		adj opt I	adj(M opt I,bkp) bkp(M opt I,adj) bkp opt I
	adj opt E adj opt M bkp opt E bkp opt M	1.10 1.01 --	1.02 0.95 --	--1.03 0.92	--1.00 0.90

Table 5 :

 5 Comparison of the results for adj opt I : maximum number of adjacencies for the intermediate model, adj(M opt I,bkp): number of adjacencies induced by a matching M opt I,bkp yielding the minimum number of breakpoints for the intermediate model, bkp(M opt I,adj): number of breakpoints induced by a matching M opt I,adj yielding the maximum number of adjacencies for the intermediate model, bkp opt I : minimum number of breakpoints the intermediate model, adj opt E : maximum number of adjacencies for the exemplar model, adj opt M : maximum number of adjacencies for the maximum matching model, bkp opt E : minimum number of breakpoints for the exemplar model, bkp opt M : minimum number of breakpoints for the maximum matching model. Bold values indicate cases where the intermediate model performs better than the exemplar or maximum matching model. Shown here are the average ratios, e.g., = 1.10, and hence, on average, the number of adjacencies for the exemplar model is about 1/1.10 = 90% of the number of adjacencies achieved by the intermediate model.

	adj opt I
	adj opt E

Table 6 :

 6 Shown here is the percentage that the same optimal measure (maximum number of adjacencies and minimum number of breakpoints) is found for the intermediate models and the two other models (exemplar and maximum matching). For example, for 5 out of 58 pairs of genomes i.e., 9%, it holds that adj opt E = adj(M opt I,bkp) (see Table5).

	Average	99.36%	99.97%	99.99%	90.56%	99.48%	99.82%	99.00%	99.89%	99.97%
	Worst case	96.51%	99.53%	99.84%	82.09%	98.09%	98.78%	95.19%	99.50%	99.67%
	Best case	100%	100%	100%	98.52%	100%	100%	100%	100%	100%
	Number of instances									
	for which the exact	15	52	59	0	17	35	12	35	55
	result is obtained		(out of 66)			(out of 63)			(out of 61)	

Table 7 :

 7 Summary of the results for the nine studied heuristics and comparison to the exact results. As an illustration, in the intermediate model, HYB IA(2) provides results that are on average 99.48% of the optimal number of breakpoints, ranging from 98.09% to 100%. Moreover, in 17 out 63 of the cases solved by our 0-1 linear program, HYB IA(2) returns the optimal value.

= +0 + 1 + 2 -3 + 4 ; this solution yields 4 adjacencies. However, the solution under the intermediate model G ′′ 1 = G ′′ 2 = +0 + 1 + 2 -1 -3 + 4 still induces 0 breakpoint, but yields 5 adjacencies.

opt E , respectively. A graphical representation showing, for each problem, how each heuristic compares to the exact results is provided in Figures 4, 5 and 6 (note that, in each figure, the results are presented in the same arbitrary order than Tables 8, 9 and10). Concerning heuristics based on IILCS, their running time is approximately 40 minutes for each of the three problems (we recall that, for each pair of genomes, any given heuristic of this type is run 10 times, thus it takes approximately 4 minutes for each heuristic to achieve all the 66 pairwise comparisons).

As said before, concerning the heuristics based on the hybrid method, we have run them, for each of the three models (i) with parameter k set to 2 and (ii) with parameter k set to 3. The running time, for each of those six heuristics, is roughly five minutes.

Here, Table 7 Here, Figure 4 Here, Figure 5 Here, Figure 6 Program Adjacency-Maximum-Matching

Objective :

Maximize

d(i, j, k, ℓ)