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 by proving the problem to be NP-complete in the exemplar model for a new class of instances, we note that the problems are equivalent in the intermediate and the exemplar models and we show that the problem is in P in the maximum matching model. Finally, we focus on a fourth measure, closely related to the number of breakpoints: the number of adjacencies, for which we give several constant ratio approximation algorithms in the maximum matching model, in the case where genomes contain the same number of duplications of each gene.

Introduction and Preliminaries

In comparative genomics, computing a measure of (dis-)similarity between two genomes is a central problem: such a measure can be used, for instance, to construct phylogenetic trees. The measures defined so far essentially fall into two categories: the first one consists in counting the minimum number of operations needed to transform a genome into another (e.g. the edit distance [START_REF] Marron | Genomic distances under deletions and insertions[END_REF] or the number of reversals [START_REF] Bafna | Sorting by reversals: genome rearrangements in plant organelles and evolutionary history of X chromosome[END_REF]). The second one contains (dis-)similarity measures based on the genome structure, such as the number of breakpoints [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF], the conserved intervals distance [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF], the number of common intervals [START_REF] Chauve | Genomes containing duplicates are hard to compare[END_REF], SAD (Sum Adjacency Disruption) and MAD (Maximum Adjacency Disruption) [START_REF] Sankoff | Power boosts for cluster tests[END_REF] etc.

Dealing with duplicates in genomes. When genomes contain duplicates, we cannot directly compute the measures defined in the previous paragraph. A solution consists in finding a one-to-one correspondence (i.e. a matching) between duplicated genes of G 1 and G 2 ; we then use this correspondence to rename genes of G 1 and G 2 , and we delete the unmatched signed genes in order to obtain two genomes G ′ 1 and G ′ 2 such that G ′ 2 is a permutation of G ′ 1 ; thus, the measure computation becomes possible. In this paper, we will focus on three models of matching : the exemplar, intermediate and maximum matching models.

-The exemplar model [START_REF] Sankoff | Genome rearrangement with gene families[END_REF]: for each gene g, we keep in the matching M only one occurrence of g in G 1 and in G 2 , and we remove all the other occurrences. Hence, we obtain two genomes G E 1 and G E 2 without duplicates. The triplet (G E 1 , G E 2 , M) is called an exemplarization of (G 1 , G 2 ). Note that in this model, M can be inferred from the exemplarized genomes G E 1 and G E 2 . Thus, in the rest of the paper, any exemplarization (G E 1 , G E 2 , M) of (G 1 , G 2 ) will be only described by the pair (G E 1 , G E 2 ). -The intermediate model [START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF]: in this model, for each gene g, we keep in the matching M an arbitrary number k g , 1 ≤ k g ≤ min(occ(g, G 1 ), occ(g, G 2 )), in order to obtain genomes G I 1 and G I 2 . We call the triplet (G I 1 , G I 2 , M) an intermediate matching of (G 1 , G 2 ). -The maximum matching model [START_REF] Tang | Phylogenetic reconstruction from gene-rearrangement data with unequal gene content[END_REF]: in this case, we keep in the matching M the maximum number of signed genes in both genomes. More precisely, we look for a one-to-one correspondence between signed genes of G 1 and G 2 that matches, for each gene g, exactly min(occ(g, G 1 ), occ(g, G 2 )) occurrences. After this operation, we delete each unmatched signed gene. The triplet (G M 1 , G M 2 , M) obtained by this operation is called a maximum matching of (G 1 , G 2 ).

Problems studied in this paper. Consider two genomes G 1 and G 2 with duplicates. Let EComI (resp. IComI, MComI) be the problem which consists in finding an exemplarization (resp. intermediate matching, maximum matching) (G ′ 1 , G ′ 2 , M) of (G 1 , G 2 ) such that the number of common intervals of (G ′ 1 , G ′ 2 ) is maximized. Moreover, let EConsI (resp. IConsI, MConsI) be the problem which consists in finding an exemplarization (resp. intermediate matching, maximum matching)

(G ′ 1 , G ′ 2 , M) of (G 1 , G 2
) such that the number of conserved intervals of (G ′ 1 , G ′ 2 , M) is maximized. In Section 2, we prove the APX-hardness [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF] of EComI and EConsI, even for genomes G 1 and G 2 such that occ(G 1 ) = 1 and occ(G 2 ) = 2. These results induce the APX-hardness under the other models (i.e., IComI, MComI, IConsI and MConsI are APX-hard). These results extend in particular those of [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Chauve | Genomes containing duplicates are hard to compare[END_REF].

Let EBD (resp. IBD, MBD) be the problem which consists in finding an exemplarization (resp. intermediate matching, maximum matching) (G ′ 1 , G ′ 2 , M) of (G 1 , G 2 ) that minimizes the number of breakpoints between G ′ 1 and G ′ 2 . In Section 3, we prove the APX-hardness of EBD, even for genomes G 1 and G 2 such that occ(G 1 ) = 1 and occ(G 2 ) = 2. This result implies that IBD and MBD are also APX-hard, and extends those of [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF].

Let ZEBD (resp. ZIBD, ZMBD) be the problem which consists in determining, for two genomes G 1 and G 2 , whether there exists an exemplarization (resp. intermediate matching, maximum matching) which induces zero breakpoint. In section 4, we study the complexity of ZEBD, ZMBD and ZIBD: in particular, we extend a result of [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF] by proving ZEBD to be NP-complete for a new class of instances. We also note that the problems ZEBD and ZIBD are equivalent, and we show that ZMBD is in P.

Finally, in Section 5, we focus on a fourth measure, closely related to the number of breakpoints: the number of adjacencies, for which we give several constant ratio approximation algorithms in the maximum matching model, in the case where genomes are balanced. 

) (G ′ 1 , G ′ 2 , M) of (G 1 , G 2 ) such that the number of common intervals of (G ′ 1 , G ′ 2
) is maximized. Moreover, let EConsI (resp. IConsI, MConsI) be the problem which consists in finding an exemplarization (resp. intermediate matching, maximum matching

) (G ′ 1 , G ′ 2 , M) of (G 1 , G 2 ) such that the number of conserved intervals of (G ′ 1 , G ′ 2 , M
) is maximized. EComI and MComI have been proved to be NP-complete even if occ(G 1 ) = 1 and occ(G 2 ) = 2 in [START_REF] Chauve | Genomes containing duplicates are hard to compare[END_REF]. Besides, in [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF], Blin and Rizzi have studied the problem of computing a distance built on the number of conserved intervals. This distance differs from the number of conserved intervals we study in this paper, mainly in the sense that (i) it can be applied to two sets of genomes (as opposed to two genomes in our case), and (ii) the distance between two identical genomes of length n is equal to 0 (as opposed to n(n+1) 2 in our case). Blin and Rizzi [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF] proved that finding the minimum distance is NP-complete, under both the exemplar and maximum matching models. A closer analysis of their proof shows that it can be easily adapted to prove that EConsI and MConsI are NP-complete, even in the case occ(G 1 ) = 1.

We can conclude from the above results that IComI and IConsI are also NP-complete, since when one genome contains no duplicates, exemplar, intermediate and maximum matching models are equivalent.

In this section, we improve the above results by showing that the six problems EComI, IComI, MComI, EConsI, IConsI and MConsI are APX-hard, even when genomes G 1 and G 2 are such that occ(G 1 ) = 1 and occ(G 2 ) = 2. The main result is Theorem 1, which will be completed by Corollary 1 at the end of the section.

Theorem 1. EComI and EConsI are APX-hard even when genomes G 1 and G 2 are such that occ(G 1 ) = 1 and occ(G 2 ) = 2.

We prove Theorem 1 by using an L-reduction [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF] from the Min-Vertex-Cover problem on cubic graphs, denoted here by Min-Vertex-Cover-3. Let G = (V, E) be a cubic graph, i.e. for all

v ∈ V, degree(v) = 3. A set of vertices V ′ ⊆ V is called a vertex cover of G if for each edge e ∈ E,
there exists a vertex v ∈ V ′ such that e is incident to v. The problem Min-Vertex-Cover-3 is defined as follows:

Problem: Min-Vertex-Cover-3

Input: A cubic graph G = (V, E). Solution: A vertex cover V ′ of G. Measure: The cardinality of V ′ .
Min-Vertex-Cover-3 was proved to be APX-complete in [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF].

Reduction

Let G = (V, E) be an instance of Min-Vertex-Cover-3, where G is a cubic graph with V = {v 1 . . . v n } and E = {e 1 . . . e m }. Consider the transformation R which associates to the graph G two genomes G 1 and G 2 in the following way, where each gene has a positive sign.

G 1 = b 1 b 2 . . . b m x a 1 C 1 f 1 a 2 C 2 f 2 . . . a n C n f n y b m+n , b m+n-1 . . . b m+1 (1) 
G 2 = y a 1 D 1 f 1 b m+1 a 2 D 2 f 2 b m+2 . . . b m+n-1 a n D n f n b m+n x (2) with : 
-

for each i, 1 ≤ i ≤ n, a i = 6i -5, f i = 6i -for each i, 1 ≤ i ≤ n, C i = (a i + 1), (a i + 2), (a i + 3), (a i + 4) -for each i, 1 ≤ i ≤ n + m, b i = 6n + i -x = 7n + m + 1 and y = 7n + m + 2 -for each i, 1 ≤ i ≤ n, D i = (a i + 3), (b j i ), (a i + 1), (b k i ), (a i + 4), (b l i ), (a i + 2
) where e j i , e k i and e l i are the edges which are incident to v i in G, with j i < k i < l i .

In the following, genes b i , 1 ≤ i ≤ m, are called markers. There is no duplicated gene in G 1 and the markers are the only duplicated genes in G 2 ; these genes occur twice in G 2 . Hence, we have occ(G 1 ) = 1 and occ(G 2 ) = 2. To illustrate the reduction, consider the cubic graph G of Figure 1. From G, we construct the following genomes G 1 and G 2 : 

V 2 V 1 V 3 V 4 e 2 e 5

Preliminary results

In order to prove Theorem 1, we first give four intermediate lemmas. In the following, a common interval for the EComI problem or a conserved interval for EConsI is called a robust interval.

Besides, a trivial interval will denote either an interval of length one (i.e. a singleton), or the whole genome.

Lemma 1. For any exemplarization

(G 1 , G E 2 ) of (G 1 , G 2 ), the non trivial robust intervals of (G 1 , G E 2 ) are necessarily contained in some sequence a i C i f i of G 1 (1 ≤ i ≤ n).
Proof. We start by proving the lemma for common intervals, and we will then extend it to conserved intervals. First, we prove that, for any exemplarization (G 1 , G E 2 ) of (G 1 , G 2 ), each common interval I such that |I| ≥ 2 contains either both of x, y or none of them. This further implies that I covers the whole genome. Suppose there exists a common interval I x (recall that by definition I x is on G 1 ) such that |I x | ≥ 2 and I x contains x. Let P I x be the permutation of I x in G E 2 . The interval I x must contain either b m or a 1 . Let us detail each of the two cases:

(a) If I x contains b m , then P I x contains b m too. Notice that there is some i,

1 ≤ i ≤ n, such that b m belongs to D i in G E 2 .
Then P I x contains all genes between D i and x in G E 2 . Thus P I x contains b m+n . Consequently, I x contains b m+n and it also contains y. (b) If I x contains a 1 , then P I x contains a 1 too. Then P I x contains all genes between a 1 and x.

Thus P I x contains b m+n . Hence, I x contains b m+n and then it also contains y. and y. Hence P I y contains all the sequences D i , 1 ≤ i ≤ n. In particular, P I y contains all the markers and consequently I y must contain x. (b) If I y contains f n , then P I y contains f n too. Then P I y contains all genes between f n and y.

In particular, P I y contains b m+n-1 and then I y contains b m+n-1 too. Hence, I y also contains b m+n , similarly to the previous case. Thus I y contains x.

We conclude that each non singleton common interval containing either x or y necessarily contains both x and y. Therefore, and by construction of G 2 , there is only one such interval, that is G 1 itself. Hence, any non trivial common interval is necessarily, in G 1 , either strictly on the left of x, or between x and y, or strictly on the right of y. Let us analyze these different cases:

-Let I be a non trivial common interval situated strictly on the left of x in G 1 . Thus I is a sequence of at least two consecutive markers. Since in any exemplarization (G 1 , G E 2 ) of (G 1 , G 2 ), every marker in G E 2 has neighboring genes which are not markers, this contradicts the fact that I is a common interval.

-Let I be a non trivial common interval situated strictly on the right of y in G 1 . Then I is a substring of b m+n , . . . , b m+1 containing at least two genes. In any exemplarization

(G 1 , G E 2 ) of (G 1 , G 2 ), for each pair (b m+i , b m+i+1 ) of G E 2 , with 1 ≤ i < n, we have a i+1 ∈ G E 2 [b m+i , b m+i+1
]. This contradicts the fact that I is strictly on the right of y in G 1 .

-Let I be a non trivial common interval lying between x and y in G 1 . For any exemplarization

(G 1 , G E 2 ) of (G 1 , G 2 ), a common interval cannot contain, in G 1 , both f i and a i+1 for some i, 1 ≤ i ≤ n -1 (since b m+i is situated between f i and a i+1 in G E 2 and on the right of x in G 1 ). Hence, a non trivial common interval of (G 1 , G E 2 ) is included in some sequence a i C i f i in G 1 , 1 ≤ i ≤ n.
This proves the lemma for common intervals. By definition, any conserved interval is necessarily a common interval. So, a non trivial conserved interval of (G 1 , G E

2 ) is included in some sequence

a i C i f i in G 1 , 1 ≤ i ≤ n. The lemma is proved. ⊓ ⊔ Lemma 2. Let (G 1 , G E 2 ) be an exemplarization of (G 1 , G 2 ) and i ∈ [1 . . . n]. Let ∆ i be a substring of [a i + 3, a i + 2] G E 2 that does not contain any marker. If |∆ i | ∈ {2, 3}, then there is no robust interval I of (G 1 , G E 2 ) such that ∆ i is a permutation of I.
Proof. First, we prove that there is no permutation

I of ∆ i such that I is a common interval of (G 1 , G E 2 )
. Next, we show that there is no permutation I of ∆ i such that I is a conserved interval. By Lemma 1, we know that a non trivial common interval of (G 1 , G E

2 ) is a substring of some sequence

a i C i f i , 1 ≤ i ≤ n.
This substring contains only consecutive integers. Therefore, if there exists a permutation I of ∆ i such that I is a common interval of (G 1 , G E 2 ), then ∆ i must be a permutation of consecutive integers. If |∆ i | = 2, we have ∆ i = (p, q) where p and q are not consecutive integers and if

|∆ i | = 3, then we have ∆ i = (a i + 3, a i + 1, a i + 4) or ∆ i = (a i + 1, a i + 4, a i + 2)
. In these three cases, ∆ i is not a permutation of consecutive integers. Hence, there is no permutation

I of ∆ i such that I is a common interval of (G 1 , G E 2 )
. Moreover, any conserved interval is also a common interval. Thus, there is no permutation

I of ∆ i such that I is a conserved interval of (G 1 , G E 2 ). ⊓ ⊔
For more clarity, let us now introduce some notation. Given a graph

G = (V, E), let V C = {v i 1 , v i 2 . . . v i k } be a vertex cover of G. Let R(G) = (G 1 , G 2
) be the pair of genomes defined by the construction described in (1) and (2). Now, let F be the function which associates to V C, G 1 and G 2 an exemplarization F (V C) of (G 1 , G 2 ) as follows. In G 2 , all the markers are removed from the sequences D i for all i = i 1 , i 2 . . . i k . Next, for each marker which is still present twice, one of its occurrences is arbitrarily removed. Since in G 2 only markers are duplicated, we conclude that

F (V C) is an exemplarization of (G 1 , G 2 ).
Given a cubic graph G and genomes G 1 and G 2 obtained by the transformation R(G), let us define the function S which associates to an exemplarization (G

1 , G E 2 ) of (G 1 , G 2 ) the vertex cover V C of G defined as follows: V C = {v i |1 ≤ i ≤ n ∧ ∃j ∈ {1 . . . m}, b j ∈ G E 2 [a i , f i ]}.
In other words, we keep in V C the vertices v i of G for which there exists some gene b j such that b j is in G E 2 [a i , f i ]. We now prove that V C is a vertex cover. Consider an edge e p of G. By construction of G 1 and G 2 , there exists some i,

1 ≤ i ≤ n, such that gene b p is located between a i and f i in G E 2 .
The presence of gene b p between a i and f i implies that vertex v i belongs to V C. We conclude that each edge is incident to at least one vertex of V C.

Let W be the function defined on {EConsI, EComI} by W (pb) = 1 if pb = EConsI and W (pb) = 4 if pb = EComI. Let opt pb (A) be the optimum result of an instance A for an optimization problem pb, pb ∈ {EcomI, EConsI, Min-Vertex-Cover-3}.

We now define the function T whose arguments are a problem pb ∈ {EConsI, EComI} and a cubic graph

G. Let R(G) = (G 1 , G E
2 ) as usual. Then T (pb, G) is defined as the number of robust trivial intervals of (G 1 , G E

2 ) with respect to pb. Let n and m be respectively the number of vertices and the number of edges of G. We have T (EConsI, G) = 7n+m+2 and T (EComI, G) = 7n+m+3. Indeed, for EComI, there are 7n + m + 2 singletons and we also need to consider the whole genome.

Lemma 3. Let pb ∈ {EcomI, EConsI}. Let G be a cubic graph and R(G) = (G 1 , G 2 ). Let (G 1 , G E 2 ) be an exemplarization of (G 1 , G 2 ) and let i, 1 ≤ i ≤ n.
Then only two cases can occur with respect to D i .

Either in G E

2 , all the markers from D i were removed, and in this case, there are exactly W (pb) non trivial robust intervals involving D i .

Or in G E

2 , at least one marker was kept in D i , and in this case, there is no non trivial robust interval involving D i .

Proof. We first prove the lemma for the EComI problem and then we extend it to EConsI. Lemma 1 implies that each non trivial common interval

I of (G 1 , G E 2 ) is contained in some substring of a i C i f i , 1 ≤ i ≤ n. So, the permutation of I on G E 2 is contained in a substring of a i D i f i , 1 ≤ i ≤ n. Consider i, 1 ≤ i ≤ n,
and suppose that all the markers from D i are removed on G E 2 . Thus,

a i C i f i , C i , a i C i and C i f i are common intervals of (G 1 , G E 2 ).
Let us now show that there is no other non trivial common interval involving D i . Let ∆ i be a substring of [a i + 3,

a i + 2] G E 2 such that |∆ i | ∈ {2, 3}
. By Lemma 2, we know that ∆ i is not a common interval. The remaining intervals are (a i , a i + 3), (a i , a i + 3, a i + 1), (a i , a i + 3, a i + 1, a i + 4), (a i + 1, a i + 4, a i + 2, f i ), (a i + 4, a i + 2, f i ) and (a i + 2, f i ). By construction, none of them can be a common interval, because none of them is a permutation of consecutive integers. Hence, there are only four non trivial common intervals involving D i in G E 2 . Among these four common intervals, only a i C i f i is a conserved interval too. In the end, if all the markers are removed from D i , there are exactly four non trivial common intervals and one non trivial conserved interval involving D i . So, given a problem pb ∈ {EcomI, EconsI}, there are exactly W (pb) non trivial robust intervals involving D i . Now, suppose that at least one marker of

D i is kept in G E 2 . Lemma 1 shows that each non trivial common interval I of (G 1 , G E 2 ) is contained in some substring of a i C i f i , 1 ≤ i ≤ n.
Since no marker is present in a sequence a i C i f i , we deduce that there does not exist any trivial common interval containing a marker. So, a non trivial common interval involving D i only must contain a substring

∆ i of [a i + 3, a i + 2] G E 2 such that ∆ i contains no marker. Since no marker is an extremity of [a i + 3, a i + 2] G E 2
, we have |∆ i | ≤ 3. By Lemma 2, we know that ∆ i is not a common interval. The remaining intervals to be considered are the intervals a i ∆ i and ∆ i f i . By construction of a i C i f i , these intervals are not common intervals (the absence of gene a i + 2 for a i ∆ i and of gene a i + 3 for ∆ i f i implies that these intervals are not a permutation of consecutive integers). Hence, these intervals cannot be conserved intervals either.

⊓ ⊔ Lemma 4. Let pb ∈ {EcomI, EConsI}. Let G = (V, E) be a cubic graph with V = {v 1 . . . v n } and E = {e 1 . . . e m } and let G 1 , G 2 be the two genomes obtained by R(G).

1. Let V C be a vertex cover of G and denote k = |V C|. Then the exemplarization F (V C) of (G 1 , G 2 ) has at least N = n W (pb) + T (pb, G) -W (pb) • k robust intervals. 2. Let (G 1 , G E 2 ) be an exemplarization of (G 1 , G 2 ) and let V C ′ be the vertex cover of G obtained by S(G 1 , G E 2 ). Then |V C ′ | = W (pb)•n+T (pb,G)-N W (pb)
, where N is the number of robust intervals of

(G 1 , G E 2 ).
Proof. 1. Let pb ∈ {EcomI, EConsI}. Let G be a cubic graph and let G 1 and G 2 be the two genomes obtained by R(G). Let V C be a vertex cover of G and denote k = |V C|. Let (G 1 , G E 2 ) be the exemplarization of (G 1 , G 2 ) obtained by F (V C). By construction, we have at least (n-k) substrings D i in G E 2 for which all the markers are removed. By Lemma 3, we know that each of these substrings implies the existence of W (pb) non trivial robust intervals. So, we have at least W (pb)(nk) non trivial robust intervals. Moreover, by definition of T (pb, G), the number of trivial robust intervals of (G 1 , G E

2 ) is exactly T (pb, G). Thus, we have at least

N = W (pb) • n + T (pb, G) -W (pb) • k robust intervals of (G 1 , G E 2 ). 2. Let (G 1 , G E
2 ) be an exemplarization of (G 1 , G 2 ) and let nj be the number of sequences D i , 1 ≤ i ≤ n, for which all markers have been deleted in G E 2 . Then, by Lemmas 1 and 3, the number of robust intervals of (G

1 , G E 2 ) is equal to N = W (pb) • n + T (pb, G) -W (pb) • j. Let V C ′ be the vertex cover obtained by S(G 1 , G E 2 )
. Each marker has one occurrence in G E 2 and these occurrences lie in j sequences D i . So, by definition of S, we conclude that

|V C ′ | = j = W (pb)•n+T (pb,G)-N W (pb)
. ⊓ ⊔

Main result

Let us first define the notion of L-reduction [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF]: let A and B be two optimization problems and c A , c B be respectively their cost functions. An L-reduction from problem A to problem B is a pair of polynomial-time computable functions R and S with the following properties:

(a) If x is an instance of A, then R(x) is an instance of B ; (b) If x is an instance of A and y is a solution of R(x), then S(y) is a solution of A ; (c) If x is an instance of A and R(x) is its corresponding instance of B, then there is some positive constant α such that opt B (R(x)) ≤ α.opt A (x) ; (d) If s is a solution of R(x), then there is some positive constant β such that |opt A (x) -c A (S(s))| ≤ β|opt B (R(x)) -c B (s)|.
We prove Theorem 1 by showing that the pair (R, S) defined previously is an L-reduction from Min-Vertex-Cover-3 to EConsI and from Min-Vertex-Cover-3 to EComI. First note that properties (a) and (b) are obviously satisfied by R and S.

Consider pb ∈ {EcomI, EConsI}. Let G = (V, E) be a cubic graph with n vertices and m edges. We now prove properties (c) and (d). Consider the genomes G 1 and G 2 obtained by R(G). For sake of clarity, we abbreviate here and in the following opt Min-Vertex-Cover-3 to opt Min-VC . First, we need to prove that there exists α ≥ 0 such that opt pb (G 1 , G 2 ) ≤ α.opt Min-Vertex-Cover-3 (G).

Since G is cubic, we have the following properties:

n ≥ 4 (3) m = 1 2 n i=1 degree(v i ) = 3n 2 (4) opt Min-VC (G) ≥ m 3 = n 2 (5) 
To explain property [START_REF] Berman | Approximating maximum independent set in bounded degree graphs[END_REF], remark that, in a cubic graph G with n vertices and m edges, each vertex covers three edges. Thus, a set of k vertices covers at most 3k edges. Hence, any vertex cover of G must contain at least m 3 vertices. By Lemma 3, we know that sequences of the form a i C i f i , 1 ≤ i ≤ n, contain either zero or W (pb) non trivial robust intervals. By Lemma 1, there are no other non trivial robust intervals. So, we have the following inequality:

opt pb (G 1 , G 2 ) ≤ T (pb, G) trivial robust intervals

+W (pb) • n

If pb = EComI, we have:

opt EComI (G 1 , G 2 ) ≤ 7n + m + 3 + 4n opt EComI (G 1 , G 2 ) ≤ 27n 2 by (3) and (4) (6) 
And if pb = EConsI, we have :

opt EConsI (G 1 , G 2 ) ≤ 7n + m + 2 + n opt EConsI (G 1 , G 2 ) ≤ 21n 2 by (3) and (4) (7) 
Altogether, by ( 5), ( 6) and ( 7), we prove property (c) with α = 27. Now, let us prove property (d). Let V C = {v i 1 , v i 2 . . . v i P } be a minimum vertex cover of G. Then P = opt Min-VC (G). Let G 1 and G 2 be the genomes obtained by R(G). Let (G 1 , G E

2 ) be an exemplarization of (G 1 , G 2 ) and let k ′ be the number of robust intervals of (G

1 , G E 2 ). Finally, let V C ′ be the vertex cover of G such that V C ′ = S(G 1 , G E
2 ). We need to find a positive constant

β such that |P -|V C ′ || ≤ β|opt pb (G 1 , G 2 ) -k ′ |.
For pb ∈ {EcomI, EConsI}, let N pb be the number of robust intervals between the two genomes obtained by F (V C). By the first property of Lemma 4, we have 

opt pb (G 1 , G 2 ) ≥ N pb ≥ W (pb) • n + T (pb, G) -W (pb) • P So, it
′ | = W (pb)•n+T (pb,G)-k ′ W (pb) . Since P ≤ |V C ′ |, we have |P -|V C ′ || = |V C ′ | -P = W (pb)•n+T (pb,G)-k ′ W (pb) -P = 1 W (pb) (W (pb) • n + T (pb, G) -W (pb) • P -k ′ ).
So β = 1 is sufficient in both cases, since W (EComI) = 4 and W (EConsI) = 1, which implies

1 W (pb) ≤ 1. Altogether, we then have |opt Min-VC (G) -|V C ′ || ≤ 1 • |opt pb (G 1 , G 2 ) -k ′ |.
We proved that the reduction (R, S) is an L-reduction. This implies that for two genomes G 1 and G 2 , both problems EConsI and EComI are APX-hard even if occ(G 1 ) = 1 and occ(G 2 ) = 2. Theorem 1 is proved.

⊓ ⊔ We extend in Corollary 1 our results for the intermediate and maximum matching models. Proof. The intermediate and maximum matching models are identical to the exemplar model when one of the two genomes contains no duplicates. Hence, the APX-hardness result for EComI (resp. EConsI) also holds for IComI and MComI (resp. IConsI and MConsI).

⊓ ⊔

EBD is APX-hard

Consider two genomes G 1 and G 2 with duplicates, and let EBD (resp. IBD, MBD) be the problem which consists in finding an exemplarization (resp. intermediate matching, maximum matching)

(G ′ 1 , G ′ 2 , M) of (G 1 , G 2 )
that minimizes the number of breakpoints between G ′ 1 and G ′ 2 . EBD has been proved to be NP-complete even if occ(G 1 ) = 1 and occ(G 2 ) = 2 [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF]. Some inapproximability results also exist: in particular, it has been proved in [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF] that, in the general case, EBD cannot be approximated within a factor c log n, where c > 0 is a constant, and cannot be approximated within a factor 1.36 when occ(G 1 ) = occ(G 2 ) = 2. Moreover, for two balanced genomes G 1 and G 2 such that k = occ(G 1 ) = occ(G 2 ), several approximation algorithms for MBD are given. These approximation algorithms admit respectively a ratio of 1.1037 when k = 2 [START_REF] Goldstein | Minimum common string partition problem: Hardness and approximations[END_REF], 4 when k = 3 [START_REF] Goldstein | Minimum common string partition problem: Hardness and approximations[END_REF] and 4k in the general case [START_REF] Kolman | Reversal distance for strings with duplicates: Linear time approximation using hitting set[END_REF]. We can conclude from the above results that IBD and MBD problems are also NP-complete, since when one genome contains no duplicates, exemplar, intermediate and maximum matching models are equivalent.

In this section, we improve the above results by showing that the three problems EBD, IBD and MBD are APX-hard, even when genomes G 1 and G 2 are such that occ(G 1 ) = 1 and occ(G 2 ) = 2. The main result is Theorem 2 below, which will be completed by Corollary 2 at the end of the section.

Theorem 2. EBD is APX-hard even when genomes G 1 and G 2 are such that occ(G 1 ) = 1 and occ(G 2 ) = 2.

To prove Theorem 2, we use an L-Reduction from Min-Vertex-Cover-3 to EBD. Let G = (V, E) be a cubic graph with V = {v 1 . . . v n } and E = {e 1 . . . e m }. For each i, 1 ≤ i ≤ n, let e f i , e g i and e h i be the three edges which are incident to v i in G with f i < g i < h i . Let R ′ be the polynomial transformation which associates to G the following genomes G 1 and G 2 , where each gene has a positive sign:

G 1 = a 0 a 1 b 1 a 2 b 2 . . . a n b n c 1 d 1 c 2 d 2 . . . c m d m c m+1 G 2 = a 0 a n d fn d gn d hn b n . . . a 2 d f 2 d g 2 d h 2 b 2 a 1 d f 1 d g 1 d h 1 b 1 c 1 c 2 . . . c m c m+1 with :
-a 0 = 0, and for each i, 1 ≤ i ≤ n, a i = i and b i = n + i -c m+1 = 2n + m + 1, and for each i, 1 ≤ i ≤ m, c i = 2n + i and

d i = 2n + m + 1 + i
We remark that there is no duplication in G 1 , so occ(G 1 ) = 1. In G 2 , only the genes d i , 1 ≤ i ≤ m, are duplicated and occur twice. Thus occ(G 2 ) = 2.

Let G be a cubic graph and V C be a vertex cover of G. Let G 1 and G 2 be the genomes obtained by R ′ (G). We define F ′ to be the polynomial transformation which associates to V C, G 1 and G 2 the exemplarization

F ′ (V C) = (G 1 , G E 2 ) of (G 1 , G 2 ) as follows.
For each i such that v i / ∈ V C, we remove from G 2 the genes d f i , d g i and d h i . Then, for each j, 1 ≤ j ≤ m such that d j still has two occurrences in G 2 , we arbitrarily remove one of these occurrences in order to obtain the genome

G E 2 . Hence, (G 1 , G E 2 ) is an exemplarization of (G 1 , G 2 ). Given a cubic graph G, we construct G 1 and G 2 by the transformation R ′ (G). Given an ex- emplarization (G 1 , G E 2 ) of (G 1 , G 2 ), let S ′ be the polynomial transformation which associates to (G 1 , G E 2 ) the set V C = {v i |1 ≤ i ≤ n, a i and b i are not consecutive in G E 2 }. We claim that V C is a vertex cover of G. Indeed, let e p , 1 ≤ p ≤ m, be an edge of G. Genome G E 2 contains one occurrence of gene d p since G E
2 is an exemplarization of G 2 . By construction, there exists i,

1 ≤ i ≤ n, such By Lemma 5, we have B(F ′ (V C)) ≤ n + 2m + 1 + opt Min-VC , which implies opt EBD (G 1 , G 2 ) ≤ B(F ′ (V C)) ≤ n + 2m + 1 + opt Min-VC . Then B(G 1 , G E 2 ) -opt EBD (G 1 , G 2 ) ≥ B(G 1 , G E 2 ) -n -2m -1 -opt Min-VC (G) (8) 
By Lemma 6, we have:

|V C ′ | = B(G 1 , G E 2 ) -n -2m -1 which implies |V C ′ | -opt Min-VC (G) = B(G 1 , G E 2 ) -n -2m -1 -opt Min-VC (G) (9) 
Finally, by ( 8) and ( 9), we get

|V C ′ | -opt Min-VC ≤ B(G 1 , G E 2 ) -opt EBD (G 1 , G 2 ). ⊓ ⊔
Lemmas 7 and 8 prove that the pair (R ′ , S ′ ) is an L-reduction from Min-Vertex-Cover-3 to EBD. Hence, EBD is APX-hard even if occ(G 1 ) = 1 and occ(G 2 ) = 2, and Theorem 2 is proved. We extend in Corollary 2 our results for the intermediate and maximum matching models.

Corollary 2. The IBD and MBD problems are APX-hard even when genomes G 1 and G 2 are such that occ(G 1 ) = 1 and occ(G 2 ) = 2.

Proof. The intermediate and maximum matching models are identical to the exemplar model when one of the two genomes contains no duplicates. Hence, the APX-hardness result for EBD also holds for IBD and MBD.

⊓ ⊔

Zero breakpoint distance

This section is devoted to zero breakpoint distance recognition issues. Indeed, in [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF], the authors showed that deciding whether the exemplar breakpoint distance between any two genomes is zero or not is NP-complete even when no gene occurs more than three times in both genomes, i.e., instances of type [START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF][START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF]. This important result implies that the exemplar breakpoint distance problem does not admit any approximation in polynomial-time, unless P = NP. Following this line of research, we first complement the result of [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF] by proving that deciding whether the exemplar breakpoint distance between any two genomes is zero or not is NP-complete, even when no gene is duplicated more than twice in one of the genomes (the maximum number of duplications is however unbounded in the other genome). This result is next extended to the intermediate matching model and we give a practical -but exponential -algorithm for deciding whether the exemplar breakpoint distance between any two genomes is zero or not in case no gene occurs more than twice in both genomes (a problem whose complexity, P versus NP-complete, remains open). Finally, we show that deciding whether the maximum matching breakpoint distance between any two genomes is zero or not is polynomial-time solvable and hence that such negative approximation results (the ones we obtained for the exemplar and intermediate models) do no propagate to the maximum matching model.

The following easy observation will prove extremely useful in the sequel of the present section.

Observation 3 Let G 1 and G 2 be two genomes. If the exemplar breakpoint distance between G 1 and G 2 is zero, then there exists an exemplarization

(G E 1 , G E 2 ) of (G 1 , G 2 ) such that (1) G E 1 = G E 2 , or (2) -(G E 1 ) r = G E 2 ,
where -(G E 1 ) r is the signed reversal of genome G 1 . The same observation can be made for the intermediate and maximum matching models.

Conversely, suppose that the exemplar breakpoint distance between G 1 and G 2 is zero. Since all genes have a positive sign, then it follows that there exists an exemplarization (G

E 1 , G E 2 ) of (G 1 , G 2 ) such that G E 1 = G E 2 .
Exemplarization G E 2 can be written as

G E 2 = Y V [1] Y E [1] Y V [2] Y E [2] . . . Y V [k] Y E [k] Y V [k + 1] where, Y V [i], 1 ≤ i ≤ k + 1, is a string on V and Y E [i], 1 ≤ i ≤ k
, is a string on E, V and E being viewed as alphabets. Now, define V ′ ⊆ V as follows:

v i ∈ V ′ iff gene v i occurs in some Y V [j], 1 ≤ j ≤ k, as the last gene. By construction, |V ′ | ≤ k (we may indeed have |V ′ | < k if some Y V [j],
1 ≤ j ≤ k, denotes the empty string). We now observe that, since no gene v i is duplicated in G 1 , all genes e ℓ that occur between some gene v i ∈ V ′ and some gene

v j ∈ V in G E 2 should match genes in string X i in G 1 . Then it follows that V ′ is a vertex cover of size at most k in G. ⊓ ⊔
The complexity of ZEBD remains open in case no gene occurs more than twice in G 1 and more than a constant times in G 2 , i.e., instances of type (2, c) for some c = O(1) ; recall here that ZEBD is NP-complete if no gene occurs more than three times in G 1 or in G 2 (instances of type [START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF][START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF], [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF]). In particular, the complexity of ZEBD for instances of type [START_REF] Angibaud | Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes[END_REF][START_REF] Angibaud | Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes[END_REF] is open. However, we propose here a practical -but exponential -algorithm for ZEBD for instances of type (2, 2), which is well-suited in case the number of genes that occur twice both in G 1 and in G 2 is relatively small. Proposition 1. ZEBD for instances of type (2, 2) (no gene occurs more than twice in G 1 and in

G 2 ) is solvable in O * (1.6182 2k ) time,
where k is upper-bounded by the number of genes that occur exactly twice in G 1 and in G 2 .

Proof. According to Observation 3, for any instance (G 1 , G 2 ), we only need to focus on exemplarizations

(G E 1 , G E 2 ) such that G E 1 = G E 2 or -(G E 1 ) r = G E 2 , where -(G E 1 ) r is the signed reversal of G E 1 . Let us first consider the case G E 1 = G E 2 (the case -(G E 1 ) r = G E
2 is identical up to a signed reversal and will thereby be briefly discussed at the end of the proof).

Let (G 1 , G 2 ) be an instance of type (2, 2) of ZEBD. Our algorithm is by transforming instance (G 1 , G 2 ) into a CNF boolean formula φ with only few large clauses such that φ is satisfiable iff the exemplar breakpoint distance between G 1 and G 2 is zero. By hypothesis, each signed gene occurs at most twice in G 1 and in G 2 . Therefore, for any signed gene g, we have one out of four possible distinct configurations depicted in Figure 2, where p 1 , p 2 , q 1 and q 2 are positions of occurrence of g in G 1 and G 2 . Furthermore, since we are looking for an exemplarization

(G E 2 , G E 2 ) of (G 1 , G 2 ) such that G E 1 = G E 2 ,
we may assume, in case g occurs only once in G 1 or in G 2 , that all occurrences of g have the same sign (otherwise a trivial self-reduction would indeed apply). In other words, referring at Figure 2, we assume [START_REF] Bafna | Sorting by reversals: genome rearrangements in plant organelles and evolutionary history of X chromosome[END_REF]. Finally, as for case (1), we may assume that either all occurrences have the same sign, or

G [p 1 ] = G 2 [q 1 ] = G 2 [q 2 ] in case (2), G 1 [p 1 ] = G 1 [p 2 ] = G 2 [q 1 ] in case (3), and G 1 [p 1 ] = G 2 [q 1 ] in case
G 1 [p 1 ] = -G 1 [p 2 ] and G 2 [q 1 ] = -G 2 [q 2 ]
(otherwise a trivial self-reduction would again apply).

We now describe the construction of the CNF boolean formula φ. First, the set of boolean variables X is defined as follows: for each gene g occurring at position p in G 1 and at position q in G 2 (i.e., |G 1 [p]| = |G 2 [q])|) we add to X the boolean variable x p q . We now turn to defining the clauses of φ. Let g be any gene, and let the occurrence positions of g in G 1 and in G 2 be noted as in Figure 2.

-if occ(g, G 1 ) = occ(g, G 2 ) = 2 (case(1)), (1) (2) (3) (4) 
G 1 G 2 q 2 q 1 p 1 p 2 q 2 p 1 q 1 q 1 p 2 p 1 q 1 p 1
Fig. 2. The 4 gene-configurations for instances of type (2, 2): p1 and p2 are the occurrence positions of gene g in G1, and q1 and q2 are the occurrence positions of gene g in G2.

-if

G 1 [p 1 ] = G 1 [p 2 ] = G 2 [q 1 ] = G 2 [q 2 ], we add to φ the clauses (x p 1 q 1 ∨ x p 1 q 2 ∨ x p 2 q 1 ∨ x p 2 q 2 ), (x p 1 q 1 ∨ x p 1 q 2 ), (x p 1 q 1 ∨ x p 2 q 1 ), (x p 1 q 1 ∨ x p 2 q 2 ), (x p 1 q 2 ∨ x p 2 q 1 ), (x p 1 q 2 ∨ x p 2 q 2 ) and (x p 2 q 1 ∨ x p 2 q 2 ), -otherwise, we have G 1 [p 1 ] = -G 1 [p 2 ] and G 2 [q 1 ] = -G 2 [q 2 ] (see above discussion), -if G 1 [p 1 ] = G 2 [q 1 ] and G 1 [p 2 ] = G 2 [q 2 ]
)), we add to φ the clauses (x p 1 q 1 ∨ x p 2 q 2 ) and

(x p 1 q 1 ∨ x p 2 q 2 ), -if G 1 [p 1 ] = G 2 [q 2 ] and G 1 [p 2 ] = G 2 [q 1 ]
)), we add to φ the clauses (x p 1 q 2 ∨ x p 2 q 1 ) and (x p 1 q 2 ∨ x p 2 q 1 ), -if occ(g, G 1 ) = 1 and occ(g, G 2 ) = 2 (case ( 2)), we add to φ the clauses (x p 1 q 1 ∨x p 1 q 2 ) and (x p 1 q 1 ∨x p 1 q 2 ), -if occ(g, G 1 ) = 2 and occ(g, G 2 ) = 1 (case (3)), we add to φ the clauses (x p 1 q 1 ∨x p 2 q 1 ) and (x p 1 q 1 ∨x p 2 q 1 ), and -if occ(g, G 1 ) = occ(g, G 2 ) = 1 (case ( 4)), we add to φ the clause (x p 1 q 1 ).

The rationale of this construction is that if formula φ evaluates to true for some assignment f and f (x p q ) is true for some gene g occurring at position p in G 1 and q in G 2 , then all occurrences of g but the one at position p should be deleted in G 1 and all occurrences of g but the one at position q should be deleted in G 2 , in order to obtain the exemplar solution. What is left is to enforce that φ evaluates to true iff the exemplar breakpoint distance between G 1 and G 2 is zero. To this aim, we add to φ the following clauses. For each pair of variables (

x i 1 j 1 , x i 2 j 2 ) such that |G 1 [i 1 ]| = |G 1 [i 2 ]|, i 1 < i 2 and j 1 > j 2 , we add to φ the clause (x i 1 j 1 ∨ x i 2 j 2 ).
The construction of φ is now complete. Clearly, φ evaluates to true iff the exemplar breakpoint distance between G 1 and G 2 is zero. Let k be the number of genes g that occur twice in G 1 and in G 2 with the same sign, i.e., G

1 [p 1 ] = G 1 [p 2 ] = G 2 [q 1 ] = G 2 [q 2 ]
. We now make the important observation that all clauses in φ have size less than or equal to 2 except those k clauses of size 4 introduced in case gene g occurs twice in G 1 and in G 2 with the same sign. By introducing a new boolean variable, we can easily replace in φ each clause of size 4 by two clauses of size 3, and hence we may now assume that φ is a 3-CNF formula (i.e., each clause has size at most 3) with exactly 2k clauses of size 3.

As for the case -(G E 1 ) r = G E 2 , we replace G 1 by -(G 1 ) r and construct another 3-CNF formula φ ′ as described above. The two 3-CNF formulas need, however, to be examined separately.

Fernau proposed in [START_REF] Fernau | Parameterized algorithms: A graph-theoretic approach[END_REF] an algorithm for solving 3-CNF boolean formulas that runs in O * (1.6182 ℓ ) time, where ℓ is the number of clauses of size 3. Therefore, ZEBD for instances of type (2, 2) is solvable in O * (1.6182 2k ) time, where k is the number of genes g that occur twice in G 1 and in G 2 .

⊓ ⊔ if g is the i-th positive occurrence of gene g in genome G 1 or by the sequence of labeled points

-g 1 (i, occ neg (G 2 , g)) -g 1 (i, occ neg (G 2 , g) -1) . . . -g 1 (i, 1)
if g is the i-th negative occurrence of gene g in genome G 1 . A symmetric construction is performed for the labeled points of the bottom line, i.e., reading genome G 2 from left to right, we replace gene g by the sequence of labeled points +g 2 (i, occ pos (G 1 , g)) + g 2 (i, occ pos (G 1 , g) -1) . . . + g 2 (i, 1)

if g is the i-th positive occurrence of gene g in genome G 2 or by the sequence of labeled points

-g 2 (i, occ neg (G 1 , g)) -g 2 (i, occ neg (G 1 , g) -1) . . . -g 2 (i, 1)
if g is the i-th negative occurrence of gene g in genome G 2 . We now obtain the matching diagram D(G 1 , G 2 ) as follows: each labeled point +g 1 (i, j) (resp. -g 1 (i, j)) of the top line is connected to the labeled point +g 2 (j, i) (resp. -g 2 (j, i)) of the bottom line by a line segment. Clearly, each labeled point is incident to exactly one line segment, and hence D(G 1 , G 2 ) is indeed a matching diagram.

Of particular importance, observe that by construction, for any x ∈ {1, 2} and any two labeled points +g x (i, j) and +g x (i, k), j = k, the two line segments incident to these two points are intersecting ; the same conclusion can be drawn for any two labeled points -g x (i, j) and -g x (i, k), j = k. The following lemma states this property in a suitable way.

Lemma 10. If [+g 1 (i, j), +g 2 (j, i)] and [+g 1 (k, ℓ), +g 2 (ℓ, k)] (resp. [-g 1 (i, j), -g 2 (j, i)] and [-g 1 (k, ℓ), -g 2 (ℓ, k)]) are two non-intersecting line segments in the matching diagram D(G 1 , G 2 ), then i = k and j = ℓ. Theorem 6. ZMBD is polynomial-time solvable.

Proof. Let G 1 and G 2 be two genomes, and m the size of a maximum matching between G 1 and G 2 . According to Lemma 10, there exists a maximum matching

(G M 1 , G M 2 , M) of (G 1 , G 2 ) such that G M 1 = G M 2 if
there exists m non-intersecting line segments in D(G 1 , G 2 ). The maximum number of non-intersecting line segments in a matching diagram with n points on each line can be found in O(n log log n) time [START_REF] Chang | Efficient algorithms for the maximum weight clique and maximum weight independent set problems on permutation graphs[END_REF].

As for the case -(G M 1 ) r = G M 2 , we replace G 1 by -(G 1 ) r and run the same algorithm on the obtained matching diagram.

⊓ ⊔

5 Approximating the number of adjacencies in the maximum matching model

For two balanced genomes G 1 and G 2 , several approximation algorithms for computing the number of breakpoints between G 1 and G 2 are given for the maximum matching model [START_REF] Goldstein | Minimum common string partition problem: Hardness and approximations[END_REF][START_REF] Kolman | Reversal distance for strings with duplicates: Linear time approximation using hitting set[END_REF]. We propose in this section three approximation algorithms to maximize the number of adjacencies (as opposed to minimizing the number of breakpoints). The approximation ratios we obtain are 1.1442 when occ(G 1 ) = 2, (3 + ǫ) when occ(G 1 ) = 3 (for any ǫ > 0) and 4 in the general case. Observe that in the latter case, oppositely to [START_REF] Goldstein | Minimum common string partition problem: Hardness and approximations[END_REF][START_REF] Kolman | Reversal distance for strings with duplicates: Linear time approximation using hitting set[END_REF], our approximation ratio is independent of the maximum number of duplicates. Note also that in [START_REF] Chen | Non-breaking similarity of genomes with gene repetitions[END_REF], inapproximation results are given for two unbalanced genomes G 1 and G 2 even when occ(G 1 ) = 1 and occ(G 1 ) = 2. We first define the problem Max-k-Adj we are interested in (k ≥ 1 is a fixed integer).

Proof. Let G 1 and G 2 be two balanced genomes such that occ(G 1 ) = 2 and let (χ, Φ) be the instance of Max-2-CSP obtained by MakeCSP(G 1 , G 2 ). Let k be an integer. Suppose there exists a maximum matching (G M 1 , G M 2 , M) of (G 1 , G 2 ) which induces at least k adjacencies. We construct the following assignment of variables of χ. For each gene g, we define X g = 1 if g is not duplicated, else we define X g = 1 iff the occurrences of g are matched in the reading order (see Figure 3). We now show that for each duo which induces an adjacency between G M 1 and G M 2 , there exists a distinct satisfied formula of Φ.

Let d i = (G M 1 [i], G M 1 [i + 1]), 1 ≤ i ≤ n G 1 -1,
be a duo which induces an adjacency, and let

d j = (G M 2 [j], G M 2 [j + 1]
) be the related duo on G M 2 . By construction of Φ, there exists a formula ϕ i ∈ Φ which has been previously defined in one of the cases (a), (b), (c) or (d) of the definition of MakeCSP. We claim that, for each of these cases, ϕ i is satisfied:

-(a) ϕ i = (Y j i ∧ Y j+1 i+1
) and d i = d j . We first prove that literal Y j i is true. Three cases are possible. (i) The gene |G 1 [i]| is not duplicated ; then we have defined in our assignment

X |G 1 [i]| = 1. Moreover, we have Y j i = X |G 1 [i]| (since N G 1 [i] = N G 2 [j] = 0), hence Y j i is true. (ii) The gene |G 1 [i]| is duplicated and N G 1 [i] = N G 2 [j]
; then, by definition of our assignment and since G 1 [i] and G 2 [j] are matched together in the maximum matching (G M 1 , G M 2 , M), we have X |G 1 [i]| = 1 (we match signed genes in the reading order). Moreover, we have

Y j i = X |G 1 [i]| which induces that Y j i is true. (iii) The gene |G 1 [i]| is duplicated and N G 1 [i] = N G 2 [j]
; then, by definition of our assignment and since G 1 [i] and G 2 [j] are matched together in the maximum matching (G M 1 , G M 2 , M), we have X |G 1 [i]| = 0 (we do not match signed genes in the reading order). Moreover, we have in this case Y j i = X |G 1 [i]| which induces that Y j i is true. In each case, we have proved that Y j i is true. We can also prove that Y j+1 i+1 is true, using the same arguments. Hence, we conclude that ϕ i is true. Since d i induces an adjacency, the duo d i matches either d j or d j ′ . In these two cases, we have

-(b) ϕ i = Y j+1 i ∧ Y j
X |G 1 [i]| = X |G 1 [i+1]| (otherwise G 1 [i] and G 1 [i + 1] would not match successive signed genes). Moreover, ϕ i = (X |G 1 [i]| ⊕ X |G 1 [i+1]| ) and thus, ϕ i is true. -(d) We have N G 1 [i] = N G 1 [i + 1]
and the duo d i appears twice in G 2 (noted by d j and d j ′ ).

Since d i induces an adjacency, the duo d i matches either d j or d j ′ . In these two cases, we have

X |G 1 [i]| = X |G 1 [i+1]| (otherwise G 1 [i] and G 1 [i + 1] would not match successive signed genes). Moreover, ϕ i = (X |G 1 [i]| ⊕ X |G 1 [i+1]|
) and thus, ϕ i is true.

We have constructed a variable assignment of χ such that, for each duo d i in G M 1 which implies an adjacency, there exists a distinct satisfied formula ϕ i ∈ Φ. Thus, if there exists a maximum matching of (G 1 , G 2 ) which induces at least k adjacencies, then the corresponding assignment implies at least k satisfied formulas.

⊓ ⊔ Lemma 12. Let G 1 and G 2 be two balanced genomes such that occ(G 1 ) = 2. Let (χ, Φ) be the instance of Max-2-CSP obtained by MakeCSP(G 1 , G 2 ). For any integer k, if there exists an assignment of χ such that at least k formulas of Φ are satisfied, then there exists a maximum matching

(G M 1 , G M 2 , M) of (G 1 , G 2
) which induces at least k adjacencies.

Fig. 3. All possibilities of assignment: XA = 1 (gene A occurs twice and signed genes are matched in the reading order), XB = 1 or XB = 0 (gene B occurs once) and XC = 0 (gene C occurs twice and signed genes are not matched in the reading order). Note that this construction is independent of the sign of the genes. adjacencies. We construct the 2-interval set S as the union of D i = ( ŝi , ti ), 1 ≤ i ≤ p, where ŝi (resp. ti ) is the interval obtained from s i (resp. t i ). The factorization of G M 1 implies that the constructed 2-intervals are disjoint, and hence the total weight of S is p i=1 (l i -1) = p i=1 l i -p i=1 1 = np = W .

⊓ ⊔

We now describe Algorithm ApproxAdj and then prove it to be a 4-approximation algorithm for Max-Adj.

Algorithm 1 ApproxAdj

Require: Two balanced genomes G1 and G2. Ensure: A maximum matching (G M 1 , G M 2 , M) of (G1, G2). -Let Make2I(G1, G2) = (D, ω).

-Invoke the 4-approximation algorithm of Crochemore et al. [START_REF] Crochemore | Approximating the 2-interval pattern problem[END_REF] to obtain a set of disjoint 2-intervals S ⊆ D.

-Construct the maximal matching (G M 1 , G M 2 , M) = Max-W2IP to Adj(S).

Theorem 9. Algorithm ApproxAdj is a 4-approximation algorithm for Max-Adj.

Proof. According to Lemmas 15 and 16, there exists a maximum matching (G M 1 , G M 2 , M) of (G 1 , G 2 ) that induces W adjacencies iff there exists a subset of disjoint 2-intervals S ⊆ D with total weight W . Therefore, any approximation ratio for Max-W2IP implies the same approximation ratio for Max-Adj. In [START_REF] Crochemore | Approximating the 2-interval pattern problem[END_REF], a 4-approximation algorithm is proposed for Max-W2IP. Hence, Algorithm ApproxAdj is a 4-approximation algorithm for Max-Adj.

⊓ ⊔

Conclusions and future work

In this paper, we have first given new approximation complexity results for several optimization problems in genomic rearrangement. We focused on conserved intervals, common intervals and breakpoints, and we took into account the presence of duplicates. We restricted our proofs to cases where one genome contains no duplicates and the other contains no more than two occurrences of each gene. With this assumption, we proved that the problems consisting in computing an exemplarization (resp. an intermediate matching, a maximum matching) optimizing any of the three above mentioned measures is APX-hard, thus extending the results of [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Chauve | Genomes containing duplicates are hard to compare[END_REF][START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF]. In a second part of the paper, we have focused on the ZEBD (resp. ZIBD, ZMBD) problems, where the question is whether there exists an exemplarization (resp. intermediate matching, maximum matching) that induces zero breakpoint. We have extended a result from [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF] by showing that ZEBD is NP-complete even for instances of type (2, k), where k is unbounded. We also have noted that ZEBD and ZIBD are equivalent problems, and shown that ZMBD is in P. Finally, we gave several approximation algorithms for computing the maximum number of adjacencies of two balanced genomes under the maximum matching model. The approximation ratios we get are 1.1442 for instances of type (2, 2), (3 + ǫ) for instances of type (3, 3) with ǫ > 0 and 4 in the general case. Concerning the latter result, we note that the approximation ratio we obtain is constant, even when the number of occurrences in genomes is unbounded. However, several problems remain unsolved. In particular, concerning approximation algorithms, virtually nothing is known (i) in the case of unbalanced genomes and (ii) in the exemplar and intermediate models. Indeed, all the existing results (see for instance [START_REF] Goldstein | Minimum common string partition problem: Hardness and approximations[END_REF][START_REF] Kolman | Reversal distance for strings with duplicates: Linear time approximation using hitting set[END_REF] for the number of breakpoints), including ours, focus on the maximum matching problem for balanced genomes, which implies that no gene is deleted from genomes G 1 and G 2 . Now, if we allow genes to be deleted, the problem seems much more difficult to tackle.

Finally, we would like to recall the following open problem from [START_REF] Chen | Lower bounds on the approximation of the exemplar conserved interval distance problem of genomes[END_REF]: what is the complexity of ZEBD for instances of type (2, 2) ?
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  Now, suppose that I y is a common interval such that |I y | ≥ 2 and I y contains y. Let P I y be the permutation of I y on G E 2 . The interval I y must contain either b m+n or f n . Let us detail each of the two cases: (a) If I y contains b m+n , then P I y contains b m+n too. Thus P I y contains all genes between b m+n
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 1 IComI, MComI, IConsI and MConsI are APX-hard even when genomes G 1 and G 2 are such that occ(G 1 ) = 1 and occ(G 2 ) = 2.

  i+1 and d i = -d j . By similar arguments as in case (a), we can prove that Y j+1 i and Y j i+1 are true. -(c) We have N G 1 [i] = N G 1 [i + 1] and the duo d i appears twice in G 2 (noted by d j and d j ′ ).
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 5 Figure 5 gives an example of such a construction. Observe that, by construction, no two 2-intervals of D are {≺}-comparable. The construction of the instance of Max-W2IP is complete by setting R = {≺, ⊏, ≬}, i.e., we are looking for disjoint 2-intervals, no matter what the relation between any two disjoint 2-interval is. Therefore, for sake of abbreviation, we shall denote the corresponding instance simply as Make2I(G 1 , G 2 ) = (D, ω) and forget about the model.
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 5 Fig. 5. 2-intervals induced by genomes G1 = +1 + 2 -3 + 2 + 1 and G2 = +2 + 1 + 3 -2 -1. For readability, singleton intervals are not drawn. The dotted 2-interval is of weight 2, while all other 2-intervals are of weight 1.
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  EComI and EConsI are APX-hard Consider two genomes G 1 and G 2 with duplicates, and let EComI (resp. IComI, MComI) be the problem which consists in finding an exemplarization (resp. intermediate matching, maximum matching

and such that e p is incident to v i . The presence of d p in G E 2 [a i , b i ] implies that vertex v i belongs to V C. We can conclude that each edge of G is incident to at least one vertex of V C.

Lemmas 5 and 6 below are used to prove that (R ′ , S ′ ) is an L-Reduction from the Min-Vertex-Cover-3 problem to the EBD problem. Let G = (V, E) be a cubic graph with V = {v 1 , v 2 . . . v n } and E = {e 1 , e 2 . . . e m } and let us construct (G 1 , G 2 ) by the transformation R ′ (G).

Lemma 5. Let V C be a vertex cover of G and (G 1 , G E

2 ) the exemplarization given by F ′ (V C).

is the number of breakpoints between G 1 and G E 2 .

Proof. Suppose |V C| = k. Let us list the breakpoints between genomes G 1 and G E 2 obtained by F ′ (V C). The pairs (b i , a i+1 ), 1 ≤ i ≤ n -1, and (b n , c 1 ) induce one breakpoint each. For all i, 1 ≤ i ≤ m, each pair of the form (c i , d i ) (resp. (d i , c i+1 )) induces one breakpoint. For all i, 1 ≤ i ≤ n, such that v i ∈ V C, (a i , b i ) induces at most one breakpoint. Finally, the pair (a 0 , a 1 ) induces one breakpoint. Thus there are at most n + 2m + k + 1 breakpoints of (G 1 , G E 2 ). ⊓ ⊔ Lemma 6. Let (G 1 , G E 2 ) be an exemplarization of (G 1 , G 2 ) and V C ′ be the vertex cover of G obtained by S ′ (G 1 , G E

2 ). We have

Proof. Let (G 1 , G E 2 ) be an exemplarization of (G 1 , G 2 ) and V C ′ be the vertex cover obtained by

For any exemplarization (G 1 , G E 2 ) of (G 1 , G 2 ), the following breakpoints always occur: the pair (a 0 , a 1 ) ; for each i, 1 ≤ i ≤ m, each pair (c i , d i ) and (d i , c i+1 ) ; for each i, 1 ≤ i ≤ n -1, the pair (b i , a i+1 ) ; the pair (b n , c 1 ). Thus, we have at least n + 2m + 1 breakpoints. The other possible breakpoints are induced by pairs of the form of (a i , b i ). Since we have B(G 1 , G E

2 ) = k ′ , there are exactly k ′n -2m -1 such breakpoints. By construction of V C ′ , the cardinality of V C ′ is equal to the number of breakpoints induced by pairs of the form (a i , b i ). So, we have:

⊓ ⊔

To prove that (R ′ , S ′ ) is an L-reduction, we first notice that properties (a) and (b) of an Lreduction are trivially verified. The next lemma proves property (c).

Lemma 7. The inequality opt

Proof. For a cubic graph G with n vertices and m edges, we have 2m = 3n (see [START_REF] Bafna | Sorting by reversals: genome rearrangements in plant organelles and evolutionary history of X chromosome[END_REF]) and opt Min-VC (G) ≥ n 2 (see [START_REF] Berman | Approximating maximum independent set in bounded degree graphs[END_REF]). By construction of the genomes G 1 and G 2 , any exemplarization of (G 1 , G 2 ) contains 2n+2m+2 genes in each genome. Thus, we have opt

⊓ ⊔ Now, we prove property (d) of our L-reduction.

Zero exemplar breakpoint distance

The zero exemplar breakpoint distance (ZEBD) problem is formally defined as follows.

Problem: ZEBD Input: Two genomes G 1 and G 2 . Question: Is the exemplar breakpoint distance between G 1 and G 2 equal to zero?

Aiming at precisely defining the inapproximability landscape of computing the exemplar breakpoint distance between two genomes, we complement the result of [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF], who showed ZEBD to be NP-complete even for instances of type [START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF][START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF], by the following theorem.

Theorem 4. ZEBD is NP-complete even if no gene occurs more than twice in G 1 .

Proof. Membership of ZEBD to NP is immediate. The reduction we use to prove hardness is from Min-Vertex-Cover [START_REF] Garey | Computers and Intractability: a guide to the theory of NP-completeness[END_REF]. Let an arbitrary instance of Min-Vertex-Cover be given by a graph G = (V, E) and a positive integer k. Write V = {v 1 , v 2 . . . v n } and E = {e 1 , e 2 . . . e m }. In the rest of the proof, elements of V (resp. E) will be seen either as vertices (resp. edges) or genes, depending on the context. The corresponding instance (G 1 , G 2 ) of ZEBD is defined as follows:

For each i = 1, 2, . . . , n, X i is defined to be X i = e i 1 e i 2 . . . e i j , where e i 1 , e i 2 , . . . , e i j , i 1 < i 2 < . . . < i j , are the edges incident to vertex v i . The strings Y [i], 1 ≤ i ≤ k, are all equal and are defined by

Notice that no gene occurs more than twice in G 1 (actually genes v i occur once and genes e i occur twice). However, the number of occurrences of each gene in G 2 is upper bounded by k + 1. Furthermore, all genes have positive sign, and hence according to Observation 3 we only need to consider exemplarizations

It is immediate to check that our construction can be carried out in polynomial-time. We now claim that there exists a vertex cover of size k in G iff the exemplar breakpoint distance between G 1 and G 2 is zero.

Suppose first that there exists a vertex cover

For convenience, we also define i 0 to be 0. From V ′ we construct an exemplarization (G E 1 , G E 2 ) as follows. We obtain G E 1 from G 1 by a two step procedure. First we delete in G 1 all strings X i such that v i / ∈ V ′ . Second, for each 1 ≤ j ≤ m, if gene e j still occurs twice, we delete its second occurrence (this second step is concerned with edges connecting two vertices in V ′ ). We now turn to G E 2 . For 1 ≤ j ≤ k, we consider the string Y [j] = Y V Y E that we process as follows: [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF] we delete in Y V all genes but v i j and those genes v ℓ / ∈ V ′ such that i j-1 < ℓ < i j , and (2) we delete in Y E genes e ℓ that are not incident to v i j . Then, we also delete in Y E genes e ℓ that are incident to v i j and some smaller vertex in V ′ (i.e., e ℓ = {v i j ′ , v i j } for some j ′ < j). Finally, we delete in the trailing string Y V = v 1 v 2 . . . v n all genes but those v ℓ ( / ∈ V ′ ) such that i k < ℓ. Since V ′ is a vertex cover in G, then it follows that each gene occurs once in the obtained genomes, i.e.,

and hence that the exemplar breakpoint distance between G 1 and G 2 is zero.

Zero intermediate matching breakpoint distance

We now turn to the zero intermediate breakpoint distance (ZIBD) problem. It is defined as follows.

Problem: ZIBD Input: Two genomes G 1 and G 2 . Question: Is the intermediate breakpoint distance between G 1 and G 2 equal to zero ?

We show here that ZEBD and ZIBD are equivalent problems. We need the following lemma.

Lemma 9 ([2]

). Let G 1 and G 2 be two genomes without duplicates and with the same gene content, and G ′ 1 and G ′ 2 be the two genomes obtained from G 1 and G 2 by deleting any gene g. Then

). Theorem 5. ZEBD and ZIBD are equivalent problems.

Proof. One direction is trivial (any exemplarization is indeed an intermediate matching). The other direction follows from Lemma 9.

⊓ ⊔ It follows from Theorem 5 that the problem IBD is not approximable even for instances of type (3, 3) (see [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF]) and if no gene occurs more than twice in G 1 (see Theorem 4).

Zero maximum matching breakpoint distance

We show here that, oppositely to the exemplar and the intermediate matching models, deciding whether the maximum matching breakpoint distance between two genomes is equal to zero is polynomial-time solvable, and hence we cannot rule out the existence of accurate approximation algorithms for the maximum matching model. We refer to this problem as ZMBD.

Problem: ZMBD Input: Two genomes G 1 and G 2 . Question: Is the maximum matching breakpoint distance between G 1 and G 2 equal to zero ?

The main idea of our approach is to transform any instance of ZMBD into a matching diagram and next use an efficient algorithm for finding a large set of non-intersecting line segments. Note that this latter problem is equivalent to finding a large increasing subsequence in permutations.

A matching diagram [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF] consists of, say n, points on each of two parallel lines, and n straight line segments matching distinct pairs of points. The intersection graph of the line segments is called a permutation graph (the reason for the name is that if the points on the top line are numbered 1, 2, . . . , n, then the points on the other line are numbered by a permutation on 1, 2, . . . , n).

We describe how to turn the pair of genomes (G 1 , G 2 ) into a matching diagram D(G 1 , G 2 ). For sake of presentation we introduce the following notation. For each gene family g, we write occ pos (G, g) (resp. occ neg (G, g)) for the number of positive (resp. negative) occurrences of gene g in genome G. According to Observation 3, it is enough to consider two cases:

2 is identical up to a signed reversal). We describe the construction of the top labeled points. Reading genome G 1 from left to right, we replace gene g by the sequence of labeled points +g 1 (i, occ pos (G 2 , g)) + g 1 (i, occ pos (G 2 , g) -1) . . . + g 1 (i, 1)

We define Max-Adj to be the problem MAX k-Adj, in which k is unbounded.

A 1.1442-approximation for Max-2-Adj

We focus here on balanced genomes G 1 and G 2 such that occ(G 1 ) = 2, and we give an approximation algorithm for Max-2-Adj based on the Max-2-CSP problem (defined below), for which a 1.1442approximation algorithm is given in [START_REF] Charikar | Near-optimal algorithms for maximum constraint satisfaction problems[END_REF]. The main idea is to construct a boolean formula ϕ for each possible adjacency, and next to maximize the number of boolean formulas φ that can be simultaneously satisfied in a truth assignment ; the number of simultaneously satisfied formulas will be exactly the number of adjacencies, and hence any approximation ratio for Max-2-CSP is an approximation ratio for Max-2-Adj.

Problem: Max-k-CSP Input: A pair (χ, Φ), where χ is a set of boolean variables and Φ is a set of boolean formulas such that each formula contains at most k literals of χ.

Solution: An assignment of χ.

Measure: The number of formulas that are satisfied by the assignment.

We define the following transformation MakeCSP that associates to any instance of Max-2-Adj an instance of Max-2-CSP. Given an instance (G 1 , G 2 ) of Max-2-Adj, we create a variable X g for each gene g and define χ as the set of variables X g . Then, we construct the set Φ of formulas. For each duo

we distinguish three cases in order to create a formula ϕ i of Φ:

1. There exists a unique duo

For sake of readability, we define the literal

). 2. The duo d i appears twice in G 2 . We consider two cases:

Remark that each formula ϕ i contains two literals. Hence, (χ, Φ) is an instance of Max-2-CSP.

Lemma 11. Let G 1 and G 2 be two balanced genomes such that occ(G 1 ) = 2. Let (χ, Φ) be the instance of Max-2-CSP obtained by MakeCSP(G 1 , G 2 ). For any integer k, if there exists a maximum matching

) which induces at least k adjacencies, then there exists an assignment of the variables of χ such that at least k formulas of Φ are satisfied.

Proof. Let G 1 and G 2 be two balanced genomes such that occ(G 1 ) = 2 and let (χ, Φ) be the instance of Max-2-CSP obtained by MakeCSP(G 1 , G 2 ). Let k be an integer.

Suppose there exists an assignment of χ such that at least k formulas ϕ i ∈ Φ are satisfied. We create the following maximum matching

For each variable X g such that the gene g is duplicated, we match the occurrences of g in the reading order if X g = 1 (such as gene A in Figure 3). If we have X g = 0, we match the first occurrence of g on G 1 with the second one on G 2 and the second occurrence of g on G 1 with the first one on G 2 (such as gene C in Figure 3). Then, we match signed genes which are not duplicated. Now, we prove that each satisfied formula ϕ i ∈ Φ induces a distinct adjacency for (G M 1 , G M 2 , M). Let ϕ i ∈ Φ be a satisfied formula which is defined in one of the cases (a), (b), (c) or (d) of the definition of MakeCSP:

Here, we must prove that d i and d j are matched together in (G M 1 , G M 2 , M) and thus induce an adjacency. First, we show that signed genes G 1 [i] and G 2 [j] are matched together in (G M 1 , G M 2 , M). Since ϕ i is satisfied, we have Y j i = 1. We must dissociate three cases: (i) the gene |G 1 [i]| is not duplicated: in that case, the signed gene G 1 [i] can be matched only with

In that case, we have defined

, the signed genes G 1 [i] and G 2 [j] are matched together. For each case, the signed genes G 1 [i] and G 2 [j] are matched together. We can conclude in the same way that G 1 [i + 1] and G 2 [j + 1] are also matched together, which implies that d i induces an adjacency.

We can use the same reasoning used in case (a) to prove that d i induces an adjacency.

-(c) The duo d i appears twice in G 2 (noted by d j and d j ′ ). We have

| which implies by construction of the maximum matching that d i matches d j or d j ′ . -(d) The duo d i appears twice in G 2 (noted by d j and d j ′ ). We have

| which implies by construction of the maximum matching that d i matches d j or d j ′ .

Consequently, for each satisfied formula, there exists a distinct adjacency between G M 1 and G M 2 . Thus, if there exists an assignment of χ which implies at least k satisfied formulas of Φ, then there exists a maximum matching of (G 1 , G 2 ) which implies at least k adjacencies.

⊓ ⊔ Lemmas 11 and 12 prove that any α-approximation for Max-2-CSP implies an α-approximation for Max-2-Adj. In [START_REF] Charikar | Near-optimal algorithms for maximum constraint satisfaction problems[END_REF], an approximation algorithm is given for Max-2-CSP, whose approximation ratio is equal to 1 0.874 ≤ 1.1442. Thus, we have the following theorem.

Theorem 7. Max-2-Adj is 1.1442-approximable.

A (3 + ǫ)-approximation for Max-3-Adj

Now, we present a (3 + ǫ)-approximation for Max-3-Adj by using the Maximum Independent Set problem defined as follows:

Problem: Max-Independent-Set Input: A graph G = (V, E). Solution: An independent set of G (i.e. a subset V ′ of V such that no two vertices in V ′ are joined by an edge in E).

Measure: The cardinality of V ′ .

In [START_REF] Goldstein | Minimum common string partition problem: Hardness and approximations[END_REF], Goldstein et al. used Max-Independent-Set to approximate the Minimum Common String Partition problem by creating a conflict graph. We construct in the same way an instance of Max-Independent-Set where a vertex represents a possible adjacency and where an edge represents a conflict between two adjacencies. We define MakeMIS to be the following transformation which associates to two balanced genomes G 1 and G 2 an instance of Max-Independent-Set. We construct a vertex for each duo match, and then we create an edge between two vertices when they are in conflict, i.e. when two matches are incompatible. Figure 4 In order to prove that there exists a (3+ǫ)-approximation for Max-3-Adj, we give the following intermediate lemmas.

Lemma 13. Let G 1 and G 2 be two balanced genomes and let G be the graph obtained by MakeMIS(G 1 , G 2 ). For any integer k, there exists an independent set

) which induces at least k adjacencies.

Proof. Let G 1 and G 2 be two balanced genomes and let G be the graph obtained by MakeMIS(G 1 , G 2 ). Let k be an integer. (⇒) Suppose there exists an independent set

as follows: first, for each vertex of V ′ , we match together the two corresponding duos, thus inducing one adjacency (called a definite adjacency). By construction of G, this operation is possible. Indeed, two vertices which are not connected in G imply two compatible adjacencies. Then, we match arbitrarily the unmatched genes. This operation cannot break any definite adjacency. Finally, we obtain a maximum matching (G M 1 , G M 2 , M) which induces at least |V ′ | adjacencies, and consequently at least k adjacencies.

(⇐) Suppose there exists a maximum matching

) which induces at least k adjacencies. We construct a set V ′ by taking each vertex which represents a duo match between G M 1 and G M 2 . By construction of G, V ′ is an independent set (no pair of adjacencies can create a conflict), and then we have

Let G 1 and G 2 be two balanced genomes such that occ(G 1 ) = k. The maximum degree ∆ of the graph G obtained by MakeMIS(G 1 , G 2 ) satisfies ∆ ≤ 6(k -1).

Proof. Let G 1 and G 2 be two balanced genomes such that occ(G 1 ) = k and let G be the graph obtained by

We claim that the vertex v m of G, which represents the duo match m, is connected to at most 6(k -1) vertices. For this, we list the possible duo matches ) appears at most k times on G 2 since a gene can occur at most k times. We then distinguish three cases:

For these two cases, the duo matches m and (d

) appears k times on G 2 , one of these occurrences is necessary d 2 , which induces in this case no conflict with m.

For these two cases, the duo matches m and m ′ are not in conflict.

For each case, one of the k possible duos d ′ 2 does not imply a conflict between m and m ′ . Thus, for any duo d ′ 1 which overlaps d 1 , there exists at most k -1 duos d ′ 2 on G 2 such that m and m ′ are in conflict. Using the same arguments, we can easily prove that for any duo d ′ 2 which overlaps d 2 , there exists at most k -1 duos d ′ 1 on G 1 such that m and m ′ are in conflict. Hence, each of the six duos which overlaps d 1 or d 2 implies at most k -1 conflicts. Thus, we obtain at most 6(k -1) vertices which are connected to the vertex v m in the conflict graph.

⊓ ⊔

According to Lemma 13, any α-approximation for Max-Independent-Set is thus also an αapproximation for Max-k-Adj. In [START_REF] Berman | Approximating maximum independent set in bounded degree graphs[END_REF], Berman and Fürer present a polynomial time algorithm that approximates Max-Independent-Set within ratio depending of the degree ∆ of the graph. For every ∆ > 2 and ǫ > 0, the approximation ratio is ∆+3 5 + ǫ for even ∆, and ∆+3.25

5

+ ǫ for odd ∆. Combining this with Lemma 14, we obtain the following result. Theorem 8. For every ǫ > 0, Max-k-Adj is ( 6k-3 5 + ǫ)-approximable.

Note that in the case where k = 2, we obtain a ratio of 1.8 + ǫ, which is not better than the one obtained in Theorem 7. Moreover, we introduce in the next section a 4-approximation in the general case. Hence, the only interesting case of Theorem 8 above is when k = 3, inducing a (3 + ǫ)-approximation for Max-3-Adj.

A 4-approximation for Max-Adj

In [START_REF] Crochemore | Approximating the 2-interval pattern problem[END_REF], a 4-approximation algorithm for the Max-Weighted 2-interval Pattern problem (Max-W2IP) is given. In the following, we first define Max-W2IP, and next we present how we can relate any instance of Max-Adj to an instance of Max-W2IP.

The Maximum Weighted 2-Interval Pattern problem. A 2-interval is the union of two disjoint intervals defined over a single line. For a 2-interval D = (I, J), we always assume that the interval I < J, i.e., I is completely on the left of J does not overlap J. We say that two 2-intervals D 1 = (I 1 , J 1 ) and D 2 = (I 2 , J 2 ) are disjoint if D 1 and D 2 have no common point (i.e. (I 1 ∪ J 1 ) ∩ (I 2 ∪ J 2 ) = ∅). Three possible relations exist between two disjoint 2-intervals: we write (1)

We say that a pair of 2-intervals D 1 and Transformation. We first describe how to transform any instance (G 1 , G 2 ) of Max-Adj into an instance, referred hereafter as Make2I(G 1 , G 2 ) = (D, R, ω), of Max-W2IP. We need a new definition. Let G 1 and G 2 be two balanced genomes. An interval I 1 of G 1 and an interval I 2 of G 2 , both of size at least 2, are said to be identical if they correspond to the same string up to a complete reversal, where a reversal also changes all the signs in the string. Clearly, two identical intervals have the same length.

The weighted 2-interval set D is obtained as follows. We first concatenate G 1 and G 2 , and for any pair (I 1 , I 2 ) of identical intervals (I 1 is an interval of G We now describe how to transform any solution of Max-W2IP into a solution of Max-Adj. Let G 1 and G 2 be two balanced genomes and Make2I(G 1 , G 2 ) = (D, ω). Furthermore, let S ⊆ D be a set of disjoint 2-intervals, i.e. a solution for Max-W2IP for model the {≺, ⊏, ≬} for the instance (D, ω).

We write Max-W2IP to Adj(S) for the transformation of S into a maximum matching (G M 1 , G M 2 , M) of (G 1 , G 2 ) defined as follows. First, for each 2-interval D = (I 1 , I 2 ) of S, we match the signed genes of I 1 and I 2 in the natural way ; then, in order to achieve a maximum matching (since each signed gene is not necessarily covered by a 2-interval in S), we apply the following greedy algorithm: iteratively, we match, arbitrarily, two unmatched signed genes g 1 and g 2 such that |g 1 | = |g 2 | and g i is a gene of G i (i = 1, 2), until no such pair of signed genes exists. After a relabeling of signed genes according to this matching (denoted M), we obtain a maximum matching (G M 1 , G M 2 , M) of (G 1 , G 2 ).

The rationale of this construction stems from two following lemmas. 1 . Consider any factorization G M 1 = s 1 s 2 . . . s p such that, for each 1 ≤ i < p, s i and s i+1 are separated by one breakpoint and no breakpoint appears in s i , 1 ≤ i ≤ p. Therefore, there exists p-1 breakpoints between G M 1 and G M 2 , and hence n-p adjacencies between G M 1 and G M 2 . To each substring s i of the factorization of G M 1 corresponds a substring t i in G M 2 such that s i and t i are identical. Moreover, each substring s i of size l i , 1 ≤ i ≤ p, contains l i -1