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Abstract

In the context of comparative analysis of protein-protein interaction graphs, we use
a graph-based formalism to detect the preservation of a given protein complex G in
the protein-protein interaction graph H of another species with respect to (w.r.t.) or-
thologous proteins. Two problems are considered: the Exact-(µG, µH)-Matching
problem and the Max-(µG, µH)-Matching problems, where µG (resp. µH) denotes
in both problems the maximum number of orthologous proteins in H (resp. G) of
a protein in G (resp. H). Following [10], the Exact-(µG, µH)-Matching problem
asks for an injective homomorphism of G to H w.r.t. orthologous proteins. The opti-
mization version is called the Max-(µG, µH)-Matching problem and is concerned
with finding an injective mapping of a graph G to a graph H w.r.t. orthologous
proteins that matches as many edges of G as possible. For both problems, we es-
sentially focus on bounded degree graphs and extremal small values of parameters
µG and µH .
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1 Introduction

High-throughput analysis makes possible the study of protein-protein inter-
actions at a genome-wise scale [13,15,27], and comparative analysis tries to
determine the extent to which protein networks are conserved among species.
Indeed, mounting evidence suggests that proteins that function together in a
pathway or a structural complex are likely to evolve in a correlated fashion,
and, during evolution, all such functionally linked proteins tend to be either
preserved or eliminated in a new species [21].

Protein interactions identified on a genome-wide scale are commonly visual-
ized as protein interaction graphs, where proteins are vertices and interactions
are edges [26]. Experimentally derived interaction networks can be extremely
complex, so that it is a challenging problem to extract biological functions or
pathways from them. However, biological systems are hierarchically organized
into functional modules. Several methods have been proposed for identify-
ing functional modules in protein-protein interaction graphs. As observed in
[22], cluster analysis is an obvious choice of methodology for the extraction
of functional modules from protein interaction networks. Comparative anal-
ysis of protein-protein interaction graphs aims at finding complexes that are
common to different species. Kelley et al. [17] developed the program Path-
Blast, which aligns two protein-protein interaction graphs combining topol-
ogy and sequence similarity. Sharan et al. [24] studied the conservation of
complexes (they focused on dense, clique-like interaction patterns) that are
conserved in Saccharomyces cerevisae and Helicobacter pylori, and found 11
significantly conserved complexes (several of these complexes match very well
with prior experimental knowledge on complexes in yeast only). They actu-
ally recasted the problem of searching for conserved complexes as a problem
of searching for heavy subgraphs in an edge- and node-weighted graph, whose
vertices are orthologous protein pairs. Pathways detection is considered in [28]
and [23]. A promising computational framework for alignment and compari-
son of more than one protein network together with a three-way alignment of
the protein-protein interaction networks of Caenorhabditis elegans, Drosophila
melanogaster and Saccharomyces cerevisae is presented in [25] (see also [18]
and [16]).

Following the line of research presented in [10], we consider here the problem
of finding an occurrence of a given complex in the protein-protein interaction
graph of another species. Notice that we do not make any assumption about
the topology of the complex, such as clique-like structure. In [10], this is for-
mulated as the problem of searching for a list injective homomorphism, i.e.,
an injective homomorphism with respect to orthologous links, of the complex
(viewed as a graph) to a protein-protein interaction graph. The special case
where all lists are required to be either equal or disjoint is considered in [7].
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Roughly speaking, the rationale of this is as follows. First, graph homomor-
phism only preserves adjacency, and hence can deal with interaction datasets
that are missing many true protein interactions. Second, injectivity is required
in order to establish a bijective relationship between proteins in the complex
and proteins in the occurrence. Finally, graph homomorphism with respect
to orthologous links can be easily recasted as list homomorphism: a list of
putative orthologs is associated to each protein (vertex) of the complex, and
each such protein can only be mapped by the homomorphism to a protein
occurring in its list. In the context of comparative analysis of protein-protein
interaction graphs, we need to impose drastic restrictions on the size of the
lists. We will make the following important assumption (referred hereafter as
the parameters µG and µH): no protein has an unbounded number of orthologs
in the other species, i.e., each list has a constant size (upper bounded by pa-
rameter µG) and each protein has a constant number of occurrences among
the lists (upper bounded by parameter µH). We, however, observe that graph
homomorphisms would in practice be too strict in detecting protein complex
homology. Also, a single protein in one species might be associated with a
number of orthologs in another species. Moreover, the scoring function may
be far more complex that just counting the number of conserved interactions.
The present paper is devoted to analyzing the complexity of this problem (the
Exact-(µG, µH)-Matching problem) together with its natural optimization
version (the Max-(µG, µH)-Matching problem) in case of bounded degree
graphs and extremal small values of parameters µG and µH .

The paper is organized as follows: Section 2 introduces formally the two prob-
lems. We prove in Section 3 new tight complexity results for the Exact-
(µG, µH)-Matching problem for bounded degree graphs and introduce the
correspondence number of an instance. In Section 4, it is shown that the
Max-(µG, µH)-Matching problem for bounded degree graphs is APX-hard.
This result is complemented in Section 5 by showing that the Max-(µG, 1)-
Matching problem for bounded degree graphs is approximable with constant
ratio. Finally, we prove in Section 6 that the Max-(µG, 1)-Matching prob-
lem for bounded degree graphs parameterized by the number of matched edges
is fixed-parameter tractable.

2 Preliminaries

Let G be a graph. We write V(G) for the set of vertices and E(G) for the
set of edges, and abbreviate #V(G) to n(G) and #E(G) to m(G). The max-
imum degree ∆(G) of a graph G is the largest degree over all vertices. Let
G and H be two graphs. For any injective mapping θ : V(G) → V(H),
let us denote by match(G, H, θ) the edges of G that are matched by θ, i.e.,
match(G, H, θ) = {{u, v} ∈ E(G) : {θ(u), θ(v)} ∈ E(H)}. An homomorphism
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of G to H is a mapping θ : V(G) → V(H) such that {u, v} ∈ E(G) implies
{θ(u), θ(v)} ∈ E(H). Clearly, an injective mapping θ is an homomorphism of
G to H if #match(G, H, θ) = m(G). Given lists L(u) ⊆ V(H), u ∈ V(G), a
list homomorphism of G to H with respect to the lists L(u), u ∈ V(G), is
an homomorphism θ with the additional constraint that θ(u) ⊆ L(u) for all
u ∈ V(G). Mappings of G to H with respect to the lists L(u), u ∈ V(G), are
defined in a similar way. For simplicity of notation, given lists L(u) ⊆ V(H),
u ∈ V(G), we abbreviate {u : v ∈ L(u)} to L−1(v), v ∈ V(H). Let G and H
be two graphs. Lists L(u) ⊆ V(H), u ∈ V(G), are called (µG, µH)-bounded
if the two following conditions hold true: (1) max{#L(u) : u ∈ V(G)} ≤ µG

and (2) max{#L−1(v) : v ∈ V(H)} ≤ µH .

We consider here the problem of finding an occurrence of a given complex in
the protein-protein interaction graph of another species. Finding an occurrence
with respect to orthologous links can easily be reformulated as a list injective
homomorphism problem: a list of putative orthologs is associated to each
protein (vertex) of the complex, and each such protein can only be mapped
by the homomorphism to a protein occurring in its list. The problem, called
the Exact-(µG, µH)-Matching problem, is defined formally as follows.

Exact-(µG, µH)-Matching

• Input : Two graphs G and H, and (µG, µH)-bounded lists L(u) ⊆
V(H), u ∈ V(G).

• Question : Is there an injective list homomorphism of G to H w.r.t.
lists L(u), u ∈ V(G) ?

In the context of comparative analysis of protein-protein interaction graphs,
we need to impose strong restrictions on the size of the lists we consider. We
thus assume, throughout the paper, that both µG and µH are constant, i.e.,
µG = O(1) and µH = O(1).

It is proved in [10] that the Exact-(2, µH)-Matching problem is linear-time
solvable for any constant µH ≥ 1, and that the Exact-(3,1)-Matching
problem is NP-complete even if both G and H are bipartite graphs or split
graphs. A first contribution in this paper is to complete the determination
of the precise border between tractable and intractable cases for the Exact-
(µG, µH)-Matching problem. Moreover, we begin here the analysis of op-
timization versions of the problem. Indeed, requiring an injective homomor-
phism, i.e., an injective mapping that preserves all edges of G, might result
in an over-constrained problem, though it may exist good approximate solu-
tions, i.e., solutions that match many edges of G. This suggests the following
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maximization problem for practical applications.

Max-(µG, µH)-Matching

• Input : Two graphs G and H, and (µG, µH)-bounded lists L(u) ⊆
V(H), u ∈ V(G).
• Solution : An injective mapping θ : V(G) → V(H) w.r.t. lists L(u),
u ∈ V(G).
• Measure : #match(G, H, θ), i.e., #{{u, v} ∈ E(G) : {θ(u), θ(v)} ∈
E(H)}.

Of particular importance here is the fact that θ is no longer required to be a
homomorphism in the Max-(µG, µH)-Matching problem. Furthermore, the
present paper mainly focuses on a particular case of the optimization problem,
i.e., the Max-(µG, 1)-Matching problem.

Let 〈G, H,L〉 be an instance of the Max-(µG, µH)-Matching. An edge {u, v} ∈
E(G) is called a bad edge if there does not exist distinct u′ ∈ L(u) and v′ ∈ L(v)
such that {u′, v′} ∈ E(H). Clearly, if we remove from G its bad edges, this
does not affect the optimal solutions for the Max-(µG, µH)-Matching prob-
lem, since bad edges can never be matched. Notice that we can tell bad edges
apart in O(µG

2 m(G)) = O(m(G)) time, since µG is assumed to be a con-
stant. Furthermore, by resorting on classical bipartite matching techniques,

we can check in O(n(H) + m(G)
√

n(G)) time whether there exists at least

an injective mapping of G to H w.r.t. lists L(u), u ∈ V(G). Moreover, before
solving the problem, we can surely remove from H all those nodes u′ with
#L−1(u′) = 0. Therefore, throughout the paper, we will consider only trim
instances as defined in the following.

Definition 1 (Trim instance) An instance 〈G, H,L〉 of the Max-(µG, µH)-
Matching problem is a trim instance provided that (i) there exists an injec-
tive mapping of G to H w.r.t. lists L(u), u ∈ V(G), (ii) #L−1(u′) > 0 for all
u′ ∈ V(H) and (iii) G does not contain any bad edges.

3 Exact matching

This section is devoted to completing the determination of the precise border
between tractable and intractable cases for the Exact-(µG, µH)-Matching
problem [10]. Also, we introduce the correspondence number of any instance
of the Exact-(µG, 1)-Matching problem which aims at separating yes in-
stances from possibly no instances.
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3.1 Complexity issues

We begin by giving a straightforward algorithm for the Exact-(µG, 1)-Matching
problem in case ∆(G) ≤ 2.

Proposition 2 The Exact-(µG, 1)-Matching problem for ∆(G) ≤ 2 is
solvable in O(n(G)) time for any constant µG.

PROOF. Since µH = 1, there is no loss of generality in assuming that G is
a connected graph (for otherwise we can process each connected component
independently). Furthermore, since ∆(G) = 2, G is either a path or a cycle.

Let us first suppose that G is a path of length k. Write V(G) = {u1, u2, . . . , uk+1}
such that {ui, ui+1} ∈ E(G) for 1 ≤ i ≤ k. For each v ∈ L(ui), 1 ≤ i ≤ k + 1,
define T (v) to be true if and only if there exists an injective homomorphism
of G[{u1, u2, . . . , ui}] to H[∪1≤j≤iL(uj)] w.r.t. lists L(uj), 1 ≤ j ≤ i (where
G[V ′] denotes the subgraph of G induced by the set V ′ ⊆ V(G)).

Clearly,

∀ v ∈ L(u1), T (v) = true

∀ 1 < i ≤ k + 1, ∀ v ∈ L(ui), T (v) =
∨

v′∈L(ui−1)
{v′,v}∈E(H)

T (v′)

and there is an injective homomorphism of G to H w.r.t. lists L(u), u ∈
V(G), if

∨

v∈L(uk) T (v) = true. This is a O(µ2
G k) = O(n(G)) time dynamic

programming algorithm.

Suppose now that G is a cycle of length k+2. Write V(G) = {u1, u2, . . . , uk+1}
such that {ui, ui+1} ∈ E(G) for 1 ≤ i ≤ k, and {uk+1, u1} ∈ E(G). For any
v ∈ L(u1) and any v′ ∈ L(uk+1), let us denote by Π(v, v′) the sub-problem
obtained (i) by deleting the edge {uk+1, u1} in G, (ii) by deleting all vertices
in L(u1) but v, and (iii) by deleting all vertices in L(uk+1) but v′. We have
at most µ2

G sub-problems, each of them can be solved in O(n(G)) time using
the above dynamic programming algorithm. We now observe that there is an
injective homomorphism of G to H w.r.t. lists L(u), u ∈ V(G), if for some
v ∈ L(u1) and v′ ∈ L(uk+1) with {v, v′} ∈ E(H), Π(v, v′) is a positive instance.
This is a O(µ2

G n(G)) = O(n(G)) time algorithm. ✷

It follows from the above proposition that the Exact-(µG, 1)-Matching
problem for ∆(H) ≤ 2 is polynomial-time solvable. Indeed, if ∆(G) ≥ 3,
the answer is trivially no and otherwise, i.e., ∆(G) ≤ 2, Proposition 2 applies.
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One may however argue that the proposition above is too constrained to be
of interest. Unfortunately, despite the simplicity of Proposition 2, the result
is quite tight - taking into consideration both ∆(G) and ∆(H) - as shown in
the two following propositions (recall also that the Exact-(2, µH)-Matching
problem is polynomial-time solvable for any constant µH [10]).

Proposition 3 The Exact-(3, 2)-Matching problem is NP-complete even
if both G and H are bipartite graphs with ∆(G) ≤ 1 and ∆(H) ≤ 2.

PROOF. The Exact-(3, 2)-Matching problem is easily seen to be in NP.
The reduction is from the 3-Sat problem. We assume the additional restriction
that each variable appears in at most 3 of the clauses, counting together both
positive and negative occurrences. It is known that the 3-Sat problem is
NP-complete even when restricted as above [12]. Notice furthermore that we
can always assume that each negated literal and each positive literal occurs
at most twice, since otherwise there would be a variable without positive or
without negative occurrences, and hence a self-reduction would apply. Assume
given an input φ to the 3-Sat problem. Let X = {x1, . . . , xn} denote the set
of variables and C = {c1, . . . , cm} denote the set of clauses. We now describe
how to construct the corresponding instance of the Exact-(3, 2)-Matching
problem.

To φ we associate a bipartite graph, denoted G - which in fact is a matching
- as follows. For each variable xi ∈ X, we introduce two vertices xG

i [1] and
xG

i [2], and one edge {xG
i [1], xG

i [2]}. For each clause cj ∈ C, we introduce two
vertices cG

j [1] and cG
j [2], and one edge {cG

j [1], cG
j [2]}. To φ we also associate

a second bipartite graph, denoted H, as follows. For each variable xi ∈ X,
we introduce four vertices xH

i [T, 1], xH
i [T, 2], xH

i [F, 1] and xH
i [F, 2], and the

two edges {xH
i [T, 1], xH

i [T, 2]} and {xH
i [F, 1], xH

i [F, 2]}. For each clause cj ∈
C, we introduce three vertices cH

j [1], cH
j [2] and cH

j [3], and also three edges
defined as follows. For ℓ ∈ {1, 2, 3}, let x̂i be the ℓ-th literal of the clause
cj. Assume x̂i is the p-th positive (or, resp., negative) occurrence of variable
xi, where p ∈ {1, 2}. Then we introduce the edge {cH

j [ℓ], xH
i [T, p]} (or, resp.,

{cH
j [ℓ], xH

i [F, p]}). Notice that for each j ∈ {1, 2, . . . ,m} and ℓ ∈ {1, 2, 3},
vertex cH

j [ℓ] has a unique neighbor in H. For ease of exposition, we denote
by N(cH

j [ℓ]) this unique neighbor. We now turn to describing the associated
lists. To each xG

i [p] ∈ V(G), 1 ≤ p ≤ 2, we associate the list L(xG
i [p]) =

{xH
i [T, p], xH

i [F, p]}. To each cG
j [2] ∈ V(G), we associate the list L(cG

j [2]) =
{cH

j [ℓ] : 1 ≤ ℓ ≤ 3}. Finally, to each cG
j [1] ∈ V(G), we associate the list

L(cG
j [1]) = {N(cH

j [ℓ]) : 1 ≤ ℓ ≤ 3}.

Clearly, µG = 3, µH = 2, ∆(G) = 1, i.e., G is a matching, and ∆(H) = 2 (H is
indeed made of paths of length at most 3). An illustration of the construction
is given in Figure 1 for the CNF formula φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧
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(x1∨x2∨x3). We claim that there exists a satisfying truth assignment for φ if
and only if there exists an injective list homomorphism of G to H w.r.t. lists
L(u), u ∈ V(G).

cG
1

[2]cG
1

[1]

cG
3

[2]cG
3

[1]

Gφ

Hφ

cG
2

[2]cG
2

[1]

xG
2

[2]xG
2

[1]

xG
1

[1] xG
1

[2]

xG
3

[1] xG
3

[2]

cH
1

[1]

cH
2

[1]

cH
3

[2]

cH
1

[3]

cH
3

[3]

xH
1

[T, 2]

xH
1

[F, 2]

xH
1

[T, 1]

xH
1

[F, 1]

xH
2

[T, 2]

xH
2

[F, 2]

cH
2

[2]

cH
1

[2]

xH
2

[T, 1]

xH
2

[F, 1]

xH
3

[T, 1]

xH
3

[F, 1]

cH
3

[1]

cH
2

[3]xH
3

[F, 2]

xH
3

[T, 2]

Figure 1. Illustration of the proof of Proposition 3 for the boolean formula
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Both G and H are bipartite
graphs, and ∆(G) = 1 and ∆(H) = 2. Shown here is the satisfying truth assignment
f : X → {true, false} defined by f(x1) = true, f(x2) = true and f(x3) = false, to-
gether with the injective mapping θ of G to H (denoted here by dashed and dotted
lines).

Let f : X → {true, false} be a truth assignment for φ that satisfies all clauses.
If f(xi) = true, then define θ(xG

i [1]) = xH
i [F, 1] and θ(xG

i [2]) = xH
i [F, 2], else

define θ(xG
i [1]) = xH

i [T, 1] and θ(xG
i [2]) = xH

i [T, 2]. For every clause cj, take
an ℓ ∈ {1, 2, 3} such that the ℓ-th literal of cj evaluates to true under f , and
define θ(cG

j [2]) = cH
j [ℓ] and θ(cG

j [1]) = N(cH
j [ℓ]). It can be easily verified that

θ is an injective homomorphism of G to H w.r.t. lists L(u), u ∈ V(G).

Conversely, suppose that there is an injective list homomorphism θ of G to H
w.r.t. lists L(u), u ∈ V(G). We first observe that, by construction, we must
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have θ(xG
i [1]) = xH

i [T, 1] and θ(xG
i [2]) = xH

i [T, 2], or θ(xG
i [1]) = xH

i [F, 1] and
θ(xG

i [2]) = xH
i [F, 2], for all 1 ≤ i ≤ n, since {xG

i [1], xG
i [2]} ∈ E(G). Define a

truth assignment f : X → {true, false} as follows: If θ(xG
i [1]) = xH

i [F, 1] then
f(xi) = true, else define f(xi) = false, for all 1 ≤ i ≤ n. We claim that f is
a satisfying truth assignment for φ. Indeed, for any clause cj, let ℓ ∈ {1, 2, 3}
be such that cH

j [ℓ] = θ(cG
j [1]). Clearly, the ℓ-th literal of φ evaluates to true

under the truth assignment f . ✷

Proposition 4 The Exact-(3, 1)-Matching problem is NP-complete even
when ∆(G) ≤ 3 and ∆(H) ≤ 4.

PROOF. It is well-known that deciding whether a graph G of maximum
degree 3 has chromatic number 3 is NP-complete [12]. It follows that, when
given a graph G′, ∆(G′) = 3, and a subset E ′ ⊆ E(G′) deciding whether
we can assign one of 3 possible colors to each node in V(G′) in such a way
that every two adjacent nodes u, v ∈ V(G′) have the same color if and only if
{u, v} ∈ E ′ is NP-complete even when E(G′) \E ′ is a matching in G′ and the
edges in E ′ form vertex-disjoint paths in G′. Indeed, starting from G, explode
each node v ∈ V(G) into a path P ′

v with as many nodes as the degree of v
in G. Put all edges of each path P ′

v into E ′ to force all nodes in P ′
v to search

for a common color. The matching E(G′) \ E ′ will be (arbitrarily) chosen as
to contain an edge with an endpoint in P ′

u and the other in P ′
v if and only if

{u, v} is an edge in G.

Now, starting from the pair (G′, E ′), we show how to construct an “equivalent”
instance 〈G, H,L〉 of the Exact-(3, 1)-Matching problem with ∆(G) = 3
and ∆(H) = 4. Take G = G′ and let H be the graph defined by

V(H) =
⋃

u∈V(G)

{u1, u2, u3}

E(H) =





⋃

{u,v}∈E′

{{ui, vi} : 1 ≤ i ≤ 3}



 ∪





⋃

{u,v}∈E(G)\E′

{{ui, vj} : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 3 ∧ i 6= j}





Clearly, ∆(G) = ∆(G′) = 3, and ∆(H) = 4 since E(G) \ E ′ is a matching in
G′ and no vertex of G′ is adjacent to more than two edges in E ′. Moreover,
by taking L(u) = {u1, u2, u3} for each u ∈ V(G), it is guaranteed that there
exists a mapping c : V(G′) → {1, 2, 3} with c(u) = c(v) whenever {u, v} ∈ E ′,
and c(u) 6= c(v) whenever {u, v} ∈ E\E ′ if and only if there exists an injective
homomorphism of G to H w.r.t. lists L(u), u ∈ V(G). Hence, the two instances
〈G′, E ′〉 and 〈G, H,L〉 are equivalent in the sense that solving one solves also
the other, since they have the same answer. Notice moreover that L(v) and
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L(u) are disjoint whenever u 6= v, and hence #L−1(ui) = 1 for each ui ∈ V(H)
under the assumption of trim instance. ✷

3.2 The correspondence number

The remainder of this section is devoted to the Exact-(µG, 1)-Matching
problem. For each trim instance 〈G, H,L〉 of the Exact-(µG, 1)-Matching
problem, define the correspondence number C(G, H,L) of (G, H,L) by

C(G, H,L) = min
{u,v}∈E(G)

#{{u′, v′} : u′ ∈ L(u) ∧ v′ ∈ L(v) ∧ {u′, v′} ∈ E(H)}

#L(u) #L(v)
.

Clearly, µG
−2 ≤ C(G, H,L) ≤ 1 (the lower bound comes from the fact that

〈G, H,L〉 is a trim instance). Furthermore, if C(G, H,L) = 1, then there
exists an injective homomorphism θ of G to H w.r.t. lists L(u), u ∈ V(G);
any injective mapping of G to H w.r.t. lists L(u), u ∈ V(G), is indeed a
solution. Ideally, one would like to determine a bound c∗ as small as possible,
µG

−2 < c∗ < 1, such that if C(G, H,L) > c∗ then 〈G, H,L〉 is a yes instance
and if C(G, H,L) ≤ c∗ then 〈G, H,L〉 is possibly a no instance. Unfortunately,
it is difficult to obtain such a precise bound and we thus focus here on the
determination of two bounds clow and cup, µG

−2 ≤ clow ≤ cup ≤ 1, such that if
C(G, H,L) > cup then 〈G, H,L〉 is a yes instance and if C(G, H,L) ≤ clow then
〈G, H,L〉 is possibly a no instance. Of course, the smaller cup and cup − clow

are, the better our estimation is. We propose here two bounds cup and clow

with cup − clow = 1−e−1

∆(G)−1
.

Proposition 5 Let 〈G, H,L〉 be a trim instance of the Exact-(µG, 1)-Matching
problem. If

C(G, H,L) >
2∆(G) − 1 − e−1

2∆(G) − 1

then there exists an injective homomorphism θ of G to H w.r.t. lists L(u),
u ∈ V(G).

PROOF. The proof is by direct application of the Lovász local lemma [9].
For each u ∈ V(G) with L(u) = {u1, u2, . . . , uq}, q ≤ µG, suppose that θ(u)
is set to u1, u2, . . . , or uq independently and equiprobably. Since µH = 1, it
follows that θ is an injective mapping from V(G) to V(H) w.r.t. lists L(u),
u ∈ V(G). Let E({u, v}) denote the event that the edge {u, v} ∈ E(G) is not
matched by the random injective mapping θ. For one,

Pr[E({u, v})] ≥ C(G, H,L) >
2∆(G) − 1 − e−1

2∆(G) − 1

10



and hence

Pr[E({u, v})] ≤ 1 −
2∆(G) − 1 − e−1

2∆(G) − 1
.

For another, each event E({u, v}) is mutually independent of all other events
except for at most 2∆(G) − 2 events since µH = 1. Write

p = max
{u,v}∈E(G)

Pr[E({u, v})].

Hence,

ep(2∆(G) − 2 + 1) ≤ e(1 −
2∆(G) − 1 − e−1

2∆(G) − 1
)(2∆(G) − 1) = 1.

According to the Lovász local lemma [4], we now thus obtain

Pr[∩{u,v}∈E(G) E({u, v})] > 0.

Therefore, with positive probability, the random injective mapping θ matches
all edges of G, and hence there must be an injective homomorphism of G to
H w.r.t. lists L(u), u ∈ V(G). ✷

According to Proposition 5, if ∆(G) = 1 (resp. ∆(G) = 2 and ∆(G) = 3) and
C(G, H,L) > 0.633 (resp. C(G, H,L) > 0.878 and C(G, H,L) > 0.927) then
there exists an injective homomorphism θ of G to H w.r.t. lists L(u).

Proposition 6 Let 〈G, H,L〉 be a trim instance of the Exact-(µG, 1)-Matching
problem. If

C(G, H,L) ≤
∆(G) − 1

∆(G)

then an injective homomorphism θ of G to H w.r.t. lists L(u), u ∈ V(G),
might not exist.

PROOF. For any d > 1, we provide a generic construction of an instance
〈G, H,L〉 of the Exact-(µG, 1)-Matching problem with ∆(G) = d and

C(G, H,L) ≤ ∆(G)−1
∆(G)

for which there does not exist an injective homomor-

phism θ of G to H w.r.t. lists L(u), u ∈ V(G).

Fix an integer d > 1. and let G = K1,d. Write u0 the central vertex of G (the
vertex with degree d) and u1, u2, . . . , ud the vertices of G of degree 1. We now
define a bipartite graph H. The vertices of H are defined by V(H) = V ∪W ,
V = {v1, v2, . . . , vd} and W = {w1, w2, . . . , wd}. The edges of H are defined
by E(H) = {{ui, wj} : 1 ≤ i ≤ d ∧ 1 ≤ j ≤ d ∧ i 6= j}. Now the associated
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lists L are:

L(u0) = {w1, w2, . . . , wd}

L(ui) = {vi}, i = 1, 2, . . . , d.

Observe that if d = ∆(G) is a constant, then so is µG.

We claim that there does not exist an injective homomorphism θ of G to H
w.r.t. lists L(u), u ∈ V(G). Indeed, let θ′ be any injective mapping of V(G) to
V(H) w.r.t lists L(u), u ∈ V(G). Suppose θ′(u0) = wi. We now observe that
by construction {vi, wi} is not an edge of H. Then it follows that θ′ does not
match the edge {u0, ui} of G, and hence θ′ is not an injective homomorphism
of G to H w.r.t. lists L(u), u ∈ V(G).

The correspondence number of this generic instance is

C(G, H,L) =
d − 1

d
.

But here d = ∆(G), and hence there exists one instance (G, H,L) satisfying

C(G, H,L) =
∆(G) − 1

∆(G)

for which there does not exist an injective homomorphism θ of G to H w.r.t.
lists L(u), u ∈ V(G). ✷

Combining Proposition 5 with Proposition 6, we obtain

cup − clow ≤
2∆(G) − 1 − e−1

2∆(G) − 1
−

∆(G) − 1

∆(G)
=

1 − e−1

∆(G) − 1
=

0.632

∆(G) − 1
.

4 Hardness of the Max-(µG, µH)-Matching problem

The present and following sections are concerned with the optimization ver-
sion of the problem. First, it follows from Proposition 3 that the Max-(3, 2)-
Matching problem is NP-complete even if both G and H are bipartite graphs
with ∆(G) ≤ 1 and ∆(H) ≤ 3. Moreover, by Proposition 4, we know that
the Max-(3, 1)-Matching problem is NP-complete even if ∆(G) ≤ 3 and
∆(H) ≤ 4. We proved in [11] that the Max-(2, 1)-Matching problem is
APX-hard even if both G and H are bipartite graphs with ∆(G) ≤ 3 and
∆(H) ≤ 3. We strengthen here this result by showing that the Max-(2, 1)-
Matching problem is APX-complete (membership to APX is in fact de-
ferred to the next section) even if both G and H are bipartite graphs with
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∆(G) ≤ 3 and ∆(H) ≤ 2. This has to be compared with the Exact-(2, µH)-
Matching problem, which is linear-time solvable for any constant µH [10].

Proposition 7 The Max-(2, 1)-Matching problem for bipartite graphs G
and H with ∆(G) = 3 and ∆(H) = 2 (resp. with ∆(G) = 6 and ∆(H) = 5) is
APX-hard and is not approximable within ratio 1.0005 (resp. 1.0014), unless
P = NP.

PROOF. We propose a reduction from the Max-2-Sat-B problem (each
variable appears in at most B clauses, counting together both positive and
negative occurrences) which is known to be APX-complete for B ≥ 3 [20]. We
assume that each negated literal and each positive literal occurs at most twice,
since otherwise a self-reduction would trivially apply. Let φ be an arbitrary
input for the Max-2-Sat-B problem. Let X = {x1, . . . , xn} denote the set
of variables and C = {c1, . . . , cm} denote the set of clauses. We now describe
how to construct the corresponding instance of the Max-(2, 1)-Matching
problem.

To φ we associate a first bipartite graph G defined as follows: we introduce one
vertex xG

i for each variable xi ∈ X, and one vertex cG
j for each clause cj ∈ C.

Also, for each j = 1, 2, . . . ,m and each ℓ = 1, 2, we introduce the edge {xG
i , cG

j }
if the ℓ-th literal of clause cj is a positive or a negative occurrence of variable
xi. To φ we also associate a second bipartite graph H defined as follows: we
introduce two vertices xH

i [T ] and xH
i [F ] for each variable xi ∈ X, and two

vertices cH
j [1] and cH

j [2] for each clause cj ∈ C. Also, for each j = 1, 2, . . . ,m
and each ℓ = 1, 2, we introduce the edge {xH

i [T ], cH
j [ℓ]} if the ℓ-th literal of

clause cj is the positive literal xi or the edge {xH
i [F ], cH

j [ℓ]} if the ℓ-th literal
of clause cj is the negative literal xi. We now turn to describing the associated
lists. To each xG

i ∈ V(G) we associate the list L(xG
i ) = {xH

i [T ], xH
i [F ]}. To

each cG
j ∈ V(G), we associate the list L(cG

j ) = {cH
j [1], cH

j [2]}.

Clearly, µG = 2, µH = 1, ∆(G) = B, ∆(H) = B − 1, and both G and H are
bipartite graphs. We claim that there exists a truth assignment that satisfies k
clauses of C if and only if there exists an injective mapping θ : V(G) → V(H)
w.r.t. lists L(u), u ∈ V(G), such that #match(G, H, θ) = k.

Suppose that there exists a truth assignment f : X → {true, false} that
satisfies k clauses of C. Consider the injective mapping θ : V(G) → V(H)
w.r.t. lists L(u), u ∈ V(G), defined as follows:

θ(xG
i ) =







xH
i [T ] if f(xi) = true,

xH
i [F ] if f(xi) = false,
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and

θ(cG
j ) =







cH
j [1] if clause cj is satisfied by its first literal or is not satisfied,

cH
j [2] if clause cj is satisfied by its second literal.

It can be easily verified that #match(G, H, θ) = k.

Conversely, suppose that there exists an injective mapping θ : V(G) → V(H)
w.r.t. lists L(u), u ∈ V(G), such that #match(G, H, θ) = k. Define a truth
assignment f : X → {true, false} as follows: f(xi) = true if θ(xG

i ) = xH
i [T ]

and f(xi) = true if θ(xG
i ) = xH

i [F ]. By construction, an edge of G is matched
by θ if and only if the corresponding clause is satisfied by the truth assignment
f . Then it follows that k clauses of C are satisfied by f .

Inapproximability results for the Max-(2, 1)-Matching problem now follow
from [5] where it is proved that the Max-2-Sat-3 (resp. Max-2-Sat-6) prob-
lem is not approximable within ratio 1.0005 (resp. 1.0014). ✷

5 Approximating the Max-(µG, 1)-Matching problem

We proved in the preceding section that the Max-(2, 1)-Matching problem
is APX-hard even if both G and H are bipartite graphs with ∆(G) ≤ 3 and
∆(H) ≤ 2. We show in this section that the Max-(µG, 1)-Matching problem
for bounded degree graphs G belongs to APX for any constant µG, thereby
proving that the Max-(2, 1)-Matching problem is APX-complete. In ad-
dition, we give a fast randomized algorithm for the Max-(µG, 1)-Matching
problem that achieves a ratio 2µG for any constant µG.

Recall first that a matching in a graph G is a subset of pairwise vertex disjoint
edges of G. The matching number ν(G) of G is the size of a largest matching
of G. A linear forest is a forest, i.e., an acyclic simple graph, in which every
connected component is a path. The linear arboricity la(G) of a graph G is
the minimum number of linear forests in G, whose union is the set of all edges
of G [1] (see also [3]).

Conjecture 8 (The linear arboricity conjecture [1]) The linear
arboricity of every d-regular graph is ⌈(d + 1)/2⌉.

This conjecture was shown to be asymptotically correct as d → ∞ [3]. Al-
though the linear arboricity conjecture received a considerable amount of at-
tention, the best general result concerning it is that la(G) ≤ ⌈3∆(G)/5⌉ for
even ∆(G) and that la(G) ≤ ⌈(3∆(G) + 2)/5⌉ for odd ∆(G) [4].
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Lemma 9 Let G be a graph. Then, ν(G) ≥ m(G)
2 la(G)

.

PROOF. A simple cardinality argument shows that there exists a linear for-
est in G that contains at least m(G)

la(G)
edges, and hence ν(G) ≥ m(G)

2 la(G)
since each

connected component of a linear forest is a path. ✷

Proposition 10 For any trim instance, the Max-(µG, 1)-Matching prob-

lem is approximable within ratio 2 la(G) in O(n(G) + m(G)
√

n(G)) time for
any constant µG ≥ 1.

PROOF. Let 〈G, H,L〉 be a trim instance of the Max-(µG, 1)-Matching
problem. Now, let M ⊆ E(G) be any maximum matching in G. Consider the
mapping θ : V(G) → V(H) defined as follows. For each edge {u, v} ∈ M, let
u′ ∈ L(u) and v′ ∈ L(v) be two vertices of H such that {u′, v′} ∈ E(H) (such
vertices exist since the instance is supposed to be trim). We then set θ(u) = u′

and θ(v) = v′. For any vertex u ∈ V(G) which is not incident to any edge in
M (in case M is not a perfect matching), we set θ(u) = v, where v is any
vertex in L(u). Clearly, θ is well-defined and is injective since µH = 1.

So, if we let θ be our solution mapping, it is a simple matter to check that
#match(G, H, θ) ≥ #M, and hence

opt(G, H,L)

#match(G, H, θ)
≤

opt(G, H,L)

#M
.

Combining this with opt(G, H,L) ≤ m(G) and #M = ν(G) ≥ m(G)
2 la(G)

(Lemma 9),
we obtain

opt(G, H,L)

#match(G, H, θ)
≤ m(G)

2 la(G)

m(G)
= 2 la(G)

and the approximation ratio is proved. We now turn to proving the time

complexity. Finding a maximum matching in G is an O(m(G)
√

n(G)) time

procedure [19]. Since constructing θ is an O(µG
2 ν(G) + n(G) − 2 ν(G)) =

O(m(G)+n(G)) time procedure, the algorithm, as a whole, runs in O(n(G)+

m(G)
√

n(G)) time. ✷

Corollary 11 The Max-(µG, 1)-Matching problem is approximable within
ratio 2 ⌈3∆(G)/5⌉ for even ∆(G) and ratio 2 ⌈(3∆(G) + 2)/5⌉ for odd ∆(G),
for any ∆(H) and any constant µG.

PROOF. Combine Proposition 10 with la(G) ≤ ⌈3∆(G)/5⌉ for even ∆(G)
and la(G) ≤ ⌈(3∆(G) + 2)/5⌉ for odd ∆(G). ✷
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Corollary 12 The Max-(2, 1)-Matching problem is APX-complete even if
both G and H are bipartite graphs with ∆(G) ≤ 3 and ∆(H) ≤ 2.

Corollary 13 If the linear arboricity conjecture is true, then the Max-(µG, 1)-
Matching problem is approximable within ratio ∆(G)+1 if ∆(G) is odd, and
∆(G) + 2 if ∆(G) is even, for any ∆(H) and any constant µG.

PROOF. According to [4], since every graph G is a subgraph of a ∆(G)-
regular graph (which may contain more vertices, as well as more edges than
G), the linear arboricity conjecture is equivalent to the statement that the
linear arboricity of every graph G is at most ⌈(∆(G) + 1)/2⌉. The result thus
follows from Proposition 10. ✷

We now turn to giving a fast randomized algorithm for the Max-(µG, 1)-
Matching problem. Using a straightforward application of the probabilistic
method [4] - a powerful tool for demonstrating the existence of combinatorial
objects - we gave in [11] a linear-time randomized µG

2-approximation algo-
rithm. We strengthen this result by giving here a polynomial-time randomized
2 µG-approximation algorithm for the Max-(µG, 1)-Matching problem.

Lemma 14 There is a polynomial-time randomized algorithm that achieves a
performance ratio 2 µG for the Max-(µG, 1)-Matching problem restricted to
trim instances with unbounded degree graphs G and H.

PROOF. A plain description of our algorithm is as follows. First, let S ⊆
V(G) be a random subset given by Pr[u ∈ S] = 1/2, u ∈ V(G), these proba-
bilities being mutually independent. Next, the injective mapping θ : V(G) →
V(H) is computed in two subsequent steps. In the first step, for each u ∈
V(G)−S, θ(u) is chosen uniformly at random among the at most µG elements
in L(u); it is crucial here to note that µH = 1 and hence that L(u)∩L(v) = ∅
for all u, v ∈ V(G). Finally, in the second step, the mapping θ is extended over
the whole V(G) as follows: for each s ∈ S, in any order, let θ(s) be any node
s′ in L(u) maximizing #{{s, v} ∈ E(G) : v ∈ V(G) − S ∧ {s′, θ(v)} ∈ E(H)}.
The description of the algorithm is complete.

For the sake of the analysis, let θopt : V(G) → V(H) be an injective mapping
w.r.t. lists L(u), u ∈ V(G), such that #match(G, H, θopt) ≥ #match(G, H, θ′)
for all injective mappings θ′ : V(G) → V(H) w.r.t. lists L(u), u ∈ V(G), and
let Eopt ⊆ E(G) be all the edges in G that are matched by θopt, i.e.,

Eopt = {{u, u′} ∈ E(G) : {θopt(u), θopt(u
′)} ∈ E(H)}.
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Call an edge {u, u′} ∈ E(G) a cut-edge if exactly one of u and u′ is in S, and
let Ecut = {{u, u′} ∈ E(G) : u ∈ S ∧ u′ ∈ V(G) − S} be the set of all
cut-edges. Furthermore, let E∗

cut ⊆ Ecut be the set of those cut-edges e ∈ Ecut,
say e = {u, v} with u ∈ S and v /∈ S, such that θ(v) = θopt(v).

For each edge e ∈ E(G), let X(e) be the random variable defined by X(e) = 1
if and only if e ∈ Eopt ∩ E∗

cut. Write

X =
∑

e∈E(G)

X(e)

Also, let

Y =
∑

e∈E(G)

Y (e)

where Y (e) is the indicator variable for e = {u, v} ∈ E(G) being matched by
θ, i.e., Y ({u, v}) = 1 if and only if {θ(u), θ(v)} ∈ E(H). Therefore Y is the
objective function value achieved by the (random) solution returned by our
algorithm. We proceed to show that Exp[Y ] is at least a fraction 2µG of #Eopt.

For one,

Exp[Y ] = Exp





∑

e∈E(G)

Y (e)





=
∑

e∈E(G)

Exp[Y (e)]

≥
∑

e∈E∗

cut

Exp[Y (e)]

≥
∑

e∈E∗

cut

Exp[X(e)]

by the way θ is extended over S. Indeed, for each s ∈ S, θ(s) is defined to be
a vertex s′ ∈ L(u) maximizing #{{s, v} ∈ E(G) : v ∈ V(G) − S ∧ {s′, θ(v)} ∈
E(H)}. Therefore,

Exp[Y ] ≥
∑

e∈E∗

cut

Exp[X(e)]

=
∑

e∈E(G)

Exp[X(e)]

= Exp[X]
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since X(e) = 0 if e /∈ E∗
cut. For another,

Exp[X] = Exp





∑

e∈E(G)

X(e)





=
∑

e∈E(G)

Exp[X(e)]

=
∑

e∈Eopt

Exp[X(e)]

=
∑

e∈Eopt

1

2 µG

=
#Eopt

2 µG

,

since the probability of any edge e = {u, u′} ∈ Eopt being a cut-edge is
1
2

and Pr[θ(u′) = θopt(u
′)] = 1/µG, u′ ∈ V(G) − S. Combining this with

Exp[Y ] ≥ Exp[X], we obtain

Exp[Y ] ≥
#Eopt

2 µG

,

and the lemma is proved. ✷

6 Fixed-parameter tractability

Parameterized complexity [8] is an approach to complexity theory which offers
a means of analyzing algorithms in terms of their tractability. For many hard
problems, the seemingly unavoidable combinatorial explosion can be restricted
to a small part of the input, the parameter, so that the problems can be
solved in polynomial-time when the parameter is fixed. The parameterized
problems that have algorithms of f(k) nO(1) time complexity are called fixed-
parameter tractable, where k is the parameter, f can be an arbitrary function
depending only on k, and n denotes the overall input size. In the last decade,
parameterized complexity has proved to be extremely useful in computational
molecular biology, see for example [6,14,2].

We follow here this trend by showing in this section that the Max-(µG, 1)-
Matching problem for any bounded degree graph G is fixed-parameter tractable
parameterized by the number of matched edges, i.e., #match(G, H, θ). For this,
we adopt here a two-step procedure: we first define a new graph representation
of the problem, and next use that graph to derive fixed-parameter tractabil-
ity. At the heart of the algorithm is the incompatibility graph of any instance
〈G, H,L〉 which is later shown to be a compact representation of the problem.
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Definition 15 (Incompatibility graph) Let 〈G, H,L〉 be a trim instance
of the Max-(µG, 1)-Matching problem and < be an arbitrary total order
on V(G). The incompatibility graph of (G, H,L), denoted by I[G, H,L], is
defined by

V(I[G, H,L]) = {(u, v, u′, v′) : u < v ∧ {u, v} ∈ E(G) ∧ {u′, v′} ∈ E(H)

∧ u′ ∈ L(u) ∧ v′ ∈ L(v)}, and

E(I[G, H,L]) = {{(u1, u2, u
′
1, u

′
2), ((v1, v2, v

′
1, v

′
2)} : ∃ 1 ≤ i, j ≤ 2 such that

ui = vj and u′
i 6= v′

j}.

Less formally, each vertex of I[G, H,L] denotes a putative edge match in
〈G, H,L〉 and two vertices of I[G, H,L] are connected by an edge if and only
if the two corresponding edge matches are not compatible, i.e.,

{{(u1, u2, u
′
1, u

′
2), ((v1, v2, v

′
1, v

′
2)} ∈ E(I[G, H,L])

if no injective mapping θ : V(G) → V(H) w.r.t. lists L(u) can match simulta-
neously edge {u1, u2} ∈ E(G) and edge {v1, v2} ∈ E(G). Most of the interest
in the incompatibility graph I[G, H,L] stems from the following lemma, whose
correctness follows immediately from the above definition.

Lemma 16 Let 〈G, H,L〉 be a trim instance of the Max-(µG, 1)-Matching
problem. There exists an injective mapping θ : V(G) → V(H) w.r.t. lists
L(u), u ∈ V(G), such that #match(G, H, θ) ≥ k if and only if there exists an
independent set of size at least k in the incompatibility graph I[G, H,L].

Thus, finding an injective mapping θ of G to H w.r.t. L(u), u ∈ V(G), that
maximizes the number of matched edges (i.e., #match(G, H, θ)) reduces to
finding a maximum independent set in I[G, H,L]. This equivalence gains in
interest if we realize that, for any constant µG, if G is a bounded degree graph,
then so is the incompatibility graph I[G, H,L].

Lemma 17 Let 〈G, H,L〉 be an instance of the Max-(µG, 1)-Matching prob-
lem. Then, I[G, H,L] has maximum degree at most µ2

G +2 µG(µG−1)(∆(G)−
1) − 1.

PROOF. For ease of exposition, let us first rewrite E(I[G, H,L]) as follows:
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E(I[G, H,L]) =
⋃

1≤i≤5 Ei, where

E1 = {{(u, v, u′, v′), (x, y, x′, y′)} : u = x ∧ v = y ∧ (u′ 6= x′ ∨ v′ 6= y′)}

E2 = {{(u, v, u′, v′), (x, y, x′, y′)} : u = x ∧ v 6= y ∧ u′ 6= x′}

E3 = {{(u, v, u′, v′), (x, y, x′, y′)} : u 6= x ∧ v = y ∧ v′ 6= y′}

E4 = {{(u, v, u′, v′), (x, y, x′, y′)} : u = y ∧ u′ 6= y′}

E5 = {{(u, v, u′, v′), (x, y, x′, y′)} : v = x ∧ v′ 6= x′}.

Let us look at a given vertex (u, v, u′, v′) of V(I[G, H,L]), and let us count
how many edges at most can be incident to (u, v, u′, v′):

• Edges from E1: intuitively, this corresponds to all the other possible cases of
projection of the edge (u, v) of G onto an edge of H. Since u (resp. v) has at
most µG images by L, there are at most µG

2 different possible projections of
(u, v) on an edge of H. Among them, only one (namely, edge (u′, v′)) does
not imply an edge in E1. Thus, there are at most µG

2 − 1 edges from E1.
• Edges from E2 ∪E4: intuitively, those edges correspond to edges of G of the

form e = {x, y}, x < y, where
· either x = u but x and u do not have the same image in H
· or y = u but y and u do not have the same image in H

Considering both cases together, we see that there are at most µG − 1
possibilities for x or y to be equal to u, while its image is different from
u. Besides, for each of these µG − 1 possible cases, there are at most µG

possibilities for the other endpoint of e. Hence, for any fixed edge e having
an endpoint equal to u, there are at most µG(µG − 1) cases. Since G is of
maximum degree ∆(G), there are at most ∆(G) − 1 such possible edges e
(because we do not count edge {u, v}), and thus altogether we have at most
µG(µG − 1)(∆(G) − 1) edges of E2 ∪ E4 incident to vertex (u, v, u′, v′) in
I[G, H,L].

• Edges from E3 ∪ E5: this case is similar to the previous one, where we
consider v instead of u. By symmetry, we conclude that we have a total of
at most µG(µG−1)(∆(G)−1) edges of E2∪E4 incident to vertex (u, v, u′, v′)
in I[G, H,L].

Altogether, we get that the maximum degree of graph I[G, H,L]) satisfies :

∆(I[G, H,L]) ≤ µ2
G + 2 µG(µG − 1)(∆(G) − 1) − 1.

✷

It follows from the above lemma that ∆(I[G, H,L]) = O(∆(G)) when µG =
O(1), and hence if G is a bounded degree graph, then so is I[G, H,L]. Having
disposed of these preliminaries steps, we now turn to proving fixed-parameter
tractability of the Max-(µG, 1)-Matching problem.
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Proposition 18 The Max-(µG, 1)-Matching problem is solvable in O(m(D+
1)k) time, where k is the number of matched edges, i.e., #match(G, H, θ), m =
m(G) and and D = ∆(I[G, H,L]) = (µG−1)(2 µG∆(G)−µG+1) = O(∆(G)),
and hence is fixed-parameter tractable for parameter k, provided that G is a
bounded degree graph and µG is a constant.

PROOF. By standard bounded search techniques [8], one can find an inde-
pendent set of size k in a graph G in O(m(G) (∆(G)+1)k) time, or return that
no such subset exists. The proposition thus follows from applying this to the
incompatibility graph I[G, H,L], where we use the fact that, by definition of
I[G, H,L], n(I[G, H,L]) = O(m(G)) for any constant µG. ✷

7 Conclusion

In the context of comparative analysis of protein-protein interaction graphs,
we considered the problem of finding an occurrence of a given complex in the
protein-protein interaction graph of another species. We proved the Exact-
(3, 2)-Matching problem for ∆(G) ≤ 2 to be polynomial-time solvable, and
both the Exact-(3, 2)-Matching problem for bipartite graphs G and H
with ∆(G) ≤ 1 and ∆(H) ≤ 2 and the Exact-(3, 1)-Matching problem for
∆(G) ≤ 3 and ∆(H) ≤ 4 to be NP-complete. Also, we showed that the Max-
(2, 1)-Matching problem for bounded degree bipartite graphs is APX-hard.
This latter problem was shown to be fixed-parameter tractable parameterized
by the number of matched edges.

We mention here some possible directions for future works. First, an interest-
ing line of research is to further investigate the approximation of the Max-
(µG, µH)-Matching problem for bounded degree graphs G and H. For ex-
ample, is the Max-(2, 2)-Matching problem for bounded degree graphs G
and H in APX ? From a computational complexity point of view, the Max-
(µG, µH)-Matching problem for ∆(G) = ∆(H) = 3 remains open. Param-
eterized complexity of the Max-(µG, µH)-Matching problem is completely
unexplored in the case µH > 1. In particular, is the Max-(µG, µH)-Matching
problem for bounded degree graphs G and H fixed-parameter tractable for any
constant µG and µH ?
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