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Abstract. The aim of the present work is to introduce a thermodynamic model to describe the 
growth of an oxide layer on a metallic substrate. More precisely, this paper offers a study of oxygen 
dissolution into a solid, and its consequences on the apparition of mechanical stresses. They 
strongly influence the oxidation processes and may be, in some materials, responsible for cracking. 
To realize this study, mechanical considerations are introduced into the classical diffusion laws. 
Simulations were made for the particular case of uranium dioxide, which undergoes the chemical 
fragmentation. According to our simulations, the hypothesis of a compression stress field into the 
oxidised UO2 compound near the internal interface is consistent with the interpretation of the 
mechanisms of oxidation observed experimentally. 

Introduction 

In contact with oxygen, some crystalline solids undergo a chemical transformation during which the 
cracking and fragmentation of the initial solid is observed. Known as “chemical fragmentation”, 
this oxidation reaction induces mechanical strains due to strong interactions between the different 
mechanisms that occur during the oxide layer growth. They can be induced by the diffusion of 
species or by the chemical oxidation reaction. But they influence themselves the diffusion and the 
reaction, modifying particles flux and interfaces displacement velocities, governed by the 
thermodynamic forces (chemical potential gradients and affinity), which characterize these 
processes. In the way of the theoretical approach of such a process, a purely chemical formulation 
cannot explain by itself a phenomenon like the chemical fragmentation. To solve such a problem, a 
mechano-chemical approach based on non-equilibrium thermodynamics has been developed [1]. 
Initially written for the study of Zr anionic oxidation, this model allows us to set a new expression 
for the equation governing the diffusion of species into the solid, and a new formulation of the 
substrate/oxide interface displacement including mechanical terms. 

In the first part of this paper, thermodynamic bases of our model are reminded. Furthermore, this 
first part accents on the volume component of the intrinsic dissipation, which leads to the 
formulation of a new expression for the matter transport law. This one is then applied to an UO2 
grain submitted to different solicitation conditions in order to study its mechano-chemical 
behaviour. Some numerical simulations are realized to validate our equations, by considering some 
experimental observations of UO2 transformation into U4O9, U3O7 or/and U3O8. 
This theoretical approach is the first step of a more global study. It will finally lead to the 
simulation of the different oxide phases growths at the surface of any material in which the 
chemical fragmentation occurs. 

Thermodynamics of the diffusion-reaction process 
The construction of an original predictive model concerning an anionic oxidation process needs to 
obtain the evolution law governing the motion of the substrate/oxide interface, including mechanics 



and mass transport. For this, non-equilibrium thermodynamics is used to determine the intrinsic 
dissipation associated both with the diffusion of species into the metal and the motion of the 
reactive interface. 
Dissipation of the system. Let’s consider a quasi-static and isothermal evolution of an opened 
thermodynamic system V (Fig. 1) including a moving internal interface Σ. If TSE !="  is the 
Helmholtz free energy of the system, the first and second principles leads to the following 
dissipation equation: 

  
D = P

ext
! !" # 0 . (1) 

In this expression, Pext is the power developed by the forces emerging from the mass flux and the 
external strengths applied to the external boundary of the system. E is the internal energy, T the 
temperature and S the entropy. 

 
 

Fig. 1: Schematic representation of the system. 
 
The intrinsic dissipation will allow us to obtain the evolution equations for the internal variables 
governing the oxidation transformation of the substrate. It is then necessary to find, in Eq.1, an 
expression for Φ and Pext introducing the internal variables and constants of the system. 

Helmholtz free energy of the system. The free energy Φ is a function of three independent internal 
variables, strongly coupled:  

- the elastic strain e

ij
! , 

- the concentration c, 
- the reaction’s degree of conversion ξ. 

It appears judicious to divide the expression of this energy in two parts, the one in volume to take 
into account the mechanical properties and diffusion in the system, and the other one in surface to 
represent the reaction at the interface Σ: 

! = !V ("ij
e
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By Introducing the Cauchy stress tensor σij, the chemical potential µγ of a species γ and the 
chemical affinity A of the reaction as: 
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we obtain then a first expression for the Helmholtz free energy [4]: 

!V = " ijd#ij
e$ + %

&
µ& dc&$ , and !" = Ad#$ . (4) 

In ΦV, the first term corresponds to a mechanical contribution representing the differential of elastic 
energy density. The second term corresponds to a chemical contribution led to the flux of mass 



diffusing in the system. ΦΣ represents a chemical contribution due to the reactions existing inside 
the system. 
Helmholtz free energy evolution. The evolution of the Helmholtz free energy is due to the 
diffusion of some species inside the material, whose consequence is to gradually modify the 
substrate composition. When the limits in concentration of species are reached, the chemical 
reaction can occur, the oxide grows, and the boundary moves.  

To determine the time evolution of the free energy, it is useful to write the time derivative of an 
integral including discontinuity surfaces Σ: 
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where !  represents the speed of propagation of the surface Σ and n  the normal to this surface. 
The brackets used here correspond to the “jump” of a representative variable α of the system 
through the internal surface Σ. For example, if α+ and α- are the limits of α when the interface Σ is 
approached from the oxide and from the metal respectively, then the jump [α] across the interface is 
written as: [α] = α+ - α-. In Eq. 5, [ΦV] is the jump of free energy density through the surface Σ. In 
the same way, we can write the time derivative of ΦΣ: 
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These two equations, combined with Eq. 4 leads to an expression of !!  (Eq. 7): 
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In this expression, !
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=
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met( )  represents the average stress and !
ij

e"# $%  the strain jump 

across the interface Σ. 
Power developed by external forces. When volume forces are neglected, the oxygen flow through 
the external surface creates an external force acting on the surface and responsible for the occurence 
of an external stress (σij) applied to the volume boundary. In other words, the power of external 
forces (and exclusively surface forces here) is due to: 

- the efforts applied to V! . 
- the mass flux entering the system through this surface. 

This power can be written as: 
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In this expression, vi is a speed field and Jγ the mass flux of the constituent γ across the surface V! . 
Using the divergence operator, it is possible to rewrite this power as: 
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Dissipation calculation. Let’s classically break up the strain into an elastic part and an inelastic 
part: !ij = !ij

e
+ !ij

inel (!ij
inel  represents all the inelastic strain appearing during the oxidation of metal). 

Furthermore, the mass conservation relation can be written as: 
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From Eq. 7 and Eq. 9, we can determine the dissipation expression of the system: 
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Volume part of the dissipation. The first integral in Eq. 11 corresponds to the volume part of the 
dissipation: 
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It represents the energy dissipated in the volume, due to: 
- the oxygen diffusion process, 
- the plastic strains generated inside the volume by the oxidation process. 

 
This integral should contain an evolution law similar to the Fick’s law (in accordance with the 
hypothesis that the diffusion process takes place in volume). Let’s consider the inelastic strain as 
!ij
inel

= !ij
ch
+ !ij

p , where ch
ij!  corresponds to the deformation of the lattice due to the species diffusion 

and p
ij!  corresponds to every other kinds of deformation (plastic part). A definition of the chemical 

strain was given by Larché [5], who introduced a chemical expansion coefficient!ij

"  representing 
the deformation generated by the species γ diffusing in the material, per unit of concentration: 
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In the particular case of UO2, the coefficient !ij

"  is negative: the volume of UO2 decreases when a 

species diffuses in it. From Eq. 12 and Eq. 13, and if !ij

"  does not depend on time and 
concentration, the volume dissipation becomes: 
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The two last terms of Eq. 14 correspond to the diffusion process inside the material: they must be 
governed by the same internal variables 

 
J!
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. Considering an infinitesimal volume δV and 

introducing the definition of the flux
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As the dissipation can be written as the sum of flux/force products, the previous equation finally 
allows us to obtain the driving forces associated with the plastic strains and the mater flux: 
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From Eq. 16, we verify that in the case of stress-free diffusion (σ=0), the thermodynamic driving 
force associated with the diffusion is classically equal to the gradient of chemical potential. In what 
follows, we consider that the plastic strains are negligible, what is an acceptable hypothesis for a 
material showing an elastic behaviour, as the UO2. Furthermore, noting that 
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and assuming the chemical potential definition given by Larché and Cahn in Eq. 17 [5], we obtain a 
final expression for the dissipation (Eq. 18) from which a flux law will ensue. 
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In Eq. 17, µ!

c
T ,c!( )  represents the chemical potential only depending on concentration and 

temperature. Oxygen diffusion in the system is higher than the one for U atoms, so we only 
consider the oxygen diffusion corresponding to eq. 18. The thermodynamic force driving the 
diffusion process is decomposed into a purely chemical part and a mechano-chemical part. From 
this equation, it is possible to obtain an evolution law looking like a Fick’s law.  
 
Let’s now consider that: 

- the fluxes are linear function of the forces (Onsager near–equilibrium conditions), 
- the flux can be written in a classical way as 
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In the expression of the pure chemical potential, x1 represents the molar fraction of oxygen in the 
system and µ

1

0  its standard chemical potential. The diffusion coefficient '

1
D  can be separated into 

two components: 
- The first one corresponds to the classical diffusion coefficient in a stress-free state: 

D
1

'
= D

1
. In this case, Eq. 19 corresponds to a classical Fick’s law. 

- The second one depends on both the stress state and the composition. This Nernst term 
conveys the forced diffusion induced by stresses during the diffusion of species inside 
the material. It directly influences the diffusion coefficient: according to the stress and/or 
its evolution, the oxygen dissolution will be speeded-up or slowed down. 



Numerical simulations 
UO2 oxidation was chosen to perform numerical evaluation of our model because its characteristics 
make it a school case under many aspects. 
First it is a simple system inducing a simplified numerical model  

- as an oxide it has a pure elastic behaviour (no plastic term need to be taken into account). 
- oxidation occurs by oxygen incorporation in the solid (the chemical state of the sample can 

be described by the oxygen concentration only). 
Second it undergoes the chemical fragmentation phenomenon in several different configurations, 
which makes possible its phenomenological analysis. UO2 oxidation generates indeed different 
crystalline phases as a function of temperature and oxidation rate: 

- at temperature higher than 400°C, U3O8 phase is mainly formed with a 36% swelling 
compared to UO2. 

- At temperature lower than 300°C, a layer of U4O9 cubic phase is first formed with 0.5% 
shrinking compared to UO2, then a layer of U3O7 tetragonal phase appears on U4O9 layer. 
U3O8 formation occurs afterwards.   

- At temperature around 300°C, U4O9 formation is not observed and only a U3O7 layer exists 
at low oxidation rate, before U3O8 formation. 

The values used for the different internal parameters are given in table 1. 
 Lattice parameters [Å] 
 

D1 
(cm3/s) !

ij

1 /ρ T [°C] E [GPa] ν 
a b c 

Ref. [9] [11]  [10]  [7,8] 

UO2 0.0055exp
!26.3
RT

"
#$

%
&'

 -1.248.10-5 300 200 0,32 5,47 (cubic) 

U4O9 5,44 (cubic) 

U3O7 
 

5,40 (tetragonal) 5,49 

Table 1: Parameters values used in the simulations (ρ corresponds to the density). 
 

In this paper, we will focus on the early U3O7 formation at 300°C, which can be seen as an U3O7 
layer in epitaxy on a UO2 substrate. In this classical situation the mechanical state of the system, 
depends on the mismatch between the unit cell parameters of the substrate and the layer in the 
interface plane. Because U3O7 is a tetragonal phase, 2 different orientations of it unit cell are 
possible: either its c axis lye within the interface plane, or not. Because unit cell parameters verify 
a(U3O7)<a(UO2)<c(U3O7), U3O7 c axis parallel or perpendicular to the interface plane generates 
different stresses in UO2 substrate.    

The aim of the numerical calculations we performed was to identify what differences on the 
oxygen diffusion are induced by the different mechanical states created as a function of c axis 
orientation. For that purpose a simplified 2 dimensional geometry (Fig. 2) was used with the 
hypothesis of semi-infinite sample implying c1(h) = 0 and σ(h)=0 at the position h far from external 
interface (see Fig. 2). Oxygen penetrates the material through the face Σ and diffuses only on z 
direction. Because we focus on stress induced oxygen diffusion, the calculations were performed 
with a 1 s time scale, preventing the system to relax. 
Simulation of an oxide layer. In the computation, the presence of an oxide layer is simulated, 
considering two simple configurations (presented in Fig. 2): 

- in the case (B), the oxide lattice parameter parallel to the sample surface is smaller than 
the substrate’s one. To link the two lattices, it is necessary to expand the oxide layer. 
This expansion leads to compressive !

xx
stress on the substrate surface. 

- in the case (C), the oxide lattice parameter parallel to the sample surface is higher than 
the substrate’s one. The linking of the two lattices induces a tensile !

xx
 stress on the 

substrate surface. 



As comparison, case (A) gives the material response without oxide layer, i.e. without induced 
stress. 

 
Fig. 2: The different stress fields applied to the sample at internal interface (l0=1µm). 

Theoretical results. Fig. 3 gives, as a function of the distance to the interface Σ: 
- the evolution of oxygen concentration in the material, 
- the evolution of the internal stress. 

 
Fig. 3: Oxygen concentration and internal stress evolutions vs. penetration depth into the substrate 

for three different imposed strain fields. 
 
Even if it is still difficult to confirm experimentally the reached level of stresses calculated in these 
simulations, because of interface Σ does not move in this approach, it is interesting to observe 
strong behaviour differences between the two simulated cases. If the formed oxide layer tends to 
distend the substrate’s crystalline lattice (positive tensile stress, what corresponds to case C), we 
notice that oxygen concentration slumps near the interface Σ and increases when penetrating UO2. 
This shows a slow down of the oxidation process due to strong oxygen dissolution in the volume. 
On the contrary, if the formed oxide layer compresses the crystalline lattice (negative stress, which 
corresponds to case B), the oxygen cumulates near the interface Σ. 
In the case B, the oxide layer formation is made easier than in the case C, because the oxygen 
saturation is rapidly reached near the surface. 
 
In a 3 dimensional configuration, experimental observations on uranium dioxide oxidation [6] show 
that the U3O7 phase has its (011) plane parallel to the surface. This situation corresponds to a case 
more complex than case B and C. UO2 with a 5.47*5.47 Å² cell surface has to fit U3O7 with a 
5.40*5.49 Å² cell surface. Taking only cell surface into account it would correspond to case B. In 
fact U3O7 is created with domain formation and the orientation of c axis is not identical in the 



domains, which justify the hypothesis taking into account only cell surface in order to describe 
UO2/U3O7 interface.  

As a consequence, the oxygen diffusion profile calculated in case B is consistent with the 
assumption made in literature [12], according which oxidation proceeds thanks to the progression of 
the oxidised phase into UO2 with a sharp interface and nearly no oxygen diffusion in UO2. 
Concerning the case C, the very original behaviour it induces in UO2 deserves to be analysed more 
precisely, in comparison with the behaviours observed experimentally in the formation of the 
different phases inside the oxide layer. 

Conclusion 
A model is proposed to explain firstly the appearance of stresses at the substrate/oxide interface 

during the material oxidation, and secondly the influence of these stresses on the oxidation process 
evolution. For this occasion, a new expression of the diffusion coefficient, taking into account the 
stresses, is done. 

This work is a study of sensitivity, in which it was shown that the evolution of a system 
substrate/oxide largely depends of the strains induced by the interfacial chemical transformation. 
Through the equations applied to the UO2 oxidation study, the calculated profiles of concentration 
(case B) can be interpreted in the literature. We observe also, in the simulations, very different 
behaviours on whether the stress induced in the substrate is negative or positive. 

This first mechano-chemical approach of the diffusion mechanisms into a solid subjected to a 
strain field will be followed by a more detailed reconstruction of the material oxidation kinetic. This 
second step of our approach will be carried out soon, and based on a thermodynamic study of the 
solid/solid reactive interface displacement speed. This dynamic study will be completed by a static 
study of a multi-layer system (UO2/U4O9/ U3O7), which will allow us to evaluate the 
crystallographic compatibility of the lattices with regards to the reactional schemes proposed in the 
litterature. For this occasion, the strains generated by the linking of the different lattices will be 
studied thanks to the Bollmann’s method. 
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