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Multiple Polylogarithms: An Introduction

by
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Abstract

Multiple polylogarithms in a single variable are defined by

Li(s1,...,sk)(z) =
∑

n1>n2>···>nk≥1

zn1

ns1
1 · · ·nsk

k

,

when s1, . . . , sk are positive integers and z a complex number in the unit disk. For
k = 1, this is the classical polylogarithm Lis(z). These multiple polylogarithms
can be defined also in terms of iterated Chen integrals and satisfy shuffle relations.
Multiple polylogarithms in several variables are defined for si ≥ 1 and |zi| < 1
(1 ≤ i ≤ k) by

Li(s1,...,sk)(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k

,

and they satisfy not only shuffle relations, but also stuffle relations. When one
specializes the shuffle relations in one variable at z = 1 and the stuffle relations in
several variables at z1 = · · · = zk = 1, one gets linear or quadratic dependence
relations between the Multiple Zeta Values

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1
ns1

1 · · ·nsk
k

which are defined for k, s1, . . . , sk positive integers with s1 ≥ 2. The Main
Diophantine Conjecture states that one obtains in this way all algebraic relations
between these MZV.

Classification AMS: 11J91, 33E30
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0. Introduction

A long term project is to determine all algebraic relations among the
values

π, ζ(3), ζ(5), . . . , ζ(2n + 1), . . .

of the Riemann zeta function

ζ(s) =
∑

n≥1

1
ns ·

So far, one only knows that the first number in this list, π, is transcendental,
that the second one, ζ(3), is irrational, and that the other ones span a Q-
vector space of infinite dimension [R], [BR].

The expected answer is disappointingly simple: it is widely believed
that there are no relations, which means that these numbers should be
algebraically independent:
(?) For any n ≥ 0 and any nonzero polynomial P ∈ Z[X0, . . . , Xn],

P
(

π, ζ(3), ζ(5), . . . , ζ(2n + 1)
)

6= 0.

If true, this property would mean that there is no interesting algebraic
structure.

The situation changes drastically if we enlarge our set so as to include
the so-called Multiple Zeta Values (MZV, also called Euler-Zagier numbers
– see [Eu] and [Z]):

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1
ns1

1 · · ·nsk
k

,

which are defined for k, s1, . . . , sk positive integers with s1 ≥ 2. It may be
hoped that the initial goal could be reached if one could determine all alge-
braic relations between the MZV. Now there are plenty of relations between
them, providing a rich algebraic structure. One type of such relations arises
when one multiplies two such series: it is easy to see that one gets a linear
combination of MZV. There is another type of algebraic relations between
MZV, coming from their expressions as integrals. Again the product of two
such integrals is a linear combination of MZV. Following [B3], we will use
the name stuffle for the relations arising from the series, and shuffle for
those arising from the integrals.

The Main Diophantine Conjecture (Conjecture 5.3 below) states that
these relations are sufficient to describe all algebraic relations between
MZV. One should be careful when stating such a conjecture: it is nec-
essary to include some relations which are deduced from the stuffle and
shuffle applied to divergent series (i.e. with s1 = 1).
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There are several ways of dealing with the divergent case. Here, we
use the multiple polylogarithms

Li(s1,...,sk)(z) =
∑

n1>n2>···>nk≥1

zn1

ns1
1 · · ·nsk

k

,

which are defined for |z| < 1 when s1, . . . , sk are all ≥ 1, and which are also
defined for |z| = 1 if s1 ≥ 2.

These multiple polylogarithms can be expressed as iterated Chen in-
tegrals, and from this representation one deduces shuffle relations. There
is no stuffle relations for multiple polylogarithms in a single variable, but
one recovers them by introducing the multivariables functions

Li(s1,...,sk)(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k
(si ≥ 1, 1 ≤ i ≤ k)

which are defined not only for |zi| < 1 (1 ≤ i ≤ k), but also for |zi| ≤ 1
(1 ≤ i ≤ k) if s1 ≥ 2.

Notation. Given a string a1, . . . , ak of integers, the notation {a1, . . . , ak}n

stands for the kn-tuple

(a1, . . . , ak, . . . , a1, . . . , ak),

where the string a1, . . . , ak is repeated n times.

1. Multiple Polylogarithms in One Variable and Multiple Zeta
Values

Let k, s1, . . . , sk be positive integers. Write s in place of (s1, . . . , sk).
One defines a complex function of one variable by

Lis(z) =
∑

n1>n2>···>nk≥1

zn1

ns1
1 · · ·nsk

k
·

This function is analytic in the open unit disk, and, in the case s1 ≥ 2, it
is also continuous on the closed unit disk. In the latter case we have

ζ(s) = Lis(1).

One can also define in an equivalent way these functions by induction on
the number p = s1 + · · ·+ sk (the weight of s) as follows. Plainly we have

(1.1) z
d
dz

Li(s1,...,sk)(z) = Li(s1−1,s2,...,sk)(z) if s1 ≥ 2
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and

(1.2) (1− z)
d
dz

Li(1,s2,...,sk)(z) = Li(s2,...,sk)(z).

Together with the initial conditions

(1.3) Lis(0) = 0,

the differential equations (1.1) and (1.2) determine all the Lis.
Therefore, as observed by M. Kontsevich (cf. [Z]; see also [K] Chap.

XIX, § 11 for an early reference to H. Poincaré, 1884), an equivalent def-
inition for Lis is given by integral formulae as follows. Starting(∗) with
k = s = 1, we write

Li1(z) = − log(1− z) =
∫ z

0

dt
1− t

,

where the complex integral is over any path from 0 to z inside the unit
circle. From the differential equations (1.1) one deduces, by induction, for
s ≥ 2,

Lis(z) =
∫ z

0
Lis−1(t)

dt
t

=
∫ z

0

dt1
t1

∫ t1

0

dt2
t2
· · ·

∫ ts−2

0

dts−1

ts−1

∫ ts−1

0

dts
1− ts

·

In the last formula, the complex integral which is written on the left (and
which is the last to be computed) is over any path inside the unit circle
from 0 to z, the second one is from 0 to t1,. . . and the last one on the right,
which is the first to be computed, is from 0 to ts−1.

Chen iterated integrals (see [K] Chap. XIX, § 11) provide a compact
form for such expressions as follows. For ϕ1, . . . , ϕp differential forms and
x, y complex numbers, define inductively

∫ y

x
ϕ1 · · ·ϕp =

∫ y

x
ϕ1(t)

∫ t

x
ϕ2 · · ·ϕp.

For s = (s1, . . . , sk), set

ωs = ωs1−1
0 ω1 · · ·ωsk−1

0 ω1,

where
ω0(t) =

dt
t

and ω1(t) =
dt

1− t
·

(∗) This induction could as well be started from k = 0, provided that we
set Li∅(z) = 1.
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Then the differential equations (1.1) and (1.2) with initial conditions (1.3)
can be written

(1.4) Lis(z) =
∫ z

0
ωs.

Example. For any n ≥ 1 and |z| < 1 we have

(1.5) Li{1}n(z) =
1
n!

(

log
(

1/(1− z)
)

)n
,

which can be written in terms of generating series as

∞
∑

n=0

Li{1}n(z)xn = (1− z)−x.

The constant term Li{1}0(z) is 1.

2. Shuffle Product and the First Standard Relations

Denote by X = {ω0, ω1} the alphabet with two letters and by X∗

the set of words on X. A word is nothing else than a non-commutative
monomial in the two letters ω0 and ω1. The linear combinations of such
words with rational coefficients

∑

u

cuu,

where {cu ; u ∈ X∗} is a set of rational numbers with finite support, is
the non-commutative ring Q〈ω0, ω1〉. We are interested with the set X∗ω1

of words which end with ω1, together with the empty word ∅. The linear
combinations of such words is a left ideal of Q〈ω0, ω1〉 which we denote by
Q〈ω0, ω1〉ω1.

The set X∗ω1 is also the set of words ωs, with s = (s1, . . . , sk). We
define Liu(z) for u ∈ X∗ω1 by Liu(z) = Lis(z) when u = ωs. By linearity
we extend the definition of Liu(z) to the ideal Q〈ω0, ω1〉ω1:

Liv(z) =
∑

u

cuLiu(z) for v =
∑

u

cuu.

The set of convergent words is the set, denoted by ω0X∗ω1, of words which
start with ω0 and end with ω1 (including the empty word). The Q-vector
subspace they span in Q〈ω0, ω1〉 is denoted by ω0Q〈ω0, ω1〉ω1, and for v in
this space we set

ζ(v) = Liv(1).
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Definition. The shuffle product of two words in X∗ is the element in
Q〈ω0, ω1〉 which is defined inductively as follows:

∅ttu = utt∅ = u

for any u in X∗ω1, and

(ωiu)tt(ωjv) = ωi(uttωjv) + ωj(ωiuttv)

for u, v in X∗ and i, j equal to 0 or 1.
This product is extended bilinearly to Q〈ω0, ω1〉 and defines a commu-

tative and associative law. Moreover Q〈ω0, ω1〉ω1 is stable under tt.
Computing the product Liu(z)Liu′(z) of the two associated Chen iter-

ated integrals yields (see [MPH], Th. 2):

Proposition 2.1. For u and u′ in X∗ω1,

Liu(z)Liu′(z) = Liuttu′(z).

For instance from

ω1ttω0ω1 = ω1ω0ω1 + 2ω0ω2
1

we deduce

(2.2) Li1(z)Li2(z) = Li1,2(z) + 2Li2,1(z).

Setting z = 1, we deduce from Proposition 2.1:

(2.3) ζ(u)ζ(u′) = ζ(uttu′)

for u and u′ in ω0X∗ω1.
These are the first standard relations between multiple zeta values.

3. Shuffle Product for Multiple Polylogarithms in Several Vari-
ables

The functions of k complex variables(∗)

Lis(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k

(∗) Our notation for
Li(s1,...,sk)(z1, . . . , zk)

is the same as in [W], but it corresponds to Goncharov’s notation [G2] for

Li(sk,...,s1)(zk, . . . , z1).
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have been considered as early as 1904 by N. Nielsen, and rediscovered later
by A.B. Goncharov [G1,G2]. Recently, J. Écalle [É] used them for zi roots
of unity (in case s1 ≥ 2): these are the decorated multiple polylogarithms.
Of course one recovers the one variable functions Lis(z) by specializing
z2 = · · · = zk = 1. For simplicity we write Lis(z), where z stands for
(z1, . . . , zk). There is an integral formula which extends (1.4). Define

ωz(t) =











zdt
1− zt

if z 6= 0,

dt
t

if z = 0.

From the differential equations

z1
∂

∂z1
Lis(z) = Li(s1−1,s2,...,sk)(z) if s1 ≥ 2

and
(1− z1)

∂
∂z1

Li(1,s2,...,sk)(z) = Li(s2,...,sk)(z1z2, z3, . . . , zk),

generalizing (1.1) and (1.2), we deduce

Lis(z) =
∫ 1

0
ωs1−1

0 ωz1ω
s2−1
0 ωz1z2 · · ·ω

sk−1
0 ωz1···zk .

Because of the occurrence of the products z1 · · · zj (1 ≤ j ≤ k), the authors
of [G1] and [B3L] perform the change of variables

yj = z−1
1 · · · z−1

j (1 ≤ j ≤ k) and zj =
yj−1

yj
(1 ≤ j ≤ k)

with y0 = 1, and introduce the differential forms

ω′y(t) = −ωy−1(t) =
dt

t− y
,

so that ω′0 = ω0 and ω′1 = −ω1. Also they define

λ
(

s1, . . . , sk

y1, . . . , yk

)

= Lis(1/y1, y1/y2, . . . , yk−1/yk)

=
∑

ν1≥1

· · ·
∑

νk≥1

k
∏

j=1

y−νj
j





k
∑

i=j

νi





−sj

= (−1)p
∫

∆p

ωs1−1
0 ω′y1

· · ·ωsk−1
0 ω′yk

.

With this notation some formulae are simpler. For instance the shuffle
relation is easier to write with λ: the shuffle is defined on words on the
alphabet {ω′y ; y ∈ C}, (including y = 0), inductively by

(ω′yu)tt(ω′y′v) = ω′y(uttω′y′v) + ω′y′(ω
′
yuttv).
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4. Stuffle Product and the Second Standard Relations

The functions Lis(z) satisfy not only shuffle relations, but also stuffle
relations arising from the product of two series:

(4.1) Lis(z)Lis′(z′) =
∑

s′′
Lis′′(z′′),

where the notation is as follows: s′′ runs over the tuples (s′′1 , . . . , s′′k′′) ob-
tained from s = (s1, . . . , sk) and s′ = (s′1, . . . , s

′
k′) by inserting, in all

possible ways, some 0 in the string (s1, . . . , sk) as well as in the string
(s′1, . . . , s

′
k′) (including in front and at the end), so that the new strings

have the same length k′′, with max{k, k′} ≤ k′′ ≤ k + k′, and by adding
the two sequences term by term. For each such s′′, the component z′′i of
z is zj if the corresponding s′′i is just sj (corresponding to a 0 in s′), it is
z′` if the corresponding s′′i is s′` (corresponding to a 0 in s), and finally it is
zjz′` if the corresponding s′′i is sj + s′`. For instance

s s1 s2 0 s3 s4 · · · 0
s′ 0 s′1 s′2 0 s′3 · · · s′k′
s′′ s1 s2 + s′1 s′2 s3 s4 + s′3 · · · s′k′
z′′ z1 z2z′1 z′2 z3 z4z′3 · · · z′k′ .

Of course the 0’s are inserted so that no s′′i is zero.

Examples. For k = k′ = 1 the stuffle relation (4.1) yields

(4.2) Lis(z)Lis′(z′) = Li(s,s′)(z, z′) + Li(s′,s)(z′, z) + Lis+s′(zz′),

while for k = 1 and k′ = 2 we have

Lis(z)Li(s′1,s′2)
(z′1, z

′
2) = Li(s,s′1,s′2)

(z, z′1, z
′
2) + Li(s′1,s,s′2)

(z′1, z, z′2)

(4.3) + Li(s′1,s′2,s)(z′1, z
′
2, z) + Li(s+s′1,s′2)

(zz′1, z
′
2) + Li(s′1,s+s′2)

(z′1, zz′2).

The stuffle product is defined on X∗ω1 inductively by

∅ ∗ u = u ∗ ∅ = u

for u ∈ X∗ω1 and

(ωs−1
0 ω1u) ∗ (ωt−1

0 ω1u′) =

ωs−1
0 ω1(u ∗ ωt−1

0 ω1u′) + ωt−1
0 ω1(ωs−1

0 ω1u ∗ u′) + ωs+t−1
0 ω1(u ∗ u′)

for u and u′ in X∗ω1, s ≥ 1, t ≥ 1.
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Specializing (4.1) at z1 = · · · = zk = z′1 = · · · = z′k′ = 1, we deduce

(4.4) ζ(u)ζ(u′) = ζ(u ∗ u′)

for u and u′ in ω0X∗ω1.
These are the second standard relations between multiple zeta values.

For instance (4.3) with z = z′1 = z′2 = 1 gives

ζ(s)ζ(s′1, s
′
2) = ζ(s, s′1, s

′
2) + ζ(s′1, s, s

′
2) + ζ(s′1, s

′
2, s)

+ζ(s + s′1, s
′
2) + ζ(s′1, s + s′2)

for s ≥ 2, s′1 ≥ 2 and s′2 ≥ 1.

5. The Third Standard Relations and the Main Diophantine
Conjectures

We start with an example. Combining the stuffle relation (4.2) for
s = s′ = 1 with the shuffle relation (2.2) for z′ = z, we deduce

(5.1) Li1,2(z, 1) + 2Li2,1(z, 1) = Li1,2(z, z) + Li2,1(z, z) + Li3(z2).

The two sides are analytic inside the unit circle, but not convergent at
z = 1. We claim that

F (z) = Li1,2(z, 1)− Li1,2(z, z) =
∑

n1>n2≥1

zn1(1− zn2)
n1n2

2

tends to 0 as z tends to 1 inside the unit circle. Indeed for |z| < 1 we have

|1− zn2 | = |(1− z)(1 + z + · · ·+ zn2−1)| < n2|1− z|,

hence
n1−1
∑

n2=1

|1− zn2 |
n2

2
< |1− z|

n1−1
∑

n2=1

1
n2
·

From (1.5) with n = 2 we deduce

|F (z)| ≤ |1− z|Li1,1(|z|) =
1
2
|1− z|

(

log
(

1/(1− |z|)
)

)2
.

Therefore, taking the limit of the relation (5.1) as z → 1 yields Euler’s
formula

ζ(2, 1) = ζ(3).
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This argument works in a quite general setting and yields the relations

(5.2) ζ(ω1 ∗ u− ω1ttu) = 0

for each u ∈ ω0X∗ω1.
These are the third standard relations between multiple zeta values.
Zagier, Goncharov, Kontsevich,. . . (see [Z]) conjecture that the three

standard relations (2.3), (4.4) and (5.2) constitute a basis of the ideal of
algebraic relations between all numbers ζ(s). Here are precise statements.

We introduce independent variables Zu, where u ranges over the set
X∗ω1. For v =

∑

u cuu in Q〈ω0, ω1〉ω1, we set

Zv =
∑

u

cuZu.

In particular for u1 and u2 in ω0X∗ω1, Zu1ttu2 and Zu1∗u2 are linear forms
in Zu, u ∈ ω0X∗ω1. Also, for v ∈ ω0Q〈ω0, ω1〉ω1, Zω1ttv−ω1∗v is a linear
form in Zu, u ∈ ω0X∗ω1.

Denote by R the ring of polynomials with coefficients in Q in the
variables Zu where u ranges over the set ω0X∗ω1, and by I the ideal of R
consisting of all polynomials which vanish under the specialization map

Zu 7→ ζ(u) (u ∈ ω0X∗ω1).

Conjecture 5.3. The polynomials

ZuZv − Zuttv, ZuZv − Zu∗v and Zω1ttu−ω1∗u,

where u and v range over the set of elements in ω0X∗ω1, generate the ideal
I.

Denote by Zp the Q-vector subspace of R spanned by the real numbers
ζ(s) with s of weight p, with Z0 = Q and Z1 = {0}. Using any of the first
two standard relations (2.3) or (4.4), one deduces Zp · Zp′ ⊂ Zp+p′ . This
means that the Q-vector subspace Z of R spanned by all Zp, p ≥ 0, is a
subalgebra of R over Q which is graded by the weight. From Conjecture
5.3 one deduces the following conjecture of Goncharov [G1]:

Conjecture 5.4. As a Q-algebra, Z is the direct sum of Zp for p ≥ 0.

The dimension dp of Zp satisfies d0 = 1, d1 = 0, d2 = d3 = 1. The
expected value for dp is given by a conjecture of Zagier [Z]:

Conjecture 5.5. For p ≥ 3 we have

dp = dp−2 + dp−3.

An interesting question is whether Conjecture 5.3 implies Conjecture
5.5. For this question as well as other related problems, see [É].
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