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Abstract

We investigate the price of anarchy of a load balancing game with K
dispatchers. The service rates and holding costs are assumed to depend on
the server, and the service discipline is assumed to be processor-sharing at
each server. The performance criterion is taken to be the weighted mean
number of jobs in the system, or equivalently, the weighted mean sojourn
time in the system.

We first show that, for a fixed amount of total incoming traffic, the
worst-case Nash equilibrium occurs when each player routes exactly the
same amount of traffic, i.e., when the game is symmetric. For this sym-
metric game, we provide the expression for the loads on the servers at
the Nash equilibrium. Using this result we then show that, for a system
with two or more servers, the price of anarchy, which is the worst-case
ratio of the global cost of the Nash equilibrium to the global cost of the
centralized setting, is lower bounded by K/(2

√

K−1) and upper bounded
by

√

K, independently of the number of servers.

1 Introduction

Server farms are used nowadays in as diverse areas as e-service industry, database
systems and grid computing clusters. Figure 1 depicts the typical architecture
of a server farm with a single centralized dispatcher who receives jobs from dif-
ferent sources and routes them to a set of servers. Server farms have become
a popular architecture in computing centers and are used, for example, in the
Cisco Local Director, IBM Network Dispatcher and Microsoft Sharepoint (see
[4] for a recent survey). This configuration can also be used to model a web
server farm, where requests for files (or HTTP pages) arrive to a dispatcher and
are dispatched immediately to one of the servers in the farm for processing.
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Servers

Dispatcher

Figure 1: Centralized architecture for a server farm.

One of the fundamental issues in this context is to characterize the optimal
routing strategy. The problem amounts to finding the routing strategy of the
dispatcher that will optimize a certain performance objective such as the mean
processing time (or sojourn time) of jobs. By Little’s law, this performance
objective is equivalent to the mean number of jobs in the system. Such a
routing strategy is known as the social optimum or the social welfare since it
minimizes the mean processing time of jobs (we will also refer to it as the global
optimum). This load balancing problem is perhaps one of the most studied
one in the operations research community, and many works have been devoted
to the analysis of the optimal routing in various static and dynamic scenarios
[9, 13, 20].

In practice, it may however happen that a single centralized dispatcher is
simply not feasible due to scalability or complexity reasons. In this case, the
system designer will certainly have to resort to a distributed scheme in which
several dispatchers are used as shown in Figure 2. In this case, each dispatcher
will independently seek to minimize the processing time perceived by the traffic
it routes. Thus, the shift from a centralized to a distributed scheme will give
rise to a non-cooperative game between the dispatchers.

Dispatcher

Dispatcher

Dispatcher

Servers

Figure 2: Decentralized architecture for a server farm.
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Game theory provides the systematic framework to study and to understand
such problems. We can distinguish two different types of games depending on
the number of dispatchers. If the number of dispatchers is finite then the game
is said to be “atomic” and a well-known equilibrium strategy is given by the
Nash equilibrium, that is, a routing strategy from which unilateral deviation
does not help any dispatcher in improving the performance perceived by the
traffic it routes. If the number of dispatchers is infinite (every arriving job takes
its own routing decision and can be thought of as a dispatcher) the game is said
to be “non-atomic” and the corresponding equilibrium is given by the notion
of Wardrop equilibrium. In this case, the equilibrium point is characterized by
the fact that the performance in every (used) server is the same. In the present
article we are mostly interested in the “atomic” setting, and we refer to Section 2
for related work in the “non-atomic” setting.

From the system designer’s perspective a very important question pertains
to the loss of performance incurred when shifting to a decentralized architecture.
Indeed, in the decentralized architecture each dispatcher performs an individual
optimization for its own jobs, and thus it can be expected that the overall per-
formance of the decentralized scheme will be worse than that of the centralized
scheme. The system designer is probably ready to accept a distributed routing
scheme provided that the gain in scalability is not achieved at the expense of
a significant loss in performance. In this context, the question turns out to be:
can we provide performance guarantees for these decentralized routing schemes?
This is the main question addressed in this paper.

Our objectives are two fold. Firstly, we investigate the properties of the non-
cooperative game. We show that there always exists a unique Nash equilibrium,
that is, a routing strategy from which no dispatcher has any incentive to deviate.
We also show that the worst Nash equilibrium occurs when the amount of traffic
that every dispatcher routes is exactly the same. To the best of our knowledge
this property has not been shown previously, and it may find applications in
other games. For this particular case, we show that the game belongs to a
particular class of games known as Potential Games [16] which are known to have
several desirable properties. For instance, for a potential game, the best response
algorithm converges to the equilibrium. Secondly, we compare the performance
of the global optimum with that given by the Nash equilibrium. In other words,
we compare the performance when there is only one dispatcher which routes
all the traffic with the performance when there are several dispatchers each one
seeking to optimize its own performance. In order to do so we look at the Price
of Anarchy (PoA) which was introduced by Koutsoupias and Papadimitriou [15].
The PoA is a measure of the inefficiency of a decentralized scheme. It is defined
as the ratio of the performance obtained by the worst Nash equilibrium to that
of the global optimal solution, and hence it lies in the interval [1,∞). We show
that the PoA is of the order of the square root of the number of dispatchers.
Thus, it grows fairly quickly and unboundedly with the number of dispatchers.
As a consequence, we recover the result in [1] where it was shown that when the
number of dispatchers is infinite (the “non-atomic” as pointed out above) the
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PoA is infinite.

The rest of the paper is organized as follows. In Section 3, we describe
the model and state the problem. In Section 4, we explore the structure of
the underlying Nash equilibria and prove their existence and uniqueness. We
also establish several properties of these equilibria that form the foundation of
the subsequent analysis. In Section 5, we analyze the global cost at the Nash
equilibria, and show that the maximum of this cost is achieved in the symmetric
case. With this result at hand, in Section 6, we derive lower and upper bounds
on the PoA. Finally, we draw some conclusions and give possible extensions in
Section 7.

2 Related work

Load balancing in multi-server systems has been widely studied in the literature.
Global and individual optimality in load balancing are considered in the mono-
graph [13], which does not consider decisions based on the knowledge of the
amount of load. Systems with a general service-time distribution and the FCFS
scheduling discipline were studied in [6, 2, 3, 10], while [17, 12] studied systems
with an exponential service-time distributions and an arbitrary scheduling dis-
cipline. In [11], the authors analyzed a multi-server system where requests join
the server that has the smallest number of requests. In a recent work [5], the
authors investigate the performance of a server farm where the scheduling dis-
cipline in each server is SRPT (Shortest Remaining Processing Time First). In
[8], the authors studied the performance of selfish routing in a server farm with
a min-max objective, that is, when the objective is to minimize the maximum
sojourn time in the servers.

In recent years the study of PoA in multi-server queues has started to receive
attention. In [12], the authors considered the non-atomic scenario where every
arriving job can select the server in which it will be served. An important
assumption is that the holding cost is the same in every server. Building upon
results from [2], it is shown in [12] that the PoA is upper bounded by the number
of servers. We also refer to [21] for similar results. Another closely related work
is [1]. The main difference between the models studied in [12] and [1] is that in
the latter the holding costs in every server could be arbitrarily chosen. Using
potential game theory, it is shown in [1] that the PoA is unbounded in the non-
atomic setting, i.e., it can be arbitrarily close to infinity. This was a surprising
result since it indicated that unequal holding costs may have a profound impact
on the system’s performance.

Our present work is closely related to work by Orda and co-authors [14, 18].
In these references the atomic non-cooperative setting was studied, but the focus
was on existence, uniqueness and the properties of the Nash equilibrium rather
than on the PoA. Moreover, it was also assumed that the holding cost per unit
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of time is the same in every server, which as we have mentioned can have a
profound impact on the performance. Several of the arguments used in the
present work are directly inspired from those references, but we emphasize that
our main results and characterizations are new.

3 Problem Formulation and Main Results

We consider a non-cooperative routing game with K dispatchers and S Processor-
Sharing servers. Denote C = {1, . . . , K} to be the set of dispatchers and
S = {1, . . . , S} to be the set of servers. Jobs received by dispatcher i are
said to be jobs of class i.

Server j ∈ S has capacity rj and a holding cost cj per unit time is incurred
for each job sent to this server. It is assumed that servers are numbered in the
order of increasing cost per unit capacity, i.e., if m ≤ n, then cm

rm
≤ cn

rn
. Let

r = (rj)j∈S and c = (cj)j∈S denote the vectors of server capacities and server
costs, respectively, and let r =

∑

n∈S rn denote the total capacity of the system.

Jobs of class i ∈ C arrive to the system according to a Poisson process and
have generally distributed service-times. We do not specify the arrival rate and
the characteristics of the service-time distribution due to the fact that in an
M/G/1 − PS queue the mean number of jobs depends on the arrival process
and service-time distribution only through the traffic intensity, i.e., the product
of the arrival rate and the mean service-time.

Let λi be the traffic intensity of class i. It is assumed that λi ≤ λj for i ≤ j.
Moreover, it will also be assumed that the vector λ of traffic intensities belongs
to the following set:

Λ =

{

λ ∈ IRK :
∑

i∈C
λi = λ

}

,

where λ̄ denotes the total incoming traffic intensity. It will be assumed through-
out the paper that λ̄ < r, which is the necessary and sufficient condition to
guarantee the stability of the system.

Let xi = (xi,j)j∈S denote the routing strategy of dispatcher i, with xi,j being
the amount of traffic it sends towards server j. Let

Xi =







xi ∈ IRS : 0 ≤ xi,j ≤ rj , ∀j ∈ S;
∑

j∈S
xi,j = λi







denote the set of feasible routing strategies for dispatcher i. The vector x =
(xi)i∈C will be called a multi-strategy. The multi-strategies belong to the prod-
uct strategy space X =

⊗

i∈C Xi.
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Dispatcher i seeks to find a routing strategy that minimizes the mean weighted
sojourn times of its jobs, which, by Little’s law, is equivalent to minimizing the
mean weighted number of jobs in the system as seen by this class. This opti-
mization problem, which depends on the routing decisions of the other classes,
can be formulated as follows:

minimize
xi∈Xi

Ti(x) =
∑

j∈S
cj

xi,j

rj − yj

where yj =
∑

k∈C xk,j is the traffic offered to server j. Note that, introducing
ri,j = rj −

∑

k 6=i xk,j , the available capacity of server j as seen by class i, the
problem can alternatively be formulated as

minimize
xi∈Xi

∑

j∈S
cj

xi,j

ri,j − xi,j
. (1)

A Nash equilibrium of the routing game is a multi-strategy from which no
class finds it beneficial to deviate unilaterally. Hence, x ∈ X is a Nash Equilib-
rium Point (NEP) if

xi = arg minz∈Xi
Ti(x1, . . . ,xi−1, z,xi+1, . . . ,xK), ∀i ∈ C.

Let Tij(x) denote the partial derivative of Ti with respect to xi,j at point x,
then

Tij(x) = cj

[

1

rj − yj
+

xi,j

(rj − yj)2

]

. (2)

According to the Karush-Kuhn-Tucker (KKT) optimality conditions, x ∈ X
is a NEP if and only if there exist multipliers µi such that

Tij(x) =
cj

rj − yj
+

cjxi,j

(rj − yj)2
= µi if xi,j > 0, (3)

Tij(x) =
cj

rj − yj
≥ µi if xi,j = 0. (4)

Let Cj = {i ∈ C : xi,j > 0} be the set of classes which route traffic to server j.
Similarly, let Si = {j ∈ S : xi,j > 0} be the set of servers to which class i routes
traffic. Note that i ∈ Cj ⇐⇒ j ∈ Si. We can now rewrite equations (3) and (4)
as

cj

rj − yj
< µi ⇐⇒ i ∈ Cj ⇐⇒ j ∈ Si. (5)

Let x be a NEP for the system with K dispatchers. The global performance
of the system can be assessed using the global cost

DK(λ, r, c) =
∑

i∈C
Ti(x) =

∑

j∈S
cj

yj

rj − yj
,
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where the offered traffic yj are those at the NEP. The above cost represents the
mean weighted number of jobs in the system. Note that when there is a single
dispatcher, we have a single class whose traffic intensity is λ1 = λ̄. The global
cost can therefore be written as D1(λ̄, r, c) in this case.

We shall use the price of anarchy as a metric in order to assess the inefficiency
of a decentralized scheme with K dispatchers. For our problem, it is defined as

PoA(K) = sup
λ,r,c

DK(λ, r, c)

D1(λ̄, r, c)
.

In the following section, we establish several important properties of the Nash
equilibrium when the input parameters λ, r, and c are fixed. These properties
will be used to prove the main results of this paper related to the PoA.

3.1 Main Results

Before getting into the technical details, we present here an overview of the
most important results obtained in the paper.

The first theorem, which is proved in Section 5, states that that the global

cost DK(λ, r, c) achieves its maximum when λ is the symmetric vector λ
= =

(

λ̄
K , . . . , λ̄

K

)

.

Theorem 1

sup
λ,r,c

DK(λ, r, c) = sup
r,c

DK(λ=, r, c).

This result implies that, for the calculation of the PoA, we can restrict ourselves
to the symmetric game. This, coupled with the fact that in our setting the
symmetric game is also a potential game, makes it more tractable for the analytic
computation of the NEP and the global cost, thereby greatly simplifying the
derivation of the lower and upper bounds on the PoA.

The second theorem, which is proved in Section 6, gives these lower and
upper bounds on the PoA.

Theorem 2 For a system with two or more servers,

K

2
√

K − 1
≤ PoA(K) ≤

√
K.

This result states that the PoA is of the order of
√

K independently of the
number of servers, and thus remains bounded for a finite number of dispatchers.

Remark 1 For a system with only one server, PoA(K) = 1. Hence, we do not
consider this case.
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4 Existence, Uniqueness and Other Properties

of The Nash Equilibrium

In this section, we show the existence and uniqueness of the NEP and investigate
properties of the traffic flow at this point.

4.1 Existence and Uniqueness

Let x be a multi-strategy for the routing game. The cost function Ti(x) of each
user i ∈ C is the sum over servers j ∈ S of the link cost functions ti,j (x) =
cj xi,j/(rj − yj). The latter are continuous functions of x which are convex
and continuously differentiable in xi,j . We have also assumed that λ < r. As
stated in [18], these conditions are sufficient to guarantee the existence of a NEP
(Theorem 1 in [19]).

Now observe that the function ti,j(x) is a function of two arguments, xi,j

and yj, which is increasing in each of its two arguments. Moreover, the partial
derivative Ti,j(x) is strictly increasing in xi,j and in yj . We therefore conclude
that the function Ti(x) meets the conditions defining a type-A cost function in
[18]. Hence, we can apply Theorem 2.1 in [18] and conclude that the NEP is
unique.

4.2 Properties related to traffic intensities

We prove below that there is a monotonicity among classes in their use of servers:
a class with a higher demand uses more of each and every server. We first prove
a series of technical lemmata before stating our main results in Proposition 1
and Corollary 1.

Lemma 1 Si ∩ Sk 6= ∅.

Proof. Assume the contrary, i.e., if m ∈ Si then m /∈ Sk, and if n ∈ Sk

then n /∈ Si. For one such pair m and n, from (5), we can conclude that
µi > cm

rm−ym
≥ µk and µk > cn

rn−yn
≥ µi, which is a contradiction.

Since Si ∩ Sk 6= ∅, from (3), we have

µi − µk =
cj

(rj − yj)2
(xi,j − xk,j), ∀j ∈ Si ∩ Sk. (6)

Lemma 2 µi < µk ⇐⇒ ∃j ∈ Sk : xi,j < xk,j .

Proof. Straight part: From Lemma 1, Si ∩ Sk 6= ∅. If µi < µk, then, from (6),
∃j ∈ Sk : xi,j < xk,j .
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Converse part: ∃j ∈ Sk : xi,j < xk,j . Either j ∈ Si or j /∈ Si. If j ∈ Si then,
from (6), µi < µk. If j /∈ Si, then, from (5), µi ≤ cj

rj−yj
< µk.

Lemma 3 If µi < µk, then Si ⊂ Sk.

Proof. If j ∈ Si, then, from (5),
cj

rj−yj
< µi. If µi < µk then

cj

rj−yj
< µk.

Hence, from (5) we can conclude that j ∈ Sk. Therefore, Si ⊂ Sk.

Lemma 4 ∃m ∈ Sk : xi,m < xk,m ⇐⇒ xi,j < xk,j , ∀j ∈ Sk.

Proof. Straight part: If ∃m ∈ Sk : xi,m < xk,m, then, from Lemmata 2 and 3,
we have µi < µk and Si ⊂ Sk. For j ∈ Si, from (6), we have xi,j < xk,j . For
j ∈ Sk \ Si, xi,j = 0 and 0 < xk,j . Hence, xi,j < xk,j , ∀j ∈ Sk.

Converse part: It is true from the statement.

Proposition 1 The following statements are equivalent:

1. µi < µk.

2. ∃j ∈ Sk : xi,j < xk,j .

3. xi,j < xk,j , ∀j ∈ Sk.

4. λi < λk.

Proof. 1 ⇐⇒ 2 ⇐⇒ 3 follows from Lemmata 2 and 4. Now, we show 3 ⇐⇒ 4.

Straight part: If xi,j < xk,j , ∀j ∈ Sk, then, from the fact that 3 ⇐⇒ 1 and
Lemma 3, we can conclude that λi =

∑

j∈Si
xi,j =

∑

j∈Sk
xi,j <

∑

j∈Sk
xk,j =

λk.

Converse part: Since λk =
∑

j∈Sk
xk,j , if λi < λk, then ∃j ∈ Sk : xi,j < xk,j .

Since 2 ⇐⇒ 3, if λi < λk, then xi,j < xk,j , ∀j ∈ Sk.

The above proposition shows that a class with a higher demand uses more of
each and every server. The following corollary shows that if two classes have the
same traffic intensity, then they send the same amount of flow on each server.

Corollary 1 From Proposition 1, it follows that

1. µi = µk ⇐⇒ ∃j ∈ Sk : xi,j = xk,j ⇐⇒ xi,j = xk,j , ∀j ∈ Sk ⇐⇒ λi =
λk.

2. If λi < λk, then Si ⊂ Sk.
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3. If λi = λk, then Si = Sk.

In particular, if all classes have the same demand, i.e. λ = λ
=, then, for all

server j ∈ S and for all i ∈ C, we have xi,j = yj/K.

Recall that we have assumed that λi ≤ λk for i ≤ k. Therefore, according to
the above results, if we consider two classes i and k > i, then we have Si ⊆ Sk,
µi ≤ µk and xi,j ≤ xk,j for all servers j ∈ Sk, with the equalities holding if and
only if λi = λk.

Let Nj = |Cj|. Proposition 1 implies that if k ∈ Cj, then i ∈ Cj , ∀i > k. As
a consequence, the set Cj has the following structure: Cj = {k−Nj +1, . . . , K}.

4.3 Properties related to server costs per unit capacity

The above results tell how an order on λi translates to an order on xi,j , µi

and Si, i.e., quantities of class i. We now give the analogous results for similar
quantities of server j. As before, we first prove a series of technical lemmata
before stating our main results in Proposition 2 and Corollary 2.

Denote
rj−yj

cj
=: κj . We can rewrite (5) as

µ−1
i < κj ⇐⇒ i ∈ Cj ⇐⇒ j ∈ Si. (7)

Note that κm is to class m what µi is to class i. Also, for i ∈ Cm, we can rewrite
(3) as

µi =
cm

rm − ym

(

1 +
cm

rj − ym

xi,m

cm

)

= κ−1
m

(

1 + κ−1
m

xi,m

cm

)

. (8)

Lemma 5 Cm ∩ Cn 6= ∅.

Proof. Assume the contrary, i.e., if i ∈ Cm, then i /∈ Cn, and if k ∈ Cn,
then k /∈ Cm. For one such pair i and k, from (7), we can conclude that
κm > µ−1

i ≥ κn and κn > µ−1
k ≥ κm, which is a contradiction.

Since Cm ∩ Cn 6= ∅, from (8), we have

κ−1
m

(

1 + κ−1
m

xi,m

cm

)

= κ−1
n

(

1 + κ−1
n

xi,n

cn

)

, ∀i ∈ Cm ∩ Cn. (9)

Lemma 6 κm < κn ⇐⇒ ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
.
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Proof. Straight part: From Lemma 5, Cm∩Cn 6= ∅. If κm < κn, then, from (9),
∃i :

xi,m

cm
<

xi,n

cn
.

Converse part: ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
. Either i ∈ Cm or i /∈ Cm. If i ∈ Cm,

then, from (9), κm < κn. If i /∈ Cm, then, from (7), κm ≤ µ−1
i < κn.

Lemma 7 If κm < κn, then Cm ⊂ Cn.

Proof. If i ∈ Cm, then, from (7), µi < κm. If κm < κn, then µi < κn. Hence,
from (7) we can conclude that i ∈ Cn. Therefore, Cm ⊂ Cn.

Lemma 8 ∃m ∈ Ci :
xi,m

cm
<

xi,n

cn
⇐⇒ xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn.

Proof. Straight part: If ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
, then, from Lemmata 6 and 7, we

have κm < κn and Cm ⊂ Cn. For i ∈ Cm, from (9),
xi,m

cm
<

xi,n

cn
. For i ∈ Cn \ Cm,

xi,m = 0 and 0 < xi,n. Hence,
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn.

Converse part: It is true from the statement.

The following proposition proves a monotonic property regarding the order
of preference of servers as seen by each class.

Proposition 2 The following statements are equivalent:

1. κm < κn.

2. ∃i ∈ Sn :
xi,m

cm
<

xi,n

cn
.

3.
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn.

4. rm

cm
< rn

cn
.

Proof. 1 ⇐⇒ 2 ⇐⇒ 3 follows from Lemmata 6 and 8. Next, we show 3 ⇐⇒ 4.

Straight part: If
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn, then from the fact that 3 ⇐⇒ 1 and

Lemma 7, we can conclude that rm

cm
= κm+

∑

i∈Cm

xi,m

cm
< κn+

∑

i∈Cn

xi,n

cn
= rn

cn
.

Converse part: Since rn

cn
= κn +

∑

i∈Cn

xi,n

cn
, if rm

cm
< rn

cn
, then either κm < κn

or ∃i ∈ Cn :
xi,m

cm
<

xi,n

cn
. Since 1 ⇐⇒ 2 ⇐⇒ 3, we can conclude that if rm

cm
< cn

rn
,

then
xi,m

cm
<

xi,n

cn
, ∀i ∈ Cn.

The above proposition shows that if server n has a lower cost per unit ca-
pacity than server m, i.e. cn/rn < cm/rm, then, at the NEP, the ratio of the
residual capacities will be greater than cn/cm, i.e. rn−yn

rm−ym
> cn

cm
, and for each

class i using server n, the ratio of the amount of traffic sent to each server by
class i will be greater than cn/cm, i.e.

xi,n

xi,m
> cn

cm
.
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Corollary 2 From Proposition 2 it follows that

1. κm = κn ⇐⇒ ∃i ∈ Cn :
xi,m

cm
=

xi,n

cn
⇐⇒ xi,m

cm
=

xi,n

cn
, ∀i ∈ Cn ⇐⇒

rm

cm
= rn

cn
.

2. If rm

cm
< rn

cn
then Cm ⊂ Cn.

3. If rm

cm
= rn

cn
then Cm = Cn.

The above corollary shows that we get a partition of classes among servers
at the NEP: starting with a server m of maximal cost per unit capacity cm

rm
and

moving towards servers n with lower cost per unit capacity cn

rn
< cm

rm
, we observe

more and more classes joining the servers, i.e. Cm ⊂ Cn.

Recall that it is assumed that the servers are numbered in the following
order: c1/r1 ≤ c2/r2 ≤ . . . ≤ cS/rS . According to the above properties, it
implies that if we consider two servers n and m > n, then we have Cm ⊆ Cn,
rn−yn

rm−ym
≥ cn

cm
and

xi,n

xi,m
≥ cn

cm
for each class i ∈ Cn, with the equalities holding if

and only if cn/rn = cm/rm.

Let Si = |Si|. Proposition 2 implies that if m ∈ Si, then n ∈ Si, ∀n < m.
As a consequence, the set Si has the following structure: Si = {1, . . . , Si}.

Before moving to the analysis of the set of servers used by each class at
the equilibrium, we conclude this section with a last property related to the
server costs per unit capacity. This technical result will play a key role when
comparing the costs of two different equilibria.

Lemma 9
cjrj

(rj − yj)2
≥ cj+1rj+1

(rj+1 − yj+1)2
, ∀j,

with strict inequality if Cj \ Cj+1 6= ∅.

Proof. From (3), if xi,j > 0, then

µi =
cj

rj − yj
+

cjxi,j

(rj − yj)2
,

from which we conclude that

∑

i∈Cj

µi =
cjNj

rj − yj
+

cjyj

(rj − yj)2
=

cj(Nj − 1)

rj − yj
+

cjrj

(rj − yj)2
.
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Now,

cj+1(Nj+1 − 1)

rj+1 − yj+1
+

cj+1rj+1

(rj+1 − yj+1)2
=
∑

i∈Cj+1

µi

=
∑

i∈Cj

µi −
∑

i∈Cj\Cj+1

µi

=
cj(Nj − 1)

rj − yj
+

cjrj

(rj − yj)2
−

∑

i∈Cj\Cj+1

(

cj

rj − yj
+

cjxi,j

(rj − yj)2

)

=
cj(Nj − 1)

rj − yj
+

cjrj

(rj − yj)2
− cj(Nj − Nj+1)

rj − yj
−

∑

i∈Cj\Cj+1

cjxi,j

(rj − yj)2

=
cj(Nj+1 − 1)

rj − yj
+

cjrj

(rj − yj)2
−

∑

i∈Cj\Cj+1

cjxi,j

(rj − yj)2
.

Thus,

cjrj

(rj − yj)2
− cj+1rj+1

(rj+1 − yj+1)2
=

cj+1(Nj+1 − 1)

rj+1 − yj+1
− cj(Nj+1 − 1)

rj − yj
+

∑

i∈Cj\Cj+1

cjxi,j

(rj − yj)2

(10)

=

(

cj+1

rj+1 − yj+1
− cj

rj − yj

)

(Nj+1 − 1) +
∑

i∈Cj\Cj+1

cjxi,j

(rj − yj)2
.

(11)

From Proposition 2,
cj

rj
≤ cj+1

rj+1
implies κj ≥ κj+1, i.e.

cj+1

rj+1−yj+1
≥ cj

rj−yj
. Since

the second term on the RHS is strictly positive if Cj \Cj+1 6= ∅, we can conclude
that

cjrj

(rj − yj)2
− cj+1rj+1

(rj+1 − yj+1)2
≥ 0,

with strict inequality if Cj \ Cj+1 6= ∅.

4.4 Characterization of the set of servers used

The following proposition shows that the set of servers used by each class has the
so-called water-filling structure. Recall that dispatcher i solves the optimization
problem (1).

Proposition 3 For each class i ∈ C, the threshold Si is such that

Gi,Si
< λi ≤ Gi,Si+1, (12)

where
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Gi,s =

s−1
∑

j=1

ri,j −
√

ri,s

cs

s−1
∑

j=1

√
cj ri,j s = 2, . . . , S. (13)

with Gi,1 = 0 and Gi,S+1 =
∑

j∈S rj − λ + λi. Note that Gi,S+1 is the system
capacity as seen by class i jobs.

Proof. Let A be a subset of Si. Since ri,j = rj − yj + xi,j , (3) can be rewritten
as µi (rj − yj)

2 = cj ri,j for all j ∈ Si. Summing over j ∈ A, we get

µi =

(

∑

j∈A

√
cj ri,j

∑

j∈A rj − yj

)2

A ⊆ Si, (14)

which in the case A = Si can be written as,

µi =

(

∑

j∈Si

√
cj ri,j

∑

j∈Si
ri,j − λi

)2

(15)

since
∑

j∈Si
rj − yj =

∑

j∈Si
ri,j − xi,j =

∑

j∈Si
ri,j − λi.

Since Si+1 6∈ Si, we have from (4),

µi =

(

∑

j∈Si

√
cj ri,j

∑

j∈Si
ri,j − λi

)2

≤ cSi+1

rSi+1 − ySi+1
,

which yields

λi ≤
Si
∑

j=1

ri,j −
√

ri,Si+1

cSi+1

Si
∑

j=1

√
cj ri,j = Gi,Si+1. (16)

For the lower bound, observe that, since Si ∈ Si, (3) holds for j = Si.
Therefore, using (14) with A = {1, . . . , Si − 1}, we can write

µi =

(

∑Si−1
j=1

√
cj ri,j

∑Si−1
j=1 rj − yj

)2

=
cSi

ri,Si

(rSi
− ySi

)2
,

i.e.,
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Si−1
∑

j=1

√
cj ri,j =

√
cSi

ri,Si

ri,Si
− xi,Si





Si−1
∑

j=1

ri,j − xi,j



 >

√

cSi

ri,Si





Si−1
∑

j=1

ri,j − λi



 ,

from which we get

Gi,Si
=

Si−1
∑

j=1

ri,j −
√

ri,Si

cSi

Si−1
∑

j=1

√
cj ri,j < λi (17)

Remark 2 In the special case λi = Gi,Si+1, inequality (4) holds tight for j =
Si + 1. Therefore, in this case, we can define the set of servers used by class
i as Si = {1, . . . , Si, Si + 1}, where server Si + 1 is “marginally” used, with
xi,Si+1 = 0.

From Corollary 1, we can conclude that the thresholds S1, . . . , SK satisfy
the order S1 ≤ S2 ≤ . . . ≤ SK .

5 Analysis of the Global Cost

In this section, it will be assumed that the capacity vector r and the cost vector
c are fixed. Our goal is to prove that the global cost DK(λ, r, c) achieves its
maximum in the symmetric case, i.e. when λ = λ

=.

For each rate vector λ ∈ Λ, we already know that there exists a unique NEP
x ∈ X . Let us define the function N : Λ → X such that for each vector λ ∈ Λ,
N (λ) ∈ X is this unique NEP. In the sequel, the function N will be called the
Nash mapping. We have the following result.

Theorem 3 The Nash mapping N is a continuous function from Λ into X .

Proof. Note that for each vector λ ∈ Λ, N (λ) ∈ X ⊂ ⊗

i∈C
⊗

j∈S [0, rj ] and
the latter set is a compact set. As a consequence, in order to apply the closed
graph theorem (see Appendix A), we only need to show that the graph GN of
N is closed. Let us therefore consider a convergent sequence (λn, xn)n∈IN of
points in GN , where xn = N (λn). Let (λ, x) denote the limit of this sequence.
Note that λ ∈ Λ since Λ is closed as a topological space. We need to show that
x = N (λ).

We first show that x ∈ X and
∑

j∈S xi,j = λi for each i ∈ C. For i ∈ C
and j ∈ S fixed, the sequence (xn

i,j)n∈IN takes values in the closed set [0, rj ]
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and converges to xi,j , from which we deduce that 0 ≤ xi,j ≤ rj and thus that
x ∈ X . Moreover, for each n ∈ IN and each i ∈ C, we have

∑

j∈S xn
i,j = λn

i .
Since xn → x, we have for each class i ∈ C,

λi = lim
n→∞

λn
i = lim

n→∞

∑

j∈S
xn

i,j =
∑

j∈S
xi,j .

We therefore conclude that the limit point x is such that x ∈ X and satisfies
∑

j∈S xi,j = λi for each i ∈ C. Let us now show that x is the unique NEP in
X satisfying these conditions. For each n ∈ IN, since xn is a NEP, there exist
multipliers µn

i , i ∈ C, such that

µn
i =

cj

rj − yn
j

+
cj xn

i,j

(rj − yn
j )2

if xn
i,j > 0

µn
i ≤ cj

rj − yn
j

if xn
i,j = 0.

Now, let us show that there exist µi such that µn
i → µi. To this end, let

yj = limn→∞ yn
j =

∑

i∈C xi,j for each j ∈ S. Note that yn
j < rj implies yj ≤ rj .

Let us first show that y1 < r1. Assume by contradiction that y1 = r1. Then we
have

∀ǫ > 0, ∃Nǫ, ∀n ∈ IN, n ≥ Nǫ =⇒ r1 − yn
1 < ǫ.

But, since rj − yn
j ≤ cj(r1 − yn

1 )/c1 for all j ∈ S, it implies that for each
ǫ > 0, we can find n sufficiently large such that rj − yn

j < cj ǫ/c1 for all j ∈ S,
and thus,

∑

j∈S
rj − λ =

∑

j∈S
rj −

∑

j∈S
yn

j < ǫ
∑

j∈S

cj

c1
.

Since the above holds for each ǫ > 0, this is clearly a contradiction with our
assumption λ <

∑

j∈S rj . We therefore conclude that y1 < r1. Now since each
class uses server 1, we have for each n,

µn
i =

c1

r1 − yn
1

+
c1 xn

i,1

(r1 − yn
1 )2

Since xn → x and yn
1 → y1 < r1, we conclude that the sequence (µn

i )n∈IN

convergences to a limit µi such that

µi =
c1

r1 − y1
+

c1 xi,1

(r1 − y1)2
.

Observe that it implies that yj < rj for all j ∈ S. Indeed, if we assume on
the contrary that yj =

∑

i∈C xi,j = rj , then it implies that there exist i ∈ C such
that xi,j = ǫ > 0. But in turn it implies that for n sufficiently large we have
xn

i,j > ǫ/2 and thus µn
i > (cj ǫ/2)/(rj−yn

j )2. We then deduce from yn
j → rj that
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µn
i → ∞, which is a contradiction with µn

i → µi. Therefore yj < rj for all j ∈ S.

Now, let us consider the complementary slackness conditions for each NEP
xn, that is,

xn
i,j

(

cj

rj − yn
j

+
cj xn

i,j

(rj − yn
j )2

− µn
i

)

= 0.

Taking the limit as n → ∞, we obtain

xi,j

(

cj

rj − yj
+

cj xi,j

(rj − yj)2
− µi

)

= 0.

Since the above are the necessary and sufficient optimality conditions for a
point to be a NEP, we conclude that x = N (λ) and thus that the graph GN is
closed. Applying the closed graph theorem yields the proof.

In order to prove that the global cost achieves its maximum in the symmetric
case, we need to compare the equilibria N (λ) and N (λ̂) that are induced by

two different rate vectors λ and λ̂ in Λ. If the resulting equilibria are such that
the set of servers over which each class sends its flow do not coincide at both
equilibria, then the comparisons become extremely complex, if possible at all.

To avoid this difficulty, we proceed as follows. In section 5.1, we first prove
some preliminary results concerning the comparison of the equilibria induced
by two different rate vectors λ and λ̂, assuming that these equilibria are such
that each class sends its flow to the same servers under both equilibria. In
Section 5.2, we compare the equilibria induced by two different rate vectors λ

and λ̂, assuming that (i) these equilibria are such that each class sends its flow

to the same servers under both equilibria, and (ii) λ̂ is obtained from λ using
a certain transformation. In Section 5.3 we exploit the continuity of the Nash
mapping to show that the global cost increases under this transformation even
when the set of servers is different at the two equilibria. Finally, in Section 5.4,
we show that the symmetric rate vector λ

= can be obtained from any rate vector
λ with a finite number of such transformations.

5.1 Preliminary Results

In this section, we prove some lemmata that will be used in order to compare
the Nash equilibria induced by two vectors λ ∈ Λ and λ̂ ∈ Λ. In the sequel, if
z is a certain quantity related to the Nash equilibrium induced by the vector λ

then we shall denote the corresponding quantity for vector λ̂ by ẑ.

Lemma 10 For i ∈ Cj,

1. if ŷj < yj and x̂i,j ≤ xi,j , then µ̂i < µi.



18

2. if ŷj ≤ yj and x̂i,j ≤ xi,j , then µ̂i ≤ µi.

3. if ŷj ≤ yj and x̂i,j < xi,j , then µ̂i < µi.

4. if ŷj = yj and µ̂i < µi, then x̂i,j < xi,j .

Proof. Proof of part 1 : for i ∈ Cj , we rewrite (3) as

xi,j = (rj − yj)

(

rj − yj

cj
µi − 1

)

.

Therefore, x̂i,j ≤ xi,j is equivalent to

(rj − ŷj)

(

rj − ŷj

cj
µ̂i − 1

)

≤ (rj − yj)

(

rj − yj

cj
µi − 1

)

,

which, since rj − yj < rj − ŷj , is equivalent to

(rj − ŷj)

(

rj − ŷj

cj
µ̂i − 1

)

< (rj − ŷj)

(

rj − yj

cj
µi − 1

)

,

which is equivalent to
rj − ŷj

cj
µ̂i <

rj − yj

cj
µi.

Since rj − yj < rj − ŷj, we can conclude that µ̂i < µi.

The proofs of parts 2, 3, and 4 follow similarly.

Lemma 11 For m and n in S, and i ∈ Cm ∩ Cn,

if ŷm > ym, x̂i,m ≥ xi,m, and ŷn ≤ yn, then x̂i,n > xi,n.

Proof. Assume the contrary, that is, ∃n, m ∈ S and i ∈ Cm ∩ Cn such that
ŷm > ym, x̂i,m ≥ xi,m, ŷn ≤ yn and x̂i,n ≤ xi,n. From Lemma 10.1, ŷm > ym

and x̂i,m ≥ xi,m implies µ̂i > µi. However, from Lemma 10.2, ŷn ≤ yn and
x̂i,n ≤ xi,n implies µ̂i ≤ µi, which is a contradiction.

In the rest of the section, we shall make the following assumption on the
vectors λ and λ̂.

Assumption 1 The vectors λ and λ̂ are such that Cj = Ĉj, ∀j ∈ S.

From the above assumption, it follows that Si = Ŝi, ∀i ∈ C.

Lemma 12 For any j ∈ S:
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1. ŷj ≥ yj ⇐⇒ ∑

i∈Cj
µ̂i ≥

∑

i∈Cj
µi.

2. ŷj > yj ⇐⇒ ∑

i∈Cj
µ̂i >

∑

i∈Cj
µi.

Proof. Proof of part 1: from (2) and (3), if i ∈ Cj , then

µi = cj

[

1

rj − yj
+

xi,j

(rj − yj)2

]

.

Thus,
∑

i∈Cj

µi = njcj
1

rj − yj
+ cj

yj

(rj − yj)2
.

Since Nj = N̂j (from Assumption 1), we can conclude that
∑

i∈Cj
µi is an

increasing function of yj.

The proof of part 2 follows similarly.

Lemma 13 If Cm = Cn then :

1. ŷm ≥ ym ⇐⇒ ŷn ≥ yn.

2. ŷm > ym ⇐⇒ ŷn > yn.

Proof. Proof of part 1: from Lemma 12, ŷm ≥ ym is equivalent to
∑

i∈Sm
µ̂i ≥

∑

i∈Sm
µi, which, since Cm = Cn, is equivalent to

∑

i∈Sn
µ̂i ≥

∑

i∈Sn
µi. Again,

from Lemma 12, we can conclude that ŷn ≥ yn.

The proof of part 2 follows similarly.

Corollary 3 For m, n ∈ S1, ŷm > ym ⇐⇒ ŷn > yn.

Proof. Since, for m, n ∈ S1, Cm = Cn = {1, 2, ..., K}, the above statement
follows from Lemma 13.2.

5.2 Basic Transformation of a Rate Vector

For each rate vector λ ∈ Λ, recall that by convention λ1 = mini∈C λi and
λK = maxi∈C λi. Define the sets Cmin and Cmax as follows:

Cmin = {i ∈ C : λi = λ1} ,

Cmax = {i ∈ C : λi = λK} ,

and let nmin = |Cmin| and nmax = |Cmax|.
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Definition 1 For each rate vector λ ∈ Λ, define the function hλ : [0, nmax λK ] →
Λ as follows:

hλ(ǫ) = λ + ǫ

(

1

nmin

∑

i∈Cmin

ei − 1

nmax

∑

i∈Cmax

ei

)

, (18)

where ei denotes the vector in IRK with the i-th component equals to 1 and all
other components are equal to 0. A rate vector λ̂ ∈ Λ is said to be obtained
from λ under a basic transformation if and only if there exists ǫ ∈ [0, nmaxλK ]
such that λ̂ = hλ(ǫ). In this case, ǫ is called the step of the transformation.

Note that the above transformation increases the traffic of classes i ∈ Cmin

(the classes with the smallest amount of traffic) and decrease correspondingly
the traffic of classes i ∈ Cmax (the classes with the largest amount of traffic),

i.e., it preserves the total amount of traffic:
∑

i∈C λi =
∑

i∈C λ̂i = λ̄. There
are several other properties of the basic transformation which are worthwhile
noticing. They are stated in the following lemma.

Lemma 14 Let λ̂ be obtained from λ under a basic transformation, i.e., λ̂ =
hλ(ǫ). Then,

1. λ̂i ≥ λi for all i ∈ Cmin, λ̂i ≤ λi for all i ∈ Cmax, and λ̂i = λi for all
i 6∈ Cmin∪Cmax, where the inequalities are strict if and only if Cmin 6= Cmax

and ǫ > 0.

2. λ̂i = λ̂1 for all i ∈ Cmin and λ̂i = λ̂K for all i ∈ Cmax,

3. λ̂i ≤ λK for all i ∈ Cmin and λ̂i ≥ λ1 for all i ∈ Cmax for ǫ ≤ min(nmin, nmax)(λK−
λ1).

4.
∑

i∈Cmin
λ̂i − λi = −∑i∈Cmax

λ̂i − λi,

5.
∑

j∈S yj =
∑

j∈S ŷj,

Proof. In part 1, if either Cmin = Cmax or ǫ = 0, then λ̂ = λ. Hence, the
equalities are satisfied. So, we consider the case when Cmin 6= Cmax and ǫ > 0,
and show that the inequalities are strict. From (18), it is immediate that λ̂i = λi

for i 6∈ Cmin∪Cmax. Moreover λ̂i = λi +
ǫ

nmin
for all i ∈ Cmin and λ̂i = λi− ǫ

nmax

for all i ∈ Cmax. Since ǫ > 0, we thus obtain λ̂i > λi for i ∈ Cmin and λ̂i < λi

for i ∈ Cmax, and 1 is proved.

We note that if Cmin = Cmax, then λ̂ = λ. Hence, the parts 2 to 5 are true
in this case. So, for the rest of the proof, we assume that Cmin 6= Cmax. From
λi = λ1 for i ∈ Cmin and λi = λK for i ∈ Cmax, we obtain that λ̂i = λ1 + ǫ

nmin
=

λ̂1 for i ∈ Cmin and λ̂i = λK + ǫ
nmax

= λ̂K for i ∈ Cmax, which proves 2.
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To prove 3, let us consider i ∈ Cmin. We observe that ǫ ≤ min(nmin, nmax)(λK−
λ1) implies that λ̂i = λi+

ǫ
nmin

≤ λi+
min(nmin,nmax)

nmin
(λK−λ1) ≤ λi+(λK−λ1) =

λK . The proof of λ̂i ≥ λ1 for i ∈ Cmax is symmetric.

To prove 4, we observe that,
∑

i∈Cmin

λ̂i − λi =
∑

i∈Cmin

ǫ

nmin
= ǫ =

∑

i∈Cmax

ǫ

nmax
= −

∑

i∈Cmax

λ̂i − λi

Finally, the proof of property 5 is immediate since it is equivalent to
∑

i∈C λi =
∑

i∈C λ̂i.

In the following, we will compare two rate vectors λ and λ̂. If z is a certain
quantity related to the Nash equilibrium induced by the vector λ then we shall
denote the corresponding quantity for vector λ̂ by ẑ. The comparison is done
under the following assumption.

Assumption 2 The rate vectors λ ∈ Λ and λ̂ ∈ Λ are such that:

1. λ̂ is obtained from λ under a basic transformation,

2. Cj = Ĉj, ∀j ∈ S.

In other words, we assume that the transformation λ into λ̂ leaves unaffected
the set of servers used by each class.

The key point here is that in order to determine the impact of a basic
transformation of the rate vector λ on the global cost, we need to compare the
server loads under the equilibria x = N (λ) and x̂ = N (λ̂). To this end, let us
define the sets S+ and S− as follows:

S+ = {j ∈ S : ŷj > yj} and S− = S \ S+,

i.e., S+ is the set of servers whose load increases under the transformation while
S− is the set of servers whose load is non-increasing under the transformation.

We first prove two lemmata concerning the sets S+ and S−. The first one
shows that S+ is empty if and only if the load of each and every server is
constant under the transformation.

Lemma 15 yj = ŷj, ∀j ∈ S ⇐⇒ S+ = ∅.

Proof. If S+ = ∅ then S− = S. That is, ŷj ≤ yj , ∀j ∈ S. We also have
∑

j∈S ŷj =
∑

j∈S yj . This is possible only if ŷj = yj , ∀j ∈ S.

The converse is true by definition of S+.

The second lemma shows that S− cannot be empty, i.e. that there is at least
one server whose load is non-increasing under the transformation.
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Lemma 16 S− 6= ∅.

Proof. Assume S− = ∅, then yj < ŷj , ∀j ∈ S. Therefore,
∑

j∈S yj <
∑

j∈S ŷj .
This is in contradiction with Assumption 2 which says

∑

j∈S yj =
∑

j∈S ŷj.

We now prove three fundamental propositions regarding the impact of the
transformation on server loads. We first show in proposition 4 that if there exists
at least one server whose load increases under the transformation, then the load
of each and every server used by class 1 increases. We then prove in proposition
5 that the load of all servers is non-increasing under the transformation if and
only if all traffic classes use the same set of servers. Finally, proposition 6 proves
that the transformation induces a monotonic partition of servers: there exists a
threshold J < S such that for all servers j > J the load is non-increasing under
the transformation.

Proposition 4 If S+ 6= ∅ then S1 ⊂ S+.

Proof. Assume by contradiction that we can find a server s ∈ S1 such that
s ∈ S−. Then, according to Corollary 3, S1 ⊂ S−. Since S+ 6= ∅ and ŷj > yj

for all j ∈ S+, we have
∑

j∈S+ ŷj >
∑

j∈S+ yj , i.e.,

∑

i∈C





∑

j∈S+

x̂i,j



 >
∑

i∈C





∑

j∈S+

xi,j



,

from which we conclude that there exists i such that
∑

j∈S+ x̂i,j >
∑

j∈S+ xi,j .

Since Sk = S1 ⊂ S− for all k ∈ Cmin, we necessarily have i 6∈ Cmin and thus
λ̂i ≤ λi. Therefore,

λ̂i =
∑

j∈S−

x̂i,j +
∑

j∈S+

x̂i,j ≤
∑

j∈S−

xi,j +
∑

j∈S+

xi,j = λi.

Thus,

∑

j∈S−

x̂i,j ≤
∑

j∈S−

xi,j +





∑

j∈S+

xi,j −
∑

j∈S+

x̂i,j



 <
∑

j∈S−

xi,j .

We therefore conclude that class i is such that
∑

j∈S+ x̂i,j >
∑

j∈S+ xi,j and
∑

j∈S− x̂i,j <
∑

j∈S− xi,j . Therefore, we can find a server m ∈ S+ and a server

n ∈ S− such that x̂i,m > xi,m and x̂i,n < xi,n. But according to Lemma 11,
this is impossible. We therefore conclude that S1 ⊂ S+.

Proposition 5 S+ = ∅ ⇐⇒ S1 = SK .
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Proof. We first prove that if S+ = ∅ then S1 = SK . From Lemma 15, this
is equivalent to proving that if yj = ŷj , ∀j ∈ S then S1 = SK . Assume the
contrary, that is S1 ( SK . Then, ∃m : m ∈ SK , m /∈ S1.

Since ym = ŷm, from Lemma 12, we get
∑

i∈Cm
µi =

∑

i∈Cm
µ̂i, which we

can rewrite as
∑

i∈Cmax

µi +
∑

i∈Cm\Cmax

µi =
∑

i∈Cmax

µ̂i +
∑

i∈Cm\Cmax

µ̂i. (19)

We shall show that the above equality is not possible, which then proves the
claim.

For i ∈ Cmax, since λi > λ̂i,
∑

j∈Si
xi,j >

∑

j∈Si
x̂i,j . Thus, there exists an

n ∈ Si such that xi,n > x̂i,n. Since yn = ŷn, from Lemma 10.3, we can conclude
that µi > µ̂i, and that

∑

i∈Cmax
µi >

∑

i∈Cmin
µ̂i, which, upon substitution in

(19), leads to
∑

i∈Cm\Cmax

µi <
∑

i∈Cm\Cmax

µ̂i.

If Cm\Cmax = ∅, then the above inequality cannot be possible which then proves
the claim. So, assume Cm \ Cmax 6= ∅. Then the above inequality implies that
∃i /∈ Cmin ∪ Cmax : µi < µ̂i. Since yj = ŷj , ∀j ∈ Si, application of Lemma 10.4
leads to xi,j < x̂i,j , ∀j ∈ Si, and consequently to λi =

∑

j∈Si
xi,j <

∑

j∈Si
x̂i,j =

λ̂i. However, for i /∈ Cmin ∪ Cmax, from Lemma 14.1, λi = λ̂i. Hence, there is a
contradiction, and we can conclude that S1 = SK .

As a direct consequence of the above proposition, we get the following corol-
lary that tells us that if at equilibria x and x̂ all classes use the same set of
servers, then the server loads are constant under the transformation.

Corollary 4 yj = ŷj , ∀j ∈ S ⇐⇒ S1 = SK .

We now turn our attention to the set S− and prove the following result.

Proposition 6 For all j ∈ S, if j ∈ S− then j + 1 ∈ S−.

Proof. If S+ = ∅ then the proposition is true. So, assume S+ 6= ∅. Then,
from Proposition 4, S1 ⊂ S+. In order to prove the proposition, assume by
contradiction that there exists a server j ∈ {S1 + 1, . . . , SK − 1} such that
j ∈ S− and j + 1 ∈ S+. Again, if S1 + 1 = SK then the proposition is true. So,
assume that S1 + 1 < SK .

Since j ∈ S− and j + 1 ∈ S+, from Lemma 13,

∑

i∈Cj

µ̂i ≤
∑

i∈Cj

µi, (20)
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and
∑

i∈Cj+1

µ̂i >
∑

i∈Cj+1

µi, (21)

Moreover, from the contrapositive of Lemma 13, we can conclude that Cj\Cj+1 6=
∅. Note that since j < SK , classes i ∈ Cmax do not belong to Cj \Cj+1. Similarly,
since j > S1, classes i ∈ Cmin do not belong to Cj \ Cj+1.

Since Cj+1 ⊂ Cj , we have, for all i ∈ Cj+1,

µi =
cj

rj − yj
+ cj

xi,j

(rj − yj)2
.

Therefore,
∑

i∈Cj+1
µ̂i >

∑

i∈Cj+1
µi is equivalent to

Nj+1
cj

rj − ŷj
+

cj

(rj − ŷj)2

∑

i∈Cj+1

x̂i,j > Nj+1
cj

rj − yj
+

cj

(rj − yj)2

∑

i∈Cj+1

xi,j ,

and since ŷj ≤ yj , this implies that
∑

i∈Cj+1
x̂i,j >

∑

i∈Cj+1
xi,j . Since ŷj ≤ yj ,

necessarily
∑

i∈Cj\Cj+1
x̂i,j <

∑

i∈Cj\Cj+1
xi,j . However, since all classes k ∈

Cmin∪Cmax do not belong to Cj \Cj+1, we know that λ̂i = λi for all i ∈ Cj \Cj+1,
and thus

j
∑

l=1

∑

i∈Cj\Cj+1

xi,l =

j
∑

l=1

∑

i∈Cj\Cj+1

x̂i,l,

from which we obtain

∑

l<j

∑

i∈Cj\Cj+1

xi,l =
∑

l<j

∑

i∈Cj\Cj+1

x̂i,l +





∑

i∈Cj\Cj+1

x̂i,j −
∑

i∈Cj\Cj+1

xi,j



 ,

and therefore

∑

l<j

∑

i∈Cj\Cj+1

xi,l <
∑

l<j

∑

i∈Cj\Cj+1

x̂i,l. (22)

Substracting (21) from (20), we obtain

∑

i∈Cj\Cj+1

µ̂i <
∑

i∈Cj\Cj+1

µi.

Hence, for each server l < j,

(Nj−Nj+1)
cl

rl − ŷl
+

cl

(rl − ŷl)2

∑

i∈Cj\Cj+1

x̂i,l < (Nj−Nj+1)
cl

rl − yl
+

cl

(rl − yl)2

∑

i∈Cj\Cj+1

xi,l.
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But, for l < j and l ∈ S+, it implies that

∑

i∈Cj\Cj+1

x̂i,l <
∑

i∈Cj\Cj+1

xi,l,

and thus
∑

l<j,l∈S+

∑

i∈Cj\Cj+1

x̂i,l <
∑

l<j,l∈S+

∑

i∈Cj\Cj+1

xi,l. (23)

From (22), we have

∑

l<j,l∈S−

∑

i∈Cj\Cj+1

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj\Cj+1

xi,l+





∑

l<j,l∈S+

∑

i∈Cj\Cj+1

xi,l −
∑

l<j,l∈S+

∑

i∈Cj\Cj+1

x̂i,l



 ,

and using (23) it leads to

∑

l<j,l∈S−

∑

i∈Cj\Cj+1

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj\Cj+1

xi,l. (24)

According to (21), for each server l < j,

Nj+1
cl

rl − ŷl
+

cl

(rl − ŷl)2

∑

i∈Cj+1

x̂i,l > Nj+1
cl

rl − yl
+

cl

(rl − yl)2

∑

i∈Cj+1

xi,l.

But, for l < j, l ∈ S−, it implies that

∑

i∈Cj+1

x̂i,l >
∑

i∈Cj+1

xi,l,

and thus
∑

l<j,l∈S−

∑

i∈Cj+1

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj+1

xi,l (25)

Now, summing (25) and (24) gives

∑

l<j,l∈S−

∑

i∈Cj

x̂i,l >
∑

l<j,l∈S−

∑

i∈Cj

xi,l. (26)

However, for each server l ∈ S−, we have ŷl ≤ yl and thus
∑

l<j,l∈S− ŷl ≤
∑

l<j,l∈S− yl. Since, for l < j, yl can also be written as yl =
∑

i∈Cj
xi,l +

∑

i6∈Cj
xi,l, it yields

∑

l<j,l∈S−

∑

i/∈Cj

x̂i,l ≤
∑

l<j,l∈S−

∑

i/∈Cj

xi,l +





∑

l<j,l∈S−

∑

i∈Cj

xi,l −
∑

l<j,l∈S−

∑

i∈Cj

x̂i,l



 ,



26

and using (26),

∑

l<j,l∈S−

∑

i/∈Cj

x̂i,l <
∑

l<j,l∈S−

∑

i/∈Cj

xi,l. (27)

Therefore, there exists a class i /∈ Cj such that

∑

l<j,l∈S−

x̂i,l <
∑

l<j,l∈S−

xi,l. (28)

It implies that, for this class i, we can find a server n /∈ Si and n ∈ S− such
that x̂i,n < xi,n. Since Cmax ( Cj , we know that i 6∈ Cmax. Moreover, since

Sk = S1 ⊂ S+ for all k ∈ Cmin, i 6∈ Cmin. We therefore have λ̂i = λi. Thus,

∑

l∈S−

x̂i,l +
∑

l∈S+

x̂i,l =
∑

l∈S−

xi,l +
∑

l∈S+

xi,l,

which implies

∑

l∈S+

x̂i,l =
∑

l∈S+

xi,l +

(

∑

l∈S−

xi,l −
∑

l∈S−

x̂i,l

)

,

and with (28), it yields
∑

l∈S+

x̂i,l >
∑

l∈S+

xi,l.

This implies that there exists a server m < j, m ∈ S+ such that x̂i,m > xi,m.
But, according to Lemma 11, there cannot be two servers m, n ∈ S such that
ŷm > ym, ŷn ≤ yn, x̂i,m > xi,m and x̂i,n < xi,n. This is a contradiction.
Therefore, if j ∈ S−, then j + 1 ∈ S− for all servers j ∈ S.

Proposition 6 proves that the transformation induces a monotonic partition
of servers: there exists a threshold J < S such that for all servers j > J the
load is non-increasing under the transformation.

Using the above results regarding the impact of the transformation on the
server loads, the following two theorems compare the costs D(λ) and D(λ̂).
The first theorem uses the following lemma.

Lemma 17 If bi, i = 1, 2, ..., is such that

1. b1 > 0,

2. bi ≤ 0 ⇒ bi+1 ≤ 0, and

3.
∑

i bi = 0,
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and ai, i = 1, 2, ..., is such that

1. ai ≥ ai+1, and

2. aI − aI+1 > 0,

where I = max{i : bi > 0}, then
∑

i aibi > 0.

Proof. We have
∑

i

aibi =
∑

i≤I

aibi +
∑

i>I

aibi

≥ aI

∑

i≤I

bi +
∑

i>I

aibi

≥ aI

∑

i≤I

bi − aI+1

∑

i>I

|bi|

≥ (aI − aI+1)
∑

i≤I

bi

> 0.

We are now in position to state our main results.

Theorem 4 D(λ) < D(λ̂) ⇐⇒ S1 ( SK .

Proof. We first show that if S1 ( SK then D(λ) < D(λ̂). As a function of
the loads, the global cost is given by

D(λ) =
∑

j∈S

cjrj

rj − yj
−
∑

j∈S
cj . (29)

Let ∆yj = ŷj − yj. Note that ∆yj > 0 ⇐⇒ (rj − ŷj)
−1 > (rj − yj)

−1, which
leads to ∆yj 6= 0 ⇐⇒ ∆yj(rj − ŷj)

−1 > ∆yj(rj − yj)
−1. Thus,

D(λ̂) − D(λ) =
∑

j∈S

cjrj(ŷj − yj)

(rj − ŷj)(rj − yj)
≥
∑

j∈S

cjrj

(rj − yj)2
∆yj . (30)

We now show that the RHS in the above inequality is positive. Since S1 (

SK , from Proposition 4 and Lemma 16, we can infer that S+ 6= ∅ and S− 6= ∅.
From Proposition 4, we can also infer that S1 ⊂ S+. Hence, ∆y1 > 0. From
Proposition 6, if j ∈ S− then j + 1 ∈ S−. Therefore, the sequence ∆yj , j ∈ S is
such that

1. ∆y1 > 0,
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2. ∆yj ≤ 0 ⇒ ∆yj+1 ≤ 0, and

3.
∑

j∈S ∆yj = 0.

Let J = max{j : j ∈ S+}. Then, J + 1 = min{j : j ∈ S−}. Note that
CJ 6= CJ+1, otherwise from Lemma 13, either both J and J + 1 belong to S+ or
both belong to S−. From Lemma 9, we can conclude that

1.
cjrj

(rj−yj)2
≥ cj+1rj+1

(rj+1−yj+1)2 , ∀j, and

2. cJrJ

(rJ−yJ )2 > cJ+1rJ+1

(rJ+1−yJ+1)2
.

Since the sequences cjrj/((rj − yj)
2 and ∆yj satisfy the conditions of Lemma

17, we have
∑

j

cjrj

(rj − yj)2
∆yj > 0,

and hence, from (30), we can conclude that D(λ) < D(λ̂).

To show the converse, if D(λ) < D(λ̂) then necessarily there exists an m
such that ym 6= ŷm. From Proposition 4, we obtain S1 6= SK . Since S1 ⊂ SK ,
we can conclude that S1 ( SK .

Remark 3 If S1 ( SK , we have shown that in order to prove D(λ) < D(λ̂) it
is sufficient to prove that

∑

j
cjrj

(rj−yj)2
∆yj > 0. It is remarkable that it amounts

to prove that
∑

j
∂D
∂yj

∆yj > 0. However, the above proof is not based on this

variational argument and is valid whatever the value of 0 < ǫ ≤ nmaxλK .

Theorem 4 shows that if all the classes do not use the same set of servers at
the equilibrium x, then the transformation will strictly increase the cost. The
following theorem proves that the cost is constant under the transformation if
all classes use the same set of servers.

Theorem 5 D(λ) = D(λ̂) ⇐⇒ S1 = SK .

Proof. From Lemma 16 and Proposition 4, if S1 = SK then yj = ŷj , ∀j ∈ S
and therefore, D(λ) = D(λ̂). To prove the inverse, if S1 6= SK then necessarily
S1 ( SK . From Theorem 4, we can conclude that D(λ) 6= D(λ̂).

5.3 Maximum Step of a Basic Transformation

Theorems 4 and 5 enable the comparison of the equilibria induced by two differ-
ent rate vectors λ and λ̂, provided that λ̂ can be obtained from λ under a basic
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transformation which leaves unaffected the set of servers used by each class. The
main limitation of these results comes from the latter assumption. However, as
will be shown below, the continuity of the Nash mapping can be exploited to
prove that, under certain conditions, the global cost is non-decreasing under the
transformation even if some classes change the set of servers they use.

Definition 2 For each rate vector λ ∈ Λ, the maximum step of the transfor-
mation hλ is

∆ = min (nmin ∆min, nmax ∆max) , (31)

where ∆min = −λ1+min
(

λ̄
K , mini∈C\Cmin

λi

)

and ∆max = λK−max
(

λ̄
K , maxi∈C\Cmax

λi

)

.

Intuitively, if the step ǫ of a basic transformation is lower than the maximum
step ∆, then the sets Cmin and Cmax will be unaffected by the transformation.
On the contrary, if ǫ = ∆, then, after the transformation, we will have either (i)
one more class in the set Cmin or Cmax, or (ii) λ = λ

=.

For each rate vector λ, let λ(ǫ) = hλ(ǫ) for ǫ ∈ [0, ∆]. All quantities of
interest can be treated as functions of ǫ. Therefore, in the following, if z is a
certain quantity related to the Nash equilibrium induced by the vector λ then
we shall denote the corresponding quantity for vector λ(ǫ) by z(ǫ).

We first prove the following properties of the transformation when ǫ ≤ ∆.

Lemma 18 For each ǫ ≤ ∆,

1. λi(ǫ) ≤ min
(

λ̄
K , mink∈C\Cmin

λk

)

for all i ∈ Cmin, and the inequality

is strict if ǫ < nmin ∆min whereas it holds as an equality if ǫ = ∆ =
nmin ∆min,

2. λi(ǫ) ≥ max
(

λ̄
K , maxk∈C\Cmax

λk

)

for all i ∈ Cmax, and the inequality

is strict if ǫ < nmax ∆max, whereas it holds as an equality if ǫ = ∆ =
nmax ∆max.

Proof. For i ∈ Cmin, we have λi(ǫ) = λ1 + ǫ
nmin

. Since ǫ ≤ nmin ∆min, it yields

λi(ǫ) ≤ λ1 + ∆min, i.e. λi(ǫ) ≤ min
(

λ̄
K , mink∈C\Cmin

λk

)

, as claimed. Note

that the inequality is strict if ǫ < nmin ∆min and that it holds as an equality if
ǫ = nmin ∆min. The proof of property 2 is symmetric.

The following two lemmata detail how the sets Cmin and Cmax evolve under
the transformation.
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Lemma 19 For each ǫ ≤ ∆,

1. Cmin ⊆ Cmin(ǫ) and Cmax ⊆ Cmax(ǫ),

2. If ǫ < nmin ∆min, then Cmin = Cmin(ǫ),

3. If ǫ < nmax ∆max, then Cmax = Cmax(ǫ),

4. If ǫ = nmin ∆min and Cmin 6= C, then Cmin ( Cmin(ǫ),

5. If ǫ = nmax ∆max and Cmax 6= C, then Cmax ( Cmax(ǫ).

Proof. We just prove the relations between Cmin and Cmin(ǫ), since the proofs of
the relations between Cmax and Cmax(ǫ) are symmetric. We first prove assertion
1. Let i ∈ Cmin. From Lemma 18.1, we have λi(ǫ) ≤ λk for all k ∈ C \ Cmin.
For k 6∈ Cmin ∪ Cmax, Lemma 14.1 states that λk(ǫ) = λk, which implies that
λi(ǫ) ≤ λk(ǫ) for all k 6∈ Cmin ∪ Cmax. From Lemma 18.1, we also have λi(ǫ) ≤
λ̄
K ≤ λk(ǫ) for all k ∈ Cmax, where the last inequality comes from Lemma 18.2.
We therefore conclude that λi(ǫ) ≤ λk(ǫ) for all k ∈ C \ Cmin. However, from
Lemma 14.2, we have λk(ǫ) = λi(ǫ) = λ1(ǫ) for all k ∈ Cmin. We conclude that
if i ∈ Cmin, then λi(ǫ) ≤ λk(ǫ) for all k ∈ C, and thus i ∈ Cmin(ǫ). This shows
that Cmin ⊂ Cmin(ǫ).

Let us now prove assertion 2. Assume ǫ < nmin ∆min. Since Cmin ⊂ Cmin(ǫ),
we just need to prove that Cmin(ǫ) ⊂ Cmin. It is sufficient to show that if
k 6∈ Cmin, then k 6∈ Cmin(ǫ). Let k ∈ C \ Cmin. If k 6∈ Cmax, then, according to

Lemma 18.1, λ1(ǫ) < λk = λk(ǫ), whereas if k ∈ Cmax, λ1(ǫ) < λ̄
K ≤ λk(ǫ), also

from Lemma 18. Since λ1(ǫ) = mini∈C λi(ǫ), we conclude that k 6∈ Cmin(ǫ), and
thus that Cmin = Cmin(ǫ).

We now prove assertion 4. From Lemma 18.1, we have either λ1(ǫ) = λ̄
K or

λ1(ǫ) = mink∈C\Cmin
λk.

• If λ1(ǫ) = λ̄
K , then it clearly implies that λi(ǫ) = λ̄

K for all i ∈ C. However,
since Cmin 6= C, it implies that class K belongs to Cmin(ǫ) but not to Cmin.

• If λ1(ǫ) = mink∈C\Cmin
λk, we can find j ∈ C \ Cmin such that λj ≤ λ̄

K and

λj = mink∈C\Cmin
λk. From λj ≤ λ̄

K we deduce that j 6∈ Cmax. Therefore
from Lemma 14.1 we obtain λj(ǫ) = λj = λ1(ǫ). We conclude that class j
belongs to Cmin(ǫ) but not to Cmin.

Since in both cases we can find a class i ∈ Cmin(ǫ) such that i 6∈ Cmin, we
conclude that Cmin ( Cmin(ǫ).

Lemma 20 The following statements hold.
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1. If Cmin ∪ Cmax 6= C, then Cmin ∪ Cmax ( Cmin(∆) ∪ Cmax(∆).

2. If Cmin ∪ Cmax = C, then λ(∆) = λ
=.

Proof. We first prove assertion 1. Assume that Cmin ∪ Cmax 6= C. We have
either ∆ = nmin ∆min, or ∆ = nmax ∆max. According to Lemmata 19.4 and
19.5, if ∆ = nmin ∆min, then Cmin ( Cmin(ǫ), while if ∆ = nmax ∆max we have
Cmax ( Cmax(ǫ). We therefore conclude that Cmin∪Cmax ( Cmin(∆)∪Cmax(∆).

Now we prove assertion 2. We first note that if Cmin = Cmax = C, then
λ = λ

=, and thus λ(∆) = λ
=. So we consider the case Cmin 6= Cmax. Since

C\Cmin = Cmax, ∆min = −λ1+min
(

λ̄/K, mini∈Cmax
λi

)

= λ̄/K−λ1. Similarly,
∆max = λK − λ̄/K.

Also, nmin∆min = nminλ̄/K−nminλ1 = (K−nmax)λ̄/K− (λ̄−nmaxλK) =
nmax∆max. Hence, nmin∆min = nmax∆max = ∆. Now, ∀i ∈ Cmin, λi(∆) =
−λ1+∆/nmin = λ̄/K. Similarly, ∀i ∈ Cmax, λi(∆) = λ̄/K. Hence, λ(∆) = λ

=.

The following proposition states that if we consider two rate vectors obtained
from λ under basic transformations of steps lower than the maximum step, then
one can be obtained from the other by a basic transformation.

Proposition 7 Let ǫ1, ǫ2 ∈ [0, ∆], ǫ1 < ǫ2. Then λ(ǫ2) can be obtained from
λ(ǫ1) under a basic transformation.

Proof. Since ǫ1 < ǫ2 implies ǫ1 < ∆, from Lemmata 19.2 and 19.3 we have
Cmin(ǫ1) = Cmin and Cmax(ǫ1) = Cmax. Accordingly, λ(ǫ2) can be written as

λ(ǫ2) = λ + ǫ1









∑

i∈Cmin

ei

nmin
−

∑

i∈Cmax

ei

nmax









+(ǫ2 − ǫ1)











∑

i∈Cmin(ǫ1)

ei

nmin(ǫ1)
−

∑

i∈Cmax(ǫ1)

ei

nmax(ǫ1)











,

i.e., λ(ǫ2) = hλ(ǫ1)(ǫ2 − ǫ1).

We now show that even if some classes change the set of servers they use, the
global cost is non-decreasing under the transformation λ(ǫ) = hλ(ǫ) provided
that ǫ ≤ ∆. The proof is based on the following theorem which is proved in [14]
(Theorem 5, page 321), and closely parallels the discussion in section III.B of
the above reference.
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Theorem 6 (Theorem 5 in [14]) Let f : X → IR, where X ⊂ IR is a closed
interval. Consider a family A = {A1, . . . , An} of closed subsets of X, such
that (i) ∪n

i=1Ai = X, and (ii) for every Ai ∈ A, we have : x, y ∈ Ai and
x < y ⇒ f(x) < f(y). Then f is non-decreasing in X.

The following theorem extends Theorems 4 and 5 to the case when the
transformation changes the set of servers used by some classes.

Theorem 7 For ǫ ≤ ∆, D(λ(ǫ)) ≥ D(λ).

Proof. Consider a rate vector λ and the transformation λ(ǫ) = hλ(ǫ) of this
rate vector for ǫ ∈ [0, ∆]. We want to prove that D(λ(ǫ)) ≥ D(λ). Since
all quantities of interest, and in particular the global cost, can be treated as
functions of ǫ, it suffices to show that D is a nondecreasing function of ǫ on
[0, ∆].

Let Ai,j = {ǫ ∈ [0, ∆] : Gi,j(ǫ) ≤ λi(ǫ) ≤ Gi,j+1(ǫ)}, denote the set of ǫ ∈
[0, ∆] for which class i sends flow to servers {1, . . . , j} under equilibrium N (ǫ).
From (13), one can see that Gi,j is a continuous function of the ri,j , which in
turn are continuous function of the equilibrium strategies of the other classes.
The continuity of the Nash mapping then implies that Gi,j is a continuous
function of ǫ ∈ [0, ∆]. Continuity of the functions Gi,j(ǫ) and λi(ǫ) implies that
Ai,j is a closed set.

For each S ∈ SK , define

AS = ∩i∈CAi,Si
,

which is also a closed set. If ǫ1, ǫ2 ∈ AS, then each class sends its flow to the
same set of servers under equilibria N (ǫ1) and N (ǫ2).

Consider a vector S ∈ SK and assume that we can find ǫ1, ǫ2 ∈ AS such that
ǫ1 < ǫ2, i.e. AS is neither empty nor reduced to an isolated point. According
to Proposition 7, the vector λ(ǫ2) can be obtained from λ(ǫ1) under a basic
transformation. Since ǫ1, ǫ2 ∈ AS, this transformation satisfies Assumption 1,
and according to Theorems 4 and 5 we have either D(ǫ2) > D(ǫ1) or D(ǫ2) =
D(ǫ1). We therefore conclude that if we can find ǫ1, ǫ2 ∈ AS such that ǫ1 < ǫ2,
then D(ǫ2) ≥ D(ǫ1).

Since [0, ∆] = ∪S∈SK AS, all conditions of Theorem 6 are fullfilled, and we
can conclude that D is a nondecreasing function of ǫ on [0, ∆].

5.4 Maximum of the Global Cost

The purpose of this section is to prove that the global cost achieves its maximum

in the symmetric case, i.e., when λ = λ
= =

(

λ̄
K , . . . , λ̄

K

)

. To this end, starting
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from a fixed rate vector λ, we build a sequence
(

λ
k
)

k∈IN
of rate vectors such

that:

• λ
0 = λ, and

• λ
k+1 is obtained from λ

k under a basic transformation of maximum step,
i.e., λ

k+1 = h
λ

k(∆k).

The following proposition shows that the sequence
(

λ
k
)

k∈IN
converges to

λ
= in a finite number of steps.

Proposition 8 The sequence
(

λ
k
)

k∈IN
converges to λ

= in at most K steps.

Proof. Let wk be the number of classes in Ck
min ∪ Ck

max. Note that w0 ≥ 2.
According to Lemma 20.2, if wk = K, then λ

k+1 = λ
=. Otherwise, according

to Lemma 20.1, we have Ck
min ∪Ck

max ( Ck+1
min ∪Ck+1

max, and thus wk < wk+1 ≤ K.
This structure implies that in at most K steps we have wk = K, and thus
λ

k+1 = λ
=.

We now prove Theorem 1.

Proof of Theorem 1. For each λ ∈ Λ, the sequence
(

λ
k
)

k∈IN
converges to λ

=

in a finite number of steps. According to Theorem 7, we have D(λk+1) ≥ D(λk).
This implies that D(λ=) ≥ D(λ).

6 Price of Anarchy

According to Theorem 1, we have

PoA(K) = sup
λ,r,c

DK(λ, r, c)

D1(λ̄, r, c)
= sup

r,c

DK(λ=, r, c)

D1(λ̄, r, c)
. (32)

Therefore, in order to analyze the PoA, we can focus on the symmetric case.
We analyze the symmetric game in Section 6.1 and derive an explicit expression
for the equilibrium flows. These results are then used in Section 6.2 to prove
that the PoA is upper-bounded by the square root of the number of dispatchers.
In Section 6.3 we prove the lower bound on the PoA by exhibiting an example for

which the ratio DK(λ,r,c)

D1(λ̄,r,c)
is K/(2

√
K−1). Finally, in Section 6.4, we summarize

our result on the PoA and discuss its consequences.
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6.1 Analysis of the Symmetric Game

It is well known that in this case the non-cooperative routing game is a potential
game, i.e., the equilibrium flows are the global minima of a standard convex
optimization problem (see e.g. Theorem 4.1 in [7]). This is formally stated in
the following proposition.

Proposition 9 If the vector y is global optimum of the following convex opti-
mization problem, then

minimize
y

∑

j∈S

cj

K

[

yj

rj − yj
+ (K − 1) log

(

rj

rj − yj

)]

s.t.
∑

j∈S yj = λ̄,

0 ≤ yj < rj , ∀j ∈ S.

then the multi-strategy x = (y/K, . . . ,y/K) is a NEP of the symmetric game.

Proof. The statement follows from Theorem 4.1 in [7]) with ca(xa) = ca

ra−xa
.

Note that when K = 1, the above problem reduces to the global optimization
problem solved by the centralized scheme, whereas when K → ∞, the above
problem reduces to the problem stated in Proposition 4 of [1]. In the latter case,
the equivalent problem states that the common function optimized jointly by
an infinite number of players and is characteristic of the Wardrop equilibrium.

In order to describe the solution of the above equivalent problem, let us
define uj = cj/rj , j ∈ S, and uS+1 = ∞. Note that, by definition, the sequence
uj is increasing in j. Let us also define the function

Wj(K, z) = 1{z∈[uj ,uj+1)} ·





j
∑

s=1

2rs
√

(K − 1)2+4Ku−1
s z−(K − 1)

−
j
∑

s=1

rs+λ̄



 ,

and let W (K, z) =
∑

j∈S Wj(K, z). The following lemma states some properties
of the function W (K, z).

Lemma 21 The function W (K, z) is such that:

1. for a fixed K, the function W : [u1,∞) → R is continuous and decreasing
in z,

2. for a fixed z, W (K, z) is decreasing in K,

3. for a fixed K, W (K, z) = 0 has a unique solution in the interval (u1,∞).
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Proof. Let us first prove property 1. By definition W (k, x) = Wj(K, x) in
the interval [uj , uj+1). Since Wj is continuous and decreasing in (uj , uj+1)
so is W . To conclude the proof, we need to verify that W is continuous at
uj, j = 2, 3, . . . , S. We have

lim
x→u+

j

W (K, x) − lim
x→u−

j

W (K, x) = lim
x→u+

j

Wj(K, x) − lim
x→u−

j

Wj−1(K, uj)

=





j
∑

i=1

2ri
√

(K − 1)2 + 4Ku−1
i uj − (K − 1)

−
j
∑

i=1

ri + λ̄





−





j−1
∑

i=1

2ri
√

(K − 1)2 + 4Ku−1
i uj − (K − 1)

−
j−1
∑

i=1

ri + λ̄





= 0,

which shows that the function W (K, x) is also continuous at the points uj, j =
2, 3, ..., S.

To prove property 2, it is sufficient to show that for K1 < K2,

1
√

(K1 − 1)2 + 4K1u
−1
i uj − (K1 − 1)

>
1

√

(K2 − 1)2 + 4K2u
−1
i uj − (K2 − 1)

.

It is thus sufficient to show that
√

(K2 − 1)2 + 4K2u
−1
i uj − (K2 − 1) >

√

(K1 − 1)2 + 4K1u
−1
i uj − (K1 − 1).

We show below that, under a certain condition, the function
√

(K − 1)2 + 4Ku−1
i uj−

(K − 1) is increasing in K on assuming K to be real, and that this condition
is satisfied. For this we show its derivative is positive, which is equivalent to
showing

1
2

2(K−1)+4u−1

i
uj√

(K−1)2+4Ku−1

i
uj

− 1 > 0

⇔ (K − 1) + 2u−1
i uj >

√

(K − 1)2 + 4Ku−1
i uj

⇔ (K − 1)2 + 4(u−1
i uj)

2 + 4(K − 1)u−1
i uj > (K − 1)2 + 4Ku−1

i uj

⇔ 4(u−1
i uj)

2 − 4u−1
i uj > 0.

Since u−1
i uj > 1 the above inequality holds.

Finally, let us now prove property 3. First, we note that W (K, u1) = λ̄
and W (K,∞) = −r + λ̄ which is negative (by assumption). Also according to
property 1, W (K, x) is continuous and decreasing in the interval [u1,∞). Hence,
there is a unique value of x for which W (K, x) = 0.

In the following, we let γ(K) be the unique solution of W (K, x) = 0 in
[u1,∞).
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The following proposition gives the solution of the symmetric game.

Proposition 10 The subset of servers that are used at the NEP is S∗(K) =
{1, 2, . . . , j∗(K)}, where j∗(K) is the greatest value of j such that W (K, uj+1) ≤
0 < W (K, uj). The equilibrium flows are xi,j =

yj

K , i ∈ C, j ∈ S∗(K), where the
offered traffic of server j is given by

yj = rj

√

(K − 1)2 + 4Kγ(K)rj/cj − (K + 1)
√

(K − 1)2 + 4Kγ(K)rj/cj − (K − 1)
, (33)

with γ(K) the unique root of W (K, z) = 0 in [u1,∞).

Proof. Let y be an optimal solution of the equivalent problem stated in Propo-
sition 9. According to the KKT conditions, there exist γ and νj ≥ 0, j ∈ S such
that for each j ∈ S,

yj νj = 0, (34)
uj

K
φj(φj + K − 1) = γ + νj , (35)

where φj = rj/(rj − yj). Since νj ≥ 0, we have from (35) that

K u−1
j γ ≤ φj(φj + K − 1), ∀j ∈ S, (36)

with equality if and only if yj > 0. Moreover, eliminating νj from (34), we
obtain the following complementary slackness condition

yj

[

φj(φj + K − 1) − K u−1
j γ

]

= 0, ∀j ∈ S. (37)

Let us now consider a server j. Let us first assume that uj < γ. In this case,
a necessary condition for (36) to hold is φj(φj + K − 1) > K, which implies
φj > 1 and hence yj > 0. We therefore obtain from (37) that

φ2
j + (K − 1)φj − Ku−1

j γ = 0.

The above equation has a single positive root given by

φj =
1

2

[

√

(K − 1)2 + 4Ku−1
j γ − (K − 1)

]

.

We thus conclude that if uj < γ, then the load yj = rj (φj − 1)/φj of the server
j is given by

yj = rj

√

(K − 1)2 + 4Ku−1
j γ − (K + 1)

√

(K − 1)2 + 4Ku−1
j γ − (K − 1)

.

Let us now assume on the contrary that uj > γ. If yj > 0, then φj > 1, which
implies that φj(φj + K − 1) > K. However, according to the complementary
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slackness condition (37), the left hand side is just Ku−1
j γ, and we therefore

obtain that γ > uj , i.e., a contradiction. As a consequence, if uj > γ, then
yj = 0. Finally, we conclude from the above analysis that

yj =















rj

q

(K−1)2+4Ku−1

j
γ−(K+1)

q

(K−1)2+4Ku−1

j
γ−(K−1)

if uj < γ,

0 otherwise.

(38)

Let j∗(K) be such that uj∗(K) < γ ≤ uj∗(K)+1. Then the subset of servers
used at the Nash equilibrium is S∗(K) = {1, . . . , j∗(K)}. Using (38), we deduce
from

∑

j∈S∗(K) yj = λ̄ that

∑

j∈S∗(K)

rj − λ̄ =
∑

k∈S∗(K)

2rk
√

(K − 1)2 + 4Ku−1
k γ − (K − 1)

,

i.e., W (K, γ) = 0, which implies that γ = γ(K) according to Lemma 21.3.
Moreover, since for a fixed K the function W : [u1,∞) → R is decreasing in z,
we deduce from uj∗(K) < γ(K) ≤ uj∗(K)+1 that

W (K, uj∗(K)+1) ≤ 0 < W (K, uj∗(K)).

We now prove that the distributed scheme with K dispatchers uses only a
subset of the servers used by the centralized scheme. The proof is based on the
following proposition.

Proposition 11 The function γ(K) is decreasing in K.

Proof. For K1 < K2, we have 0 = W (K1, γ(K1)) > W (K2, γ(K1)), where the
inequality follows from Lemma 21.2. Using W (K2, u1) = λ̄ > 0, and Lemma
21.3, we can conclude that u1 < γ(K2) < γ(K1).

The fact that γ(K) is decreasing in K implies that j∗(K) is non-increasing
in K. We therefore have the following important corollary.

Corollary 5 For K ≥ 1, S∗(K + 1) ⊂ S∗(K).

As an immediate consequence, we can conclude that S∗(K) ⊂ S∗(1), i.e., the
distributed scheme with K dispatchers uses only a subset of the servers used by
the centralized scheme.
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6.2 Upper Bound on the PoA

In order to distinguish between the offered traffic in server j for different values
of K, we denote by yj(K) the offered traffic in equilibrium in the K player
symmetric game, where yj(K) is given by (33).

The following lemma gives a bound on the mean number of jobs in a server
in the decentralized case in terms of the mean number of jobs in the same server
in the centralized case.

Lemma 22
yj(K)

rj − yj(K)
≤

√
K

yj(1)

rj − yj(1)
, ∀j ∈ S∗(1). (39)

Proof. From Corollary 5, we have S∗(K) ⊂ S∗(1). For j ∈ S∗(1) \ S∗(K),
ρj(K) = 0. Hence (39) holds. It now remains to be shown that (39) holds for
every j ∈ S∗(K).

From (33),

yj(K) = rj

√

(K − 1)2 + 4Kγ(K)rj/cj − (K + 1)
√

(K − 1)2 + 4Kγ(K)rj/cj − (K − 1)
, (40)

from which it follows that

1 − yj(K)

rj
=

2
√

(K − 1)2 + 4Kγ(K)rj/cj − (K − 1)
, (41)

and that

yj(K)

rj − yj(K)
=

√

(K − 1)2 + 4Kγ(K)rj/cj − (K + 1)

2
. (42)

We shall now use the fact that yj(K)/(rj − yj(K)) is increasing in γ(K). Since
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γ(K) ≤ γ(1), from (42),

yj(K)

rj − yj(K)
≤

√

(K − 1)2 + 4Kγ(1)rj/cj − (K + 1)

2

=

√

(K − 1)2 + 4Kγ(1)rj/cj − (K + 1)

2

√

(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)
√

(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)

=
4Kγ(1)rj/cj − 4K

2

1
√

(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)

= 2K
γ(1)rj/cj − 1

√

(K − 1)2 + 4Kγ(1)rj/cj + (K + 1)

≤ 2K
γ(1)rj/cj − 1

√

4Kγ(1)rj/cj + (K + 1)
(since K − 1 ≥ 0)

≤ 2K
γ(1)rj/cj − 1

√

4Kγ(1)rj/cj + 2
√

K
(since K + 1 ≥ 2

√
K)

=
√

K
γ(1)rj/cj − 1
√

γ(1)rj/cj + 1

=
√

K

(

√

γ(1)rj/cj − 1

)

. (43)

From (42),

yj(1)

rj − yj(1)
=

√

4γ(1)rj/cj − 2

2
=
√

γ(1)rj/cj − 1, (44)

which upon substitution in (43) gives

yj(K)

rj − yj(K)
≤

√
K

yj(1)

rj − yj(1)
, ∀j ∈ S∗(K). (45)

The above lemma leads to the following upper bound on PoA(K).

Proposition 12

PoA(K) ≤
√

K.

Proof. Since S∗(K) ⊂ S∗(1),

DK(λ=, r, c) =
∑

j∈S∗(K)

cj
yj(K)

rj − yj(K)

≤
∑

j∈S∗(1)

cj
yj(K)

rj − yj(K)
.
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which, on substituting from Lemma 22, gives

DK(λ=, r, c)

D1(λ̄, r, c)
≤

√
K.

Since this bound in independent of r and c, we can conclude that PoA(K) ≤√
K.

6.3 Lower Bound on the PoA

We now give an example which shows that the PoA is bounded below by
K/(2

√
K − 1).

Proposition 13

PoA(K) ≥ K

2
√

K − 1
.

Proof. To prove this statement, we give a particular choice of the r and c for

which DK(λ,r,c)

D1(λ̄,r,c)
= K

2
√

K−1
, independently of the number of servers S ≥ 2. It

follows closely the example in Theorem 5 in [1]. We take cj = rj = 1, for j > 1.
Using Proposition 3, one can verify that if

(r1 − λ̄)2

r1
< c1 <

(r1 − λ̄)2

r1 − λ̄ + 1
K λ̄

(46)

then the centralized scheme will use all servers whereas, at the NEP, the dis-
tributed scheme with K dispatchers will only use the first server. In order to
ensure that (46) is always satisfied we set c1 = (r1−λ̄)2 α(r1) for α(r1) such that

r−1
1 < α(r1) <

(

r1 − λ̄ + λ̄
K

)−1

. Note that c1

r1
< 1 = c2

r2
, which is in agreement

with the assumption that cj/rj are non-decreasing in j.

For K ≥ 2, since all the classes use only the first server,

DK(λ=, r, c) = c1
λ̄

r1 − λ̄
= λ̄α(r1)(r1 − λ̄). (47)

For K = 1,

D1(λ̄, r, c) =
∑

j∈S∗(1)

cj
yj(1)

rj − yj(1)
.

which, upon substituting from (42), gives

D1(λ̄, r, c) =
∑

j∈S∗(1)

cj

(

√

γ(1)rj/cj − 1

)

=
∑

j∈S∗(1)

(

√

γ(1)
√

cjrj − cj

)

. (48)
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Since the centralized scheme uses all the S servers, from Proposition 10, γ(1) is
such that

S
∑

j=1

rj
√

rj/cjγ(1)
−

S
∑

j=1

rj +λ̄ = 0,

which upon substitution in (48) gives

D1(λ̄, r, c) =
(
∑S

j=1

√
cjrj)

2

∑S
j=1 rj − λ̄

−
S
∑

j=1

cj.

Since c2 = r2 = 1, we obtain

D1(λ̄, r, c) =
(
√

c1r1 + S − 1)2

r1 − λ̄ + S − 1
− (c1 + S − 1)

=
(S − 1)(2

√
c1r1 − (r1 − λ̄)) − c1(S − 1 − λ̄)

r1 − λ̄ + S − 1

=
(S − 1)(r − λ̄)(2

√

r1α(r1) − 1) − (r − λ̄)2α(r1)(S − 1 − λ̄)

r1 − λ̄ + S − 1

From the above equation and (47),

DK(λ=, r, c)

D1(λ̄, r, c)
=

λ̄α(r1)

(S−1)(2
√

r1α(r1)−1)−(r−λ̄)α(r1)(S−1−λ̄)

r1−λ̄+S−1

.

Taking the limit as r1 ↓ λ,

DK(λ=, r, c)

D1(λ̄, r, c)
=

λ̄α(λ̄)

2
(

λ̄α(λ̄)
)1/2 − 1

.

Note that the RHS in the above equation is increasing in λ̄α(λ̄), and that
λ̄α(λ̄) has to be chosen in the interval (1, K). Choosing the larger value, we
obtain

DK(λ=, r, c)

D1(λ̄, r, c)
=

K

2
√

K − 1
,

which proves the inequality (13).

6.4 Discussion on the PoA

We first give the proof of Theorem 2.
Proof of Theorem 2. From Propositions 12 and 13 we can conclude that

K

2
√

K − 1
≤ PoA(K) ≤

√
K.
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We first note that the bounds on the PoA are valid for all values of K and
not just asymptotically. From these bounds, we can infer that the PoA grows
as

√
K as K grows to infinity. Thus, the PoA can be made arbitrarily large

in the limit K → ∞, which is an alternative proof of Theorem 5 in [1] for the
Wardrop equilibrium. In the other extreme case of K = 1, the bounds lead to
PoA(1) = 1, which is consistent with the fact that the case K = 1 corresponds
to the centralized setting.

We also observe that the PoA is independent of the number of servers —
the bounds are valid as long as there are at least two servers. This result is in
contrast to the corresponding one for the case when server costs are equal, for
which the PoA was shown to be bounded by the number of servers ([12], [21]) in
the non-atomic game. Thus, we infer that the inclusion of unequal server costs
has a non-negligible impact on the PoA in the sense that, even in a system with
two servers, the PoA can be of the order of

√
K.

7 Conclusions and future work

We investigated the performance of non-cooperative load-balancing in processor-
sharing server-farms. We have first shown that the worst global performance
is obtained when all K dispatchers route exactly the same amount of traffic.
This result implies that the analysis of the PoA can be done by focusing on
the symmetric case, and therefore using the potential function method. We
have then proved that, for a system with two or more servers, the PoA is lower
bounded by K/(2

√
K − 1) and upper bounded by

√
K, independently of the

number of servers.

We believe that this methodology can be generalized to other network topolo-
gies than the parallel link scenario considered in this paper. We therefore plan
to investigate under which conditions the symmetry of traffic demands leads to
a maximum global cost for general network topologies.
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