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Vanishing theorems for associative submanifolds

Damien Gayet

September 12, 2009

Abstract
Let M a 7-dimensional manifold with holonomy in G2, and containing a compact associa-
tive 3-dimensional submanifold Y . It is known since McLean [9] that the problem of the
associative deformations of Y is related to a Dirac-like operator on Y , hence is elliptic and
of vanishing index. In this paper we adapt the Bochner method to give a sufficient metric
condition which implies that Y is isolated. In the case where Y has boundary in a coassocia-
tive 4-dimensional submanifold X, it has been proved in [5] that the associated deformation
problem is still elliptic, and moreover its index is in general non vanishing. In this case,
we add to the former condition a new one related to the geometry of the boundary. They
imply the smoothness of the moduli space of associative deformations of Y . Thanks those
general results, we are able to describe explicit smooth moduli spaces for some families of
examples in R

7 and in Calabi-Yau extensions. In particular, we prove that the moduli space
of associative deformations of the product of a special lagrangian by S1 in a Calabi-Yau
manifold times S1 is always smooth and of dimension b1(L) + 1.

MSC 2000: 53C38 (35J55, 53C21, 58J32).

Keywords: G2 holonomy; calibrated submanifolds; elliptic boundary problems on mani-
folds ; Bochner method

1 Introduction

Let M a 7-dimensional riemannian manifold with holonomy included in G2. In this case
M supports a non degenerate harmonic 3-form φ (and such that ∇φ = 0). Moreover, M
benefits a vector product × defined by

< u× v,w >= φ(u, v,w),

even if to be spin is enough for the existence of this product. Now, recall that a 3-dimensional
submanifold Y is said associative if its tangent bundle is stable under the vector product.
In other terms, φ restricted to Y is a volume form. Likely, a 4-dimensional submanifold X
is coassociative if all the fibers of its normal bundle are associative, or equivalently, φ|TX
vanishes. We refer to the abundant literature on this subject, see [6] or [5] for a summary
with our notations.

The closed case. It is known from [9] that the deformation of an associative submanifold
Y without boundary is an elliptic problem, and hence is of vanishing index. In general, the
situation is obstructed. For instance, consider the flat torus T

3 × {pt} in the flat space
T

7 = T
3 × T

4. This is an associative submanifold, and its moduli space MT3×{pt} of asso-
ciative deformations contains at least the 4-dimensional T

4.
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A natural question is to find conditions which force the moduli space to be smooth, or in
other terms, which force the cokernel of the problem to vanish. For the closed case, Abkulut
and Salur [2] allow a certain freedom for the connection on the normal bundle, the definition
of associativity and genericity. But examples are often non generic, and we would like to
get a condition that is not a perturbative one. For holomorphic curves in dimension 4, there
are topological conditions on the degree of the normal bundle which imply smoothness of
the moduli space of complex deformations, see for example [7]. The main point for this is
that holomorphic curves intersect positively. In our case, there is no such phenomenon.

In [9], page 30, McLean gives an example of an isolated associative submanifold. Since
this was the start point of our work, we recall it. In [4], Bryant and Salamon constructed
on the spin bundle of the round 3-sphere S3 × R

4 a metric of holonomy G2. In this case,
the basis S3 × {0} is associative, the normal bundle is just the spin bundle of S3, and the
operator related to the associative deformations of S3 is just the Dirac operator. By the
famous theorem of Lichnerowicz [8], there are no harmonic spinors on S3 for metric reasons
(precisely, the riemaniann scalare curvature is non negative), so the sphere is isolated as an
associative submanifold.

In this paper, we follow the way showed by McLean and the theorem of Lichnerowicz.
That means that we use the Bochner method to get a geometric condition which allows the
smoothness of MY . For this, we define the following geometric object :

Definition 1.1 Choose {e1, e2, e3 = e1 × e2} a local orthonormal frame field of TY . We
define the 0-order operator

Rν : Γ(Y, ν) −→ Γ(Y, ν)

ψ 7→ −
1

2

∑
i,j

(ei × ej) ×R⊥(ei, ej)ψ,

where R⊥ is the curvature of the normal bundle ν over Y , and ψ ∈ Γ(Y, ν).

Fact. The definition is independant of the choosen oriented orthonormal frame.

Now we can express the first theorem à la Lichnerowicz :

Theorem 1.1 Let Y an associative submanifold of a G2-manifold M . If the spectrum of
Rν is non negative, then Y is isolated.

The case with boundary. In [5], the authors proved that the deformation of an
associative submanifold with boundary in a coassociative submanifold is an elliptic problem
of finite index and given by the index of a certain Cauchy-Riemann operator. We sum up
in the following the principal results of the paper :

Theorem 1.2 ([5]) Let νX the normal complementary of T∂Y in TX|∂Y , and n the inner
unit vector normal to ∂Y in Y . Then the bundle νX is a subbundle of ν|∂Y and is stable
under n×, as long as the orthogonal complement µX of νX in ν. Viewing T∂Y , νX and
µX as n×–complex line bundles, we have µ∗X

∼= νX ⊗C T∂Y . Besides, the problem of the
associative deformations of Y is elliptic and of index

index (Y,X) = index ∂νX
= c1(νX) + 1 − g.
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In this context, we introduce a new geometric object that is related to the geometry on the
boundary :

Proposition 1.3 Let n the inner normal vector field on ∂Y , and {v,w = n × v} a local
orthonormal frame for T∂Y . Let L a real plane subbundle of ν invariant by the action of
n×. We define

DL : Γ(∂Y,L) −→ Γ(∂Y,L)

φ 7→ πL(v ×∇⊥
wφ− w ×∇⊥

v φ),

where πL is the orthogonal projection on L and ∇⊥ the normal connection on ν induced
by the Levi-Civita connection ∇ on M . Then DL is independant of the choosen oriented
frame, of order 0 and symmetric.

Now, we can express our main theorem :

Theorem 1.4 Let Y an associative submanifold of a G2-manifold M with boundary in a
coassociative X. If DµX

and Rν are non negative, the moduli space MY,X is locally smooth
and of dimension given by the virtual one.

When M = R
7, we get the following very explicit example considered in [5]. Take a ball

Y in R
3 × {0} ⊂ R

7, with real analytic boundary, and choose e any constant vector field
in ν = Y × {0} ⊕ R

4. By [6], there is a unique local coassociative Xe containing ∂Y × Re,
such that

TX|∂Y = T∂Y ⊕ νX = T∂Y ⊕ Vect (e, n × e).

Of course, the translations in the e-direction gives associative deformations of Y with bound-
ary in Xe. The next corollary shows that under a simple metric condition, this is the only
way to deform Y :

Corollary 1.5 If the ∂Y is strictly convex in R
3, then MY,Xe = R.

The Calabi-Yau extension. Let (N,J,Ω, ω) a Calabi-Yau 6-dimensional manifold (we
allow holonomies in SU(3)), where J is an integrable complex stucture, Ω a non vanishing
holomorphic 3-form and ω a Khler form. Then M = N × S1 (or N ×R) is a manifold with
holonomy in G2, with calibration the 3-form given by

φ = ω ∧ dt+ Re Ω.

Take a special lagrangian 3-dimensional submanifold L in N . We know from [9] that ML

the moduli space of special lagrangian deformations of L is smooth and of dimension b1(L).
Now every product Y = L × {pt} of a special lagrangian and a point is an associative
submanifold of M . Since the translation along S1 preserves the associativity of Y , we hence
have ML×S

1 ⊂ MY . In the last part of this paper, we prove that in fact, there is equality,
without any condition :

Theorem 1.6 The moduli space ML×{pt}of associative deformations of L×{pt} is always
smooth, and can be identified with the product ML × S1.

As an immediate example, we get that

MT3×{pt} = T
4.

When Y has boundary, the metric conditions reappear :
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Corollary 1.7 Let L a special lagrangian submanifold in a 6-dimensional Calabi-Yau N ,
such that L has boundary in a complex surface Σ. Let Y = L × {t0} in N × S1 and
X = Σ × {t0}. If the Ricci curvature of L is non negative, and the boundary of L has non
negative mean curvature in L, then MY,X is locally smooth and has dimension g, where g
is the genus of ∂L.

Aknowledgements. I would like to thank the French Agence nationale pour la Recherche
for its support, and Vincent Borrelli who convainced me that there is a life after riemannian
geometry.

2 Closed associative submanifold

2.1 A Weitzenbck formula

The strategy followed for rigidity is the Bochner technique. For this, we have to get some
Weitzenbck formula, and integrate. Firstly, recall the version of McLean’s theorem proposed
by Akbulut and Salur :

Theorem 2.1 ([9],[1]) Let Y an associative submanifold of a riemannian manifold M

with G2-holonomy. Then the tangent space of its associative deformations is the kernel of
the operator

D : Γ(Y, ν) −→ Γ(Y, ν),

ψ 7→

3∑
i=1

ei ×∇⊥
ei
ψ,

where ∇⊥ is the connection on ν induced by the Levi-Civita connection ∇.

For the next proposition, we introduce the normal equivalent of the invariant second deriva-
tive. More precisely, let

∇⊥2
v,w = ∇⊥

v ∇
⊥
w −∇⊥

∇⊤
v w
,

which is tensorial in the fields v and w and acting on Γ(Y, ν). Moreover, define the equivalent
of the connection laplacian :

∇⊥∗∇⊥ = −trace (∇⊥2) = −
∑
i

∇⊥2
ei,ei

.

Proposition 2.2 For the Dirac-like D we have

D2 = ∇⊥∗∇⊥ + Rν .

Before computing D2, we need the following trivial lemma

Lemma 2.3 Let ∇ the Levi-Civita connection on M and R its curvature tensor. For any
vector fields w, z, u and v on M , we have

∇(u× v) = ∇u× v + u×∇v and

R(w, z)(u × v) = R(w, z)u × v + u×R(w, z)v.

If u ∈ Γ(Y, TY ), v ∈ Γ(Y, TY ) and η ∈ Γ(Y, ν), then

∇⊤(u× v) = ∇⊤u× v + u×∇⊤v and

∇⊥(u× η) = ∇⊤u× v + u×∇⊥v,

where ∇⊤ = ∇−∇⊥ is the orthogonal projection of ∇ on TY .
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Proof. Let x1, · · · , x7 normal coordinates on M near x, and ei = ∂
∂xi

their derivatives
orthonormal at x. We have

u× v =
∑
i

< u× v, ei > ei =
∑
i

φ(u, v, ei)ei,

so that

∇(u× v) =
∑
i

(∇φ(u, v, ei) + φ(∇u, v, ei) + φ(u,∇v, ei) + φ(∇u, v,∇ei))ei

=
∑
i

(φ(∇u, v, ei) + φ(u,∇v, ei))ei = ∇u× v + u×∇v,

because ∇φ = 0 and ∇ei = 0. Now if u and v are in TY , then we get the result after
remarking that (∇u× v)⊤ = ∇⊤u× v, because TY is invariant under ×. The last relation
is implied by TY × ν ⊂ ν and ν × ν ⊂ TY . The curvature relation is easily derived from
the definition R(w, z) = ∇w∇z −∇z∇w −∇[w,z] and the derivation of the vector product.
�

Proof of proposition 2.2. We compute D2 at a point x ∈ Y . For this, we choose normal
coordinates on Y and ei ∈ Γ(Y, TY ) their associated derivatives, orthonormal at x. To be
explicit, ∇⊤ei = 0 at x. Let ψ ∈ Γ(Y, ν).

D2ψ =
∑
i,j

ei ×∇⊥
i (ej ×∇⊥

j ψ)

=
∑
i,j

ei × (ej ×∇⊥
i ∇

⊥
j ψ) +

∑
i,j

ei × (∇⊤
i ej ×∇⊥

j ψ)

= −
∑
i

∇⊥
i ∇

⊥
i ψ −

∑
i6=j

(ei × ej) ×∇⊥
i ∇

⊥
j ψ

= ∇⊥∗∇⊥ψ −
∑
i<j

(ei × ej) × (∇⊥
i ∇

⊥
j −∇⊥

j ∇
⊥
i )ψ

= ∇⊥∗∇⊥ψ −
∑
i<j

(ei × ej) ×R⊥(ei, ej)ψ

= ∇⊥∗∇⊥ψ −
1

2

∑
i,j

(ei × ej) ×R⊥(ei, ej)ψ = ∇⊥∗∇⊥ψ + Rνψ,

since (ei × ej) × R⊥(ei, ej) is symmetric in i, j. It is easy to check that Rν is independant
of the choosen orthonormal frame. �

We can give a separation of the uneasy operator Rν , in terms of the ambiant curvature,
and the Weingarten operators :

Proposition 2.4 Let R the 0-order operator : R : Γ(Y, ν) → Γ(Y, ν) defined by

R(ψ) = −
1

2
πν

∑
i,j

(ei × ej) ×R(ei, ej)ψ,

where R is the curvature tensor of the ambient space M and πν the orthogonal projection
on ν. Then R is a symmetric operator, and there is a positive symmetric 0-order operator
A : Γ(Y, ν) → Γ(Y, ν) which vanishes if Y is totally geodesic in M , such that Rν = R−A.
As a consequence, the operator Rν is symmetric.
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The operator seems as complicated as Rν , but it vanishes for flat spaces, like R
7 or T

7.

Proof. We refer to the lemma 2.5 below for the proof of the symmetry of R. The main
tool for the second assertion of our proposition is the Ricci equation. Let u, v in Γ(Y, TY )
and φ, ψ in Γ(Y, ν).

< R⊥(u, v)ψ, φ >=< R(u, v)ψ, φ > + < (AψAφ −AφAψ)u, v >,

where Aφ : TY → TY is the Weingarten endomorphism in the normal direction φ defined
by

Aφ(u) = −∇⊤
u φ.

Choose η1, · · · , η4 an orthonormal basis of ν at the point x, we get

Rν(ψ) = −
1

2

∑
i,j,k

< (ei × ej) ×R⊥(ei, ej)ψ, ηk > ηk

=
1

2

∑
i,j,k

< R⊥(ei, ej)ψ, (ei × ej) × ηk > ηk

=
1

2
πν

∑
i,j,k

(ei × ej) ×R(ei, ej)ψ

+
1

2

∑
i,j,k

< (AψA(ei×ej)×ηk
−A(ei×ej)×ηk

Aψ)ei, ej > ηk.

The Weingarten endomorphisms are symmetric, so that the last term is

1

2

∑
i,j,k

< A(ei×ej)×ηk
ei, Aψej > ηk −

1

2

∑
i,j,k

< Aψei, A(ei×ej)×ηk
ej > ηk.

It is easy to see that the second sum is the opposite of the first one. We compute

A(ei×ej)×ηk
ei = −(∇⊥

i ei × ej) × ηk − (ei ×∇⊥
i ej) × ηk + (ei × ej) ×Aηk

ei.

But we know that an associative submanifold is minimal, so that

∑
i

∇⊥
i ei = 0.

Moreover, deriving the relation e3 = ±e1 × e2, one easily check that

∑
i

ei ×∇⊥
j ei = 0.

Summing, the only resting term is

∑
i,j,k

< (ei × ej) ×Aηk
ei, Aψej > ηk.

We now use the classical formula for vectors u, v and w in TY :

(v × w) × u =< u, v > w− < u,w > v,

hence
(ei × ej) ×Aηk

ei =< Aηk
ei, ei > ej− < Aηk

ei, ej > ei.
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One more simplification comes from
∑

i < Aηk
ei, ei >= 0 for all k because since Y is

minimal, so our sum is now equal to

−
∑
i,j,k

< Aηk
ei, ej >< ei, Aψej > ηk = −Aψ.

This is clear that this operator is of vanishing order, and is symmetric, because

< Aψ, φ > =
∑
i,j,k

< Aηk
ei, ej >< ei, Aψej > φk

=
∑
i,j,k

< Aφei, ej >< ei, Aψej > .

At last, A is positive, since

< Aψ,ψ >=
∑
i,j,k

< Aψei, ej >
2 .

Remark that it vanishes if and only if Aψ = 0, which is the case in particular if Y is totally
geodesic. �

We end this section with the following lemma :

Lemma 2.5 The operator R is symmetric.

Proof. Let ψ and φ in Γ(Y, ν). Then

−2 < Rψ, φ > =
∑
i,j

< (ei × ej) ×R(ei, ej)ψ, φ >= −
∑
i,j

< R(ei, ej)ψ, (ei × ej) × φ >

=
∑
i,j

< R(ei, ej)((ei × ej) × φ), ψ >

because in general < R(u, v)x, y >= − < R(u, v)y, x >. Using lemma 2.3, this is equal to∑
i,j

< (ei × ej) ×R(ei, ej)φ+ (R(ei, ej)(ei × ej)) × φ,ψ > .

Now the first part gives −2 < Rφ,ψ > and
∑

i,j R(ei, ej)(ei × ej)is equal to

R(e1, e2)e3 +R(e2, e3)e1 +R(e3, e1)e2 = 0

because of Bianchi’s first identity. �

2.2 A vanishing theorem

Proof of theorem 1.1. Suppose that we are given a fixed closed associative submanifold
Y . The virtual dimension of its moduli space of deformation is vanishing. Consider a section
ψ ∈ Γ(Y, ν). By classical calculations, using normal coordinates, we have

1

2
∆ < ψ,ψ > =

∑
i

< ∇⊥
i ψ,∇

⊥
i ψ > + < ψ,∇⊥

i ∇
⊥
i ψ >

= |∇⊥ψ|2− < D2ψ,ψ > + < Rνψ,ψ > .

Since the laplacian is equal to div(~∇), its integral over the closed Y vanishes. We get :

0 =

∫
Y

|∇⊥ψ|2− < D2ψ,ψ > + < Rνψ,ψ > dy. (1)

If we have a section ψ ∈ cokerD = kerD then Dψ = 0. Under the hypothesis that Rν is
non negative, the last equation implies ψ = 0. By the theorem of implicit functions, MY is
a smooth manifold of vanishing dimension, and Y is isolated. �
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3 Associative submanifolds with boundary

In this section we extend our result for rigidity in the case of associative submanifolds with
boundary in a coassociative submanifold. In this case the index is not zero, so rigidity
transforms into smoothness of the moduli space. Recall the notations of proposition 1.3 :
let n the inner normal vector to ∂Y in Y , and L a n×-complex line bundle over ∂Y . Define

ker(D,L) = {ψ ∈ Γ(Y, ν), Dψ = 0, ψ|∂Y ∈ L}.

In [5] (see [3] too), the authors noted that : coker(D, νX) = ker(D,µX).

Proof of theorem 1.4. By the theorem of implicit functions, we have to prove that
coker(D, νX) = ker(D,µX) = {0}. So let ψ ∈ ker(D,µX). The boundary changes the
integration (1), because the divergence has to be considered :

∫
Y

|∇⊥ψ|2+ < Rνψ,ψ > dy =
1

2

∫
Y

div ~∇|ψ|2dy. (2)

By Stokes, the last is equal to

1

2

∫
∂Y

< ~∇|ψ|2,−n > dσ = −
1

2

∫
∂Y

d|ψ|2(n)dσ = −

∫
∂Y

< ∇⊥
nψ,ψ > dσ,

where dσ is the volume induced by the restriction of g on the boundary. So using the fact
that Dψ = 0, this is equal to

∫
∂Y

< w ×∇⊥
v ψ − v ×∇⊥

wψ,ψ > dσ = −

∫
∂Y

< DµX
ψ,ψ > dσ.

Summing up, we get the equation

∫
Y

|∇⊥ψ|2dy +

∫
Y

< Rνψ,ψ > dy +

∫
∂Y

< DµX
ψ,ψ > dσ = 0. (3)

Now we can prove the theorem 1.4. We see that if DµX
and R are negatively definite, then

ψ vanishes. This means that our deformation problem has no cokernel, and by the theorem
of implicit functions, the moduli space is locally smooth. �

3.1 Some properties of the operator DL

We sum up the main results about DL in the following

Proposition 3.1 Let Y an associative submanifold with boundary in a coassociative sub-
manifold X, L a subbundle of ν over ∂Y , and DL as defined in the introduction. Then DL

is of order 0, symmetric, and its trace is 2H, where H is the mean curvature of ∂Y in Y

with respect to the outside normal vector −n.

Proof. Let L is a subbundle of ν invariant under the action of n×. It is straighforward
to check that D does not depend of the orthonormal frame {v,w = n × v}. For every
ψ ∈ Γ(∂Y,L) and f a function,

DL(fψ) = πL(v ×∇w(fψ) −w ×∇v(fψ))

= fDLψ + πL(dwfv × ψ − dvfw × ψ) = fDLψ
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because w × L as long as v × L are orthogonal to L. Now, decompose

∇⊤ = ∇⊤∂ + ∇⊥∂

into its two projections along T∂Y and along the normal (in TY ) n-direction. For the
computations, choose v and w = n×v the two orthogonal characteristic directions on T∂Y ,
i.e ∇⊤∂

v n = −kvv and ∇⊤∂
w n = −kww, where kv and kw are the two principal curvatures.

We have ∇⊥∂
v = kvn and < ∇⊥∂wv, n >= 0, and the same, mutatis mutandis, for w. Then,

for ψ and φ ∈ Γ(∂Y,L), using the fact that T∂Y × L is orthogonal to L,

< DLψ, φ > = < ∇⊥
w(v × ψ) − (∇⊥∂

w v) × ψ −∇⊥
v (w × ψ) + (∇⊥∂

v w) × ψ, φ >

= < ∇⊥
w(v × ψ) −∇⊥

v (w × ψ), φ >

= − < v × ψ,∇⊥
wφ > + < w × ψ,∇⊥

v φ >

= < ψ, v ×∇⊥
wφ− w ×∇⊥

v φ >=< ψ,DLφ > .

To prove that the trace of DL is 2H, let e ∈ L a local unit section of L. We have n× e ∈ L

too, and

< DL(n× e), n × e > = < v × ((∇⊤∂
w n) × e) + v × (n×∇⊥

we), n × e >

− < w × (∇⊤∂
v n) × e− w × (n×∇⊥

v e), n × e >

= < v × (−kww × e) −w × (−kvv × e), n × e >

+ < v × (n×∇⊥
we) − w × (n×∇⊥

v e), n × e >

= kw + kv− < n× (w × (n×∇⊥
v e) − v × (n×∇⊥

we)), e >

= 2H− < DLe, e > .

This shows that trace DL = 2H. �

3.2 Flatland

In flat spaces, R vanishes, and so by proposition 2.4, Rν = −A. Hence a priori the theorem
1.4 does’nt apply. Nevertheless, we have the

Corollary 3.2 Let Y a totally geodesic associative submanifold in a flat M , with bound-
ary in a coassociative X. If DµX

positive, then MY,X is locally smooth and of expected
dimension.

Proof. By proposition 2.4, Rν = 0. The formula (3) and the hypothesis show that
∇⊥ψ = 0 and ψ|∂Y = 0. Using d|ψ|2 = 2 < ∇⊥ψ,ψ >= 0, we get that ψ = 0, and
coker(Y, νX) = ker(Y, µX) = 0. �

Proof of corollary 1.5. Let Y in R
3 × {0} ⊂ R

7, and e ∈ {0} × R
4. From [6] the

boundary of Y lies in a local coassociatif submanifold Xe of R
7, which contains ∂Y × Re

and whose tangent space over ∂Y is T∂Y ⊕Re⊕Rn× e. Geometrically, we can immediatly
see that Y has a direction of associative deformation along the fixed direction e, hence the
dimension of the kernel of our problem is bigger than 1. On the other hand, the index is
c1(νX)+1−g = 1. We want to show that DµX

is positive. To see that, we choose orthogonal
characteristic directions v and w = n× v in T∂Y as before. From lemma 1.2, we know that
v × e is a non vanishing section of µX . We compute :

DµX
(v × e) = v × (∇⊥∂

w v × e) − w × (∇⊥∂
v v × e)

= −kvw × (n× e) = kvv × e.
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This shows that kv is an eigenvalue of DµX
, and since we know that its trace is 2H, we

get that the other eigenvalue is kw. Those eigenvalues are positive if the boundary of Y is
strictly convex. By the last corollary, we get the corollary. �

Remark. In fact, we can give a better statement. Indeed, let ψ ∈ ker(D, νX), and decompose
ψ|∂Y as ψ = ψ1e+ ψ2n× e. Of course, e is in the kernel of DνX

, and hence by proposition
1.3, the second term is an eigenvector of DνX

for the eigenvalue 2H. So formula (3) gives

∫
Y

|∇⊥ψ|2 +

∫
∂Y

2H|ψ2|
2 = 0.

If H > 0, this imply immediatly that ψ2 = 0, and ψ1 is constant, so ψ is proportional to e.
This proves that dimker(D, νX) = 1 under the weaker condition that H > 0.

4 Extensions from the Calabi-Yau world

Closed extension. Let (N,J,Ω, ω) a 6-dimensional manifold with holonomy in SU(3).
Then M = N × S1 (or N ×R) is a manifold with holonomy in G2, with the calibration the
3-form given by φ = ω∧ dt+ReΩ. Let L a special lagrangian 3-dimensional submanifold in
N . Recall that since L is lagrangian, its normal bundle is simply JTL. Then Y = L×{pt}
is an associative submanifold of N×S1, and its normal bundle ν is isomorphic to JTL×R∂t,
where ∂t is the dual vector field of dt.

Proof of theorem 1.1. We won’t use the tricky formula with Rν . In this situation,
we give another formulation for the Dirac-like operator. If s = Jσ ⊕ τ∂t is a section of
ν, with σ ∈ Γ(L, TL) and τ ∈ Γ(L,R) = Ω0(L), we call σ∨ ∈ Ω1(L,R) the 1-form dual
to σ, and we use the same symbol for its inverse. Moreover, we use the classical notation
∗ : Ωk(L) → Ω3−k(L) for the Hodge star. Lastly, we define :

D∨ : Ω1(L) × Ω0(L) −→ Ω1(L) × Ω0(L)

(α, τ) 7→ ((−JπNLD(Jα∨))∨, τ),

where πNL is the orthogonal projection ν = NL⊕ R on the first component. This is just a
way to use forms on L instead of its vector fields.

Proposition 4.1 For every (α, τ) ∈ Ω1(L) × Ω0(L),

D∨(α, τ) = (∗dα− dτ, ∗d ∗ α) and

D∨2(α, τ) = (∆α,∆τ),

where ∆ = d∗d+ dd∗ (note that it is d∗d on τ).

Assuming for a while this propositioin, we see that for an infinitesimal associative defor-
mation of L × {pt}, then α and τ are harmonic over the compact L. In particular, τ is
constant and α describes an infinitesimal special lagrangian deformation of L (see [9]). In
other words, the only way to displace Y is to perturb L as special Lagrangian in N and
translate it along the S1-direction. Lastly, dim cokerD = dim kerD = b1(L) + 1 and by the
constant rank theorem, MY is smooth and of dimension b1(L) + 1. �
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Proof of proposition 4.1. We will use the simple formula ∇⊥Js = J∇⊤s for all sections
s ∈ Γ(L,NL). For (s, τ) ∈ Γ(L,NL) × R, and ei local orthonormal frame on L,

D(s, τ) =
∑
i,j

< ei ×∇⊥
i s, Jej > Jej +

∑
i

< ei ×∇⊥
i s, ∂t > ∂t +

∑
i

∂iτ ei × ∂t

=
∑
i,j

φ(ei,∇
⊥
i s, Jej)Jej +

∑
i

φ(ei,∇
⊥
i s, ∂t)∂t +

∑
i,j

∂iτ < ei × ∂t, Jej > Jej

=
∑
i,j

ReΩ(ei,∇
⊥
i s, Jej)Jej +

∑
i

ω(ei,∇
⊥
i s)∂t +

∑
i,j

∂iτ φ(ei, ∂t, Jej)Jej

=
∑
i,j

−ReΩ(ei, J∇
⊤
i σ, Jej)Jej +

∑
i

ω(ei,∇
⊥
i s)∂t +

∑
i,j

∂iτω(Jej , ei)Jej

=
∑
i,j

ReΩ(ei,∇
⊤
i σ, ej)Jej +

∑
i

ω(ei, J∇
⊤
i σ)∂t −

∑
i,j

∂iτ < ej , ei > Jej

=
∑
i,j

V ol(ei,∇
⊤
i σ, ej)Jej +

∑
i

< ei,∇
⊤
i σ > ∂t − J

∑
i

∂iτei

It is easy to find that this is equivalent to Dψ = J(∗dσ∨)∨ + (∗d ∗ σ∨)∂t − J(dτ)∨, and so

D∨(σ∨, τ) = (∗dσ∨ − dτ, ∗d ∗ σ∨).

Now, since d∗ = (−1)3p+1 ∗ d∗ on the p-forms, one easy checks the formula for D2. �

Proof of corollary 1.7. We prove now the corollary 1.7. We begin by computing the
index of the boundary problem. This is very easy, because the direction in TS1 is in µX .
Hence µX is trivial, and by theorem 1.2, we have νX = T∂L∗. Hence the index is

−c1(T∂L) + 1 − g = −(2 − g) + 1 − g = g − 1,

where g is the genus of ∂Y . Moreover, the constant vector ∂
∂t

over ∂Y lies clearly in the
kernel of DµX

. By proposition 3.1, the other eigenvalue is 2H. Now let

ψ = τ
∂

∂t
+ s

belonging to coker(D, νX) = ker(D,µX), where s a section of NL and τ ∈ Γ(L,R). Over
∂Y , s is proportional to n× ∂

∂t
, and DµX

ψ = 2Hs. Let α = −Js∨. By classical results for
harmonic 1-forms, we have :

−
1

2
∆|ψ|2 = −

1

2
∆(|α|2 + |τ |2) = |∇Lα|

2 + |dτ |2 +
1

2
Ric (α,α).

Integrating on L× {pt}, we obtain the equivalence of formula (3) :

−

∫
∂Y

2H|α|2dσ =

∫
Y

|∇Lα|
2 + |dτ |2 +

1

2
Ric (α,α)dy.

This equation, the positivity of the Ricci curvature and the positivity of H show that α
vanishes and τ is constant. So we see that dim coker(Y,X) = 1, and by the constant rank
theorem, MY,X is locally smooth and of dimension dim ker(Y,X) = g. �
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