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Abstract

We consider a parameter estimation problem with independent observations where

one samples from a finite population of independent and identically distributed

experimental conditions X. The size of the population is N but only n samples, a

proportion α of N , can be used. The quality of a sample is measured by a regular

optimality criterion φ(·) based on the information matrix, such as the D-criterion.

The construction of an optimal approximate design bounded by µ/α, with µ the

probability measure of X, can be used to construct a sampling strategy which is

asymptotically optimum (when the size N of the population tends to infinity). We

show that a sequential strategy which does not require any information on µ is also

asymptotically optimum. Some possible applications are indicated.
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1 Introduction

We consider a parameter estimation problem, with θ the vector of parameters

to be estimated and X the experimental variables, X ∈ X ⊂ IRq. We assume

that the observations are independent, so that the Fisher information matrix

is the sum of rank-one matrices of the type f(X)f>(X). For instance, this

may correspond to estimation in a linear regression model, with independent

observations Yk = f>(Xk)θ̄ + εk, where the εk’s are independently identically

distributed (i.i.d.) with E{εk} = 0 and θ̄ ∈ IRd is the unknown true value of

the model parameters to be estimated.

We shall assume that f(·) is continuous on X . We consider design criteria Φ(·)

that are functions of the information matrix M, with Φ[M] to be maximized,

and generalized designs ξ that are probability distributions on the set X . We

denote Ξ the set of such designs,

M(ξ) =
∫

X

f(x)f>(x)ξ(dx) ,

and φ(ξ) = Φ[M(ξ)], ξ ∈ Ξ. We give in Appendix A a list of assumptions

on Φ that will be used throughout the paper. We shall always assume that

Φ is strictly concave (HΦ1), differentiable (HΦ2) and increasing (HΦ3). The

assumptions are discussed in the same appendix; they are satisfied in particular

when Φ(M) = log detM or Φ(M) = −trace(AM−p), with p a positive integer

and A a positive definite matrix.

We consider the situation where the experimental conditions Xk ∈ X form a

sequence of i.i.d. variables sampled in a population of size N , and only n < N

samples can be used. We focus on the sequential problem, where, as soon as

a new sample Xk becomes available, we must decide whether to use it or not,
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that is, to observe Yk or not. Notice the difference with a standard experimental

design problem where the Xk’s can be chosen: here we can only decide to

accept or reject Xk. The paper is rather theoretically oriented, but many

practical decision problems could be formulated in this way. For instance,

for some experiments in nuclear physics events are selected according to the

energy dissipated in a detector (C.E.R.N., 1994), but the selection could be

based on the information content of the event, measured by its contribution

to the information matrix; in phase-I clinical trials, the volunteers could be

selected according to their size, weight, age, etc., all variables to be used to

build a model for the tolerance dose. Other possible developments are given

in Section 6. Notice that the case dim(θ) = 1 corresponds to a variant of the

secretary problem, see (Pronzato, 2001a).

Let µ denote the probability measure of X1, with
∫

X µ(dx) = 1. We assume

that µ is such that

M(µ) = E{f(X1)f
>(X1)} =

∫

X

f(x)f>(x)µ(dx)

exists, with −∞ < φ(µ) < ∞; a list of additional assumptions on µ is given

in Appendix A. The sequence of decisions will be denoted (uk): uk = 1 if we

decide to observe Yk, with experimental conditions Xk, and uk = 0 otherwise,

with, for any admissible policy,

uj ∈ Uj ⊆ {0, 1} , j = 1, . . . , N ,
N

∑

j=1

uj = n . (1)

(Note that Xk is known when uk is chosen.) The associated information matrix

MN,n (normalized, per sample collected) is given by

MN,n =
1

n

N
∑

k=1

ukf(Xk)f
>(Xk) . (2)
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(It may be singular for small n, but Φ(MN,n) > −∞ for n large enough if the

Xk’s are selected in a suitable population, see HΦ1, Hµ1.)

For N finite, we shall consider the following sequential problem

maximise E{Φ(MN,n)} (3)

with respect to (uj) satisfying (1), the expectation E{·} being with respect

to the product measure µ⊗N of X1, . . . , XN (we shall see, c.f. (12), that

the concavity and increasing properties of Φ and φ(µ) < ∞ imply that

E{Φ(MN,n)} < ∞ for any N,n, 0 < n ≤ N , and any sequence (uj)).

For any sequence (uj) and any step k, 1 ≤ k ≤ N , ak will denote the number

of observations already made; that is,

ak =
k−1
∑

j=1

uj , (4)

with a1 = 0. For each k ∈ {1, . . . , N}, the optimal decision at step k is obtained

by solving:

max
uk∈Uk

[EXk+1
{ max

uk+1∈Uk+1

[EXk+2
{ max

uk+2∈Uk+1

[. . .

EXN−1
{ max

uN−1∈UN−1

[EXN
{ max

uN∈UN

[Φ([1/n]
N

∑

i=1

uif(Xi)f
>(Xi))]}]} . . .]}]}] , (5)

where EXj
{.} denotes the expectation with respect to Xj, distributed with the

measure µ, and the sets Uj satisfy

Uj = Uj(aj) =























































{0} if aj = n ,

{1} if aj + N − j + 1 = n ,

{0, 1} otherwise.
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In the first case (aj = n) the maximum number of samples allowed has already

been collected, the second one (aj + N − j + 1 = n) means that all remain-

ing samples of the population must be accepted in order to reach a total of

n samples selected. It is only in the last case that some freedom exists for

decisions.

The case d = dim(θ) = 1 is considered in (Pronzato, 2001a). The optimal

(closed-loop) solution is given by a backward recurrence equation. Using re-

sults on extreme value distributions, a simple open-loop solution is proved to

be asymptotically optimal for N → ∞ with n fixed (for measures µ absolutely

continuous with respect to the Lebesgue measure and such that the associ-

ated distribution function is a von Mises function). This extends the results

of Albright and Derman (1972) which concern the case n = bαNc, α ∈ (0, 1).

In the multidimensional case d > 1, in general, the optimal solution cannot be

obtained in closed form. Open-loop feedback-optimal control is used in (Pron-

zato, 1999) and a heuristic one-step ahead decision rule in (Pronzato, 2001b),

without any result on the asymptotic performance of these strategies.

The asymptotics considered in this paper will only concern the case n = bαNc,

α ∈ (0, 1), N → ∞. The fact that n tends to infinity at the same speed as

N means that we shall obtain asymptotic performances that are achieved µ-

almost surely (a.s.), contrary to (Pronzato, 2001a) which concerns expected

performances.

The different types of strategies to be considered (with finite or infinite hori-

zon, stationary, non-adaptive, randomized) are defined in Section 2. The value

φ(ξ∗α), with ξ∗α ≤ µ/α a φ-optimum bounded design measure, is shown to form

an upper bound on the asymptotic performance of any strategy. A trivial
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asymptotically optimal strategy SN,n(α) is proposed in Section 3: SN,n(α) is

the truncated version (finite horizon) of a stationary strategy S(ξ∗
α) which

samples from ξ∗α. We show in Section 4 that a slight modification of S(ξ∗α)

leads to an asymptotically optimal strategy that does not require the prior

knowledge of the measure µ. Illustrative examples are presented in Section 5.

Section 6 gives some concluding remarks and suggests some extensions.

2 Strategies, performances and asymptotic optimality

2.1 Strategies

We shall consider sequential strategies for which at step k only X1, . . . , Xk have

been observed. When µ is known, Ωk = (k, ak,Mk−1,ak
, Xk) then summarizes

all the information necessary to make a decision about the acceptance of Xk,

and the problem (3) corresponds to a discrete-time stochastic control problem,

where k represents time, (k, ak,Mk−1,ak
, Xk) and uk ∈ Uk ⊆ {0, 1} respectively

represent the state 1 and control at time k. A sequential strategy SN,n is then

defined by a sequence of mappings (k, a,M, X) 7→ u ∈ {0, 1}, k = 1, . . . , N .

For instance, the optimal strategy defined by (5) is sequential.

Strategies are non-sequential when the selection of the n Xk’s is made after all

the population X1, . . . , XN has been observed. A non-sequential strategy will

be used to obtain an upper bound on the performance of sequential strategies.

1 When µ is unknown, a case considered in Section 4, at step k an estimate µ̂k of µ

(empirical version, parametric representation, etc.) based on X1, . . . , Xk must also

be used to decide about Xk; the “state” Ωk should then be extended to include this

µ̂k.
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A sequential strategy S will be called stationary when the mapping is from

(M, X) to u ∈ {0, 1}. Stationary strategies correspond to the case of infinite

horizon (N = ∞) where we only require that ak/k → α when k → ∞. We

shall denote ξk−1 the empirical measure of the ak samples already accepted

at step k, with M(ξk−1) the current value of the (normalized) information

matrix,

M(ξk−1) =
1

ak

k−1
∑

j=1

ujf(Xj)f
>(Xj) ,

and write

φk = φ(ξk) = Φ[M(ξk)] .

Non-adaptive strategies are special cases of stationary strategies for which the

decision at step k only depends on the value of Xk, and S samples from some

measure ξ ≤ µ/α; we shall then write S = S(ξ). We consider non-adaptive

strategies as sequential, although the information carried by previous samples

is not used.

The non-adaptive strategies S(ξ) that we shall consider have the property

that ξ = 0 on X1, ξ = µ/α on X2 and ξ = βµ/α, 0 < β < 1, on X \ (X1 ∪ X2)

for some subsets X1,X2 of X . This means that S(ξ) should reject every Xk

falling in X1, accept all the samples in X2 but only a fraction β of those in X3.

Therefore, the strategy is completely defined when X1 ∪ X2 = X but, when

X3 6= ∅, we must specify how the fraction β of the samples in X3 is selected.

We shall then consider randomized strategies, which lead to a simple analysis:

a sample in X3 will be accepted with probability β, by tossing a biased coin.

The mapping X 7→ u ∈ {0, 1} is then a random function when X ∈ X3.

A stationary strategy, defined for infinite horizon, will be implemented when

the horizon is finite through a truncation procedure, which will be shown to
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preserve asymptotic optimality (when n = bαNc, α ∈ (0, 1), N → ∞).

2.2 Performances

For any strategy SN,n used to solve (3), with 0 < n ≤ N , we shall denote

Ψ(SN,n) = Φ(MN,n), which measures the performance of SN,n (for a particular

realization of the sequence X1, . . . , XN).

Following the same line as in (Albright and Derman, 1972), which concerns

the case d = 1, we can use as a benchmark the infeasible, but better-than-

optimal, non-sequential strategy S∗
N,n, obtained by selecting the n design

points Xk1
, . . . , Xkn

that maximise Φ(MN,n) after the N points X1, . . . , XN

have been observed. S∗
N,n is thus a φ-optimum design algorithm that generates

an exact n-point φ-optimum design in the finite design space {X1, . . . , XN}.

Obviously, for any N , n and any strategy SN,n, sequential or not,

Ψ(SN,n) ≤ Ψ(S∗
N,n) . (6)

Also, S∗
N,n satisfies

∀α ∈ (0, 1) , lim sup
N→∞

Ψ(S∗
N,bαNc) ≤ φ∗

α , µ-a.s. (7)

with φ∗
α = φ(ξ∗α) and ξ∗α ≤ µ/α a φ-optimum constrained design measure: ξ∗α

maximises φ(ξ), ξ ∈ D(µ, α), with D(µ, α) ⊂ Ξ the set of admissible measures

satisfying

ξ(dx) ≤ µ(dx)/α .

When Φ(·) is strictly concave (HΦ1), M(ξ∗α) is unique (although ξ∗α is not

necessarily unique). (Hµ1) implies φ∗
α ≥ φ(µ) > −∞ and (HΦ3) implies
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φ∗
α ≤ φ(µ/α) < ∞. Other properties of ξ∗α will be presented in Section 3.1,

see also Wynn (1982); Fedorov (1989); Fedorov and Hackl (1997); Sahm and

Schwabe (2001); Pronzato (2004).

Following (6, 7), a strategy SN,n will be called asymptotically optimal (for

n = bαNc, α ∈ (0, 1), N → ∞) when limN→∞ Ψ(SN,bαNc) = φ∗
α, µ-a.s.

Although sampling from a φ-optimum constrained measure ξ∗α yields φk → φ∗
α,

µ-a.s., k → ∞ (we shall see in Section 3.2 how this can be implemented), it

corresponds to a non-adaptive strategy that does not satisfy constraint (1).

We show below how enforcing (1) can preserve asymptotic optimality.

For any α ∈ (0, 1) let Sα be a stationary strategy such that ak/k → α and

φk → φ∗
α, µ-a.s., k → ∞. In particular, it may correspond to the non-adaptive

strategy S(ξ∗α) which samples from a φ-optimum constrained measure ξ∗α ≤

µ/α. To any such Sα we associate the following truncation, which defines a

sequential strategy SN,n(Sα) satisfying the constraint aN+1 = n for any finite

N ≥ n:

SN,n(Sα) :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if ak = n , reject Xk ;

if N − k + 1 = n − ak , accept Xk ;

otherwise, apply Sα .

(8)

We show that SN,n(Sα) is asymptotically optimal for n = bαNc, α ∈ (0, 1),

N → ∞. Replace α by α + ε, with ε > 0, and consider the following strategy,
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simpler than SN,n(Sα+ε):

S̄N,n(Sα+ε) :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if ak = n , reject Xk ;

otherwise, apply Sα+ε .

Let n̄ denote the number of samples accepted by S̄N,n(Sα+ε). We have n̄ ≤ n,

and, if MN,n(Sα+ε) and M̄N,n(Sα+ε) denote the information matrices asso-

ciated with both strategies, MN,n(Sα+ε) = M̄N,n(Sα+ε) when n̄ = n and

MN,n(Sα+ε) = M̄N,n(Sα+ε) + (1/n)
∑n−n̄

j=1 f(X ′
j)f

>(X ′
j) when n̄ < n, where

the X ′
j’s denote the points selected by SN,n(Sα+ε) and not S̄N,n(Sα+ε). Since

Φ(·) is increasing, we have

Ψ[S̄N,n(Sα+ε)] ≤ Ψ[SN,n(Sα+ε)] . (9)

Let nα+ε denote the number of points accepted by Sα+ε among the N samples

of the sequence (these are points that would have been accepted by S̄N,n(Sα+ε)

if ignoring the constraint ak ≤ n). It satisfies nα+ε/N → α + ε, µ-a.s. as N

tends to infinity. Take n = bαNc and let N tend to infinity. The probability

that nα+ε ≤ n infinitely often is zero when ε > 0. Therefore, asymptotically,

S̄N,bαNc(Sα+ε) stops after n = bαNc samples from Sα+ε have been collected

and

Ψ[S̄N,bαNc(Sα+ε)] → φ∗
α+ε , µ-a.s. , N → ∞ .

Together with (9), it implies

lim inf
N→∞

Ψ[SN,bαNc(Sα+ε)] ≥ φ∗
α+ε µ-a.s. , N → ∞ .

On the other hand, from (6, 7), lim supN→∞ Ψ[SN,bαNc(Sα+ε)] ≤ φ∗
α µ-a.s.

We may then let ε tend to zero and use the continuity of φ∗
α with respect to
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α, see Theorem 6, to obtain the following property.

Theorem 1 For α ∈ (0, 1) let Sα be a stationary strategy such that ak/k →

α and φk → φ∗
α, µ-a.s., k → ∞. The strategy SN,n(Sα) defined by (8) is

asymptotically optimal for n = bαNc, N → ∞.

Section 3.1 will present some properties of φ-optimum constrained design mea-

sures, to be used in Section 3.2 to implement the stationary strategy S(ξ∗
α).

When S(ξ∗α) is plugged in (8), the resulting strategy SN,n[S(ξ∗α)] is asymptoti-

cally optimal from the previous theorem. Notice that from (6, 7) the existence

of such an asymptotically optimal strategy implies

lim
N→∞

Ψ(S∗
N,bαNc) = φ∗

α , µ-a.s. (10)

This property can be extended into the following (see Appendix B), which will

be used in the proof of Theorem 9.

Lemma 2 Let (αk) be a sequence in (0, 1), with limk→∞ αk = α ∈ (0, 1).

Then, under Hµ1, HΦ1-HΦ3 and HΦ5,

lim
N→∞

Ψ(S∗
N,bαNNc) = φ∗

α , µ-a.s.

Whereas (10) and Lemma 2 only concern the limiting behavior of Ψ(S∗
N,n), the

following result on E{Ψ(S∗
N,n)} holds for any N under very general conditions.

The proof is given in Appendix B.

Lemma 3 For a concave criterion Φ(·), the non sequential strategy S∗
N,n (that

is, a φ-optimum algorithm for an exact design with n point in {X1, . . . , XN})
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satisfies

∀(n,N) , 0 < n ≤ N , E{Ψ(S∗
N,n)} ≤ φ(ξ∗n/N) , (11)

with ξ∗n/N a φ-optimum constrained design measure in D(µ, n/N).

Hµ1 and HΦ3 imply φ(ξ) < ∞ for any design measure ξ ≤ µ/α, α given in

(0, 1), so that Lemma 3 implies that for any (n,N), 0 < n ≤ N , and any

strategy SN,n

E{Ψ(SN,n)} ≤ E{Ψ(S∗
N,n)} ≤ φ(ξ∗n/N) < ∞ . (12)

(When SN,n involves randomized decisions, see e.g. Section 3.2, the first ex-

pectation in (12) is also with respect to them.)

It may be noticed that the upper bound φ(ξ∗n/N) for the expected performance

E{Ψ(SN,n)} is not necessarily achievable when n is finite, N → ∞ and the

strategy SN,n is sequential, even in the case d = dim(θ) = 1, see Example 3 of

(Pronzato, 2001a).

3 Constrained design measures and asymptotically optimum se-

quential strategies

3.1 Optimum constrained design measures

The main result (Wynn, 1982; Sahm and Schwabe, 2001), presented in the

following theorem, states that when φ∗
α is a φ-optimum constrained measure,

X can be partitioned into three subsets X ∗
1,α, X ∗

2,α and X ∗
3,α = X\(X ∗

1,α∪X ∗
2,α),
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with ξ∗α = 0 on X ∗
1,α, ξ∗α = µ/α on X ∗

2,α and the directional derivative F (ξ∗α, x)

(see Appendix A) constant on X ∗
3,α.

Theorem 4 The following statements are equivalent:

(i) ξ∗α is a φ-optimum constrained design measure;

(ii) there exists a number c such that F (ξ∗α, x) ≥ c for ξ∗α-almost all x and

F (ξ∗α, x) ≤ c for (µ − αξ∗α)-almost all x;

(iii) there exist two subsets X ∗
1,α and X ∗

2,α of X such that

• ξ∗α = 0 on X ∗
1,α and ξ∗α = µ/α on X ∗

2,α,

• infx∈X ∗

2,α
F (ξ∗α, x) ≥ c ≥ supx∈X ∗

1,α
F (ξ∗α, x),

• F (ξ∗α, x) = c on X ∗
3,α = X\(X ∗

1,α ∪ X ∗
2,α).

The construction of the sets X ∗
1,α and X ∗

2,α is important in order to be able to

sample from ξ∗α; also, we must precise the value of ξ∗α on X ∗
3,α = X\(X ∗

1,α∪X ∗
2,α).

This is considered in the rest of this section.

For a given ξ, consider the random variable FΦ(ξ,X1) and let IFξ(·) denote

the corresponding distribution function,

IFξ(s) = µ{x / FΦ(ξ, x) ≤ s} . (13)

Define cα(ξ) as

cα(ξ) = min{s / IFξ(s) ≥ 1 − α} (14)

and

X1,α(ξ) = {x / FΦ(ξ, x) < cα(ξ)} ,

X2,α(ξ) = {x / FΦ(ξ, x) > cα(ξ)} , (15)

X3,α(ξ) = {x / FΦ(ξ, x) = cα(ξ)} .
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We then obtain X ∗
j,α = Xj,α(ξ∗α), j = 1, 2, 3, and cα(ξ∗α) is the constant c of

Theorem 4.

Consider now the following transformation

TΦ,α : ξ ∈ Ξ → TΦ,α(ξ) ∈ D(µ, α) , TΦ,α(ξ) =























































µ/α on X2,α(ξ) ,

α−µ[X2,α(ξ)]

µ[X3,α(ξ)]
µ/α on X3,α(ξ) ,

0 on X1,α(ξ) .

Notice that FΦ[ξ; TΦ,α(ξ)] = maxν∈D(µ,α) FΦ(ξ; ν), with D(µ, α) the set of ad-

missible measures on X satisfying ν ≤ µ/α (indeed, TΦ,α(ξ) distributes its

mass on X where FΦ(ξ, x) takes its highest values).

The next theorem complements Theorem 4 by a minimax formulation similar

to the Kiefer-Wolfowitz (1960) Equivalence Theorem.

Theorem 5 The following statements are equivalent:

(i) ξ∗α is a φ-optimum constrained design measure;

(ii) FΦ[ξ∗α; TΦ,α(ξ∗α)] = 0;

(iii) ξ∗α minimises FΦ[ξ; TΦ,α(ξ)], ξ ∈ D(µ, α);

(iv) ξ∗α minimises maxν∈D(µ,α) FΦ(ξ; ν), ξ ∈ D(µ, α).

Proof. From Theorem 4, (i) gives φ[TΦ,α(ξ∗α)] = φ(ξ∗α) which implies (ii). Take

any ξ ∈ Ξ and denote ξ∗α an optimum constrained design measure. From the

definition of TΦ,α,

∀ν ∈ D(µ, α) , FΦ[ξ; TΦ,α(ξ)] ≥ FΦ(ξ; ν) (16)
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and thus FΦ[ξ; TΦ,α(ξ)] ≥ FΦ(ξ; ξ∗α). Concavity of Φ then gives

∀ξ ∈ Ξ , FΦ[ξ; TΦ,α(ξ)] ≥ φ∗
α − φ(ξ) . (17)

Since φ∗
α ≥ φ(ξ), ξ ∈ D(µ, α), (ii) implies (i). Equivalence between (i) and (iii)

is obvious from (17); (16) implies the equivalence between (iii) and (iv). 2

We conclude this section by mentioning the following Lipschitz property, see

(Pronzato, 2004), which shows that φ∗
α, is continuous in α.

Theorem 6 For any α, β in (0, 1), the associated φ-optimum constrained

design measures ξ∗α and ξ∗β satisfy

|φ∗
α − φ∗

β| ≤ |α − β| max

[

|cα(ξ∗α)|
β

,
|cβ(ξ∗β)|

α

]

,

with cα(ξ) defined by (14).

3.2 An asymptotically optimum sequential strategy

The implementation of a non-adaptive strategy that samples from ξ∗
α is straight-

forward when µ has no atoms, that is, when for any ∆X with µ(∆X ) > 0

exists ∆X ′ ⊂ ∆X such that 0 < µ(∆X ′) < µ(∆X ), with measures absolutely

continuous w.r.t. the Lebesgue measure as a special case. Indeed, in that case

there exists a ξ∗α such that the set X ∗
3,α is empty, see (Wynn, 1982; Fedorov,

1989; Fedorov and Hackl, 1997), and a trivial implementation of S(ξ∗
α) then

consists in accepting the samples that fall into X ∗
2,α and rejecting the others.

We shall use the transformation TΦ,α of previous section to deal with the

general situation, and sample from TΦ,α(ξ∗α) (which is equivalent to sampling
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from ξ∗α since φ[TΦ,α(ξ∗α)] = φ(ξ∗α), see the proof of Theorem 5). Since only the

fraction [α − µ(X ∗
2,α)]/µ(X ∗

3,α) of the samples in X ∗
3,α must be accepted, we

randomize the selection procedure and define

S(ξ∗α) :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if Xk ∈ X ∗
2,α accept Xk ;

if Xk ∈ X ∗
3,α accept Xk with probability

P ∗
3,α = [α − µ(X ∗

2,α)]/µ(X ∗
3,α) ;

otherwise reject Xk .

(18)

From Theorem 1, when the non-adaptive strategy S(ξ∗α) is plugged in (8) the

resulting SN,n[S(ξ∗α)] is asymptotically optimal for n = bαNc, N → ∞. How-

ever, it requires the construction of the sets X ∗
j,α, j = 1, 2, 3, and thus of a

φ-optimum constrained design measure ξ∗α ≤ µ/α. We show in the next sec-

tion that it is possible to avoid this construction while preserving asymptotic

optimality.

Remark 7 A deterministic version of (18) consists in accepting a Xk that

falls into X ∗
3,α only when ak/k < α. One can then easily show that ak/k → α

and φk → φ∗
α as k → ∞, µ-a.s. (however, the strategy is then non stationary,

see Section 2.1).

4 Sampling asymptotically from a constrained measure

Consider the following modification of the strategy S(ξ∗α) defined by (18): at

step k, we simply substitute the sets Xj,α(ξk−1) for X ∗
j,α, j = 1, 2, 3, with Xj,α(ξ)

defined by (15) and ξk−1 the empirical measure defined by the ak design points
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already selected. We thus define the following adaptive strategy:

Sα(µ) :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if Xk ∈ X2,α(ξk−1) accept Xk ;

if Xk ∈ X3,α(ξk−1) accept Xk with probability

Pk(α) = {α − µ[X2,α(ξk−1)]}/µ[X3,α(ξk−1)] ;

otherwise reject Xk .

(19)

Remark 8

1. Notice that the sets Xj,α(ξk−1) are obtained from the function FΦ(ξk−1, x),

that is, from M(ξk−1). Hence, the (randomized) decision at step k only depends

on Xk and M(ξk−1) and Sα(µ) is stationary.

2. In practise, the first samples Xk are always accepted until M(ξk−1) becomes

nonsingular, but this initialization has no effect on the asymptotic behavior of

Sα(µ). Also, for technical reasons, we can assume that Xk is always accepted

when ak/k < α/C, with C an arbitrarily large constant. This has no practical

importance for the asymptotic behavior of the strategy (since ak/k → α µ-a.s.,

see Theorem 9 below) and for that reason is not mentioned in the definition of

Sα(µ). On the other hand, it implies ak+1/k > α/C for any k which permits

to guarantee that E{|φk|} < ∞, a property used in the proof of asymptotic

optimality, see Theorem 9.

3. Sα(µ) takes a simpler form when IFξ(s) given by (13) is continuous in s for

any ξ (so that X3,α(ξk−1) is always empty): we accept Xk when IFξk−1
(Xk) >

1 − α and reject Xk otherwise, and the strategy is fully deterministic.

4. We observe the same behavior when Sα(µ) is modified as follows: any Xk ∈

X3,α(ξk−1) is accepted if ak/k < α and is rejected otherwise; see Remark 7.
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However, the strategy is then non stationary and its asymptotic behavior is

more difficult to analyse.

5. Obviously, the sequence (φk) generated by (19) is not monotonically in-

creasing, since (i) the step-length 1/(1 + ak) when Xk is accepted and ξk−1

updated is predetermined and (ii) Xk is random. While (i) is standard in the

construction of optimum designs, (ii) is less common and forms a specific fea-

ture of the context considered here. In order to eliminate the unboundedness

case encountered in the dichotomous theorem of Wu and Wynn (1978), which

is usually the main issue raised by (i), we introduce the assumption Hµ3 on

µ, see Appendix A.

The asymptotic behavior of (19) satisfies the following.

Theorem 9 Under HΦ1-HΦ6 and Hµ1-Hµ3 the empirical measure ξk defined

by the points accepted by the stationary strategy Sα(µ) satisfies ak/k → α, µ-

a.s., and

lim
k→∞

φ(ξk) = φ(ξ∗α) , µ-a.s., (20)

as k → ∞, with ξ∗α ≤ µ/α a φ-optimum constrained design measure.

The proof is given in Appendix B. When the strategy is truncated as indicated

in (8), the resulting SN,n[Sα(µ)] is asymptotically optimal for n = bαNc,

N → ∞, from Theorem 1. Another possible truncation consists in adapting α

and using, at step k, the strategy Sαk
(µ), with

αk =
n − ak

N − k + 1
, (21)
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and ak defined by (4). Sαk
(µ) coincides with the one-step-ahead rule suggested

in (Pronzato, 2001b): when αk = 0, X2,αk
(ξk−1) is empty, µ[X2,αk

(ξk−1)] = 0

and Xk is always rejected; when αk ≥ 1, X2,αk
(ξk−1) = X and Xk is always

accepted.

When µ is unknown, we can use Sα(µ̂k), or Sαk
(µ̂k), at step k, with µ̂k the

empirical version of µ (or a kernel estimate, or a parametric representation

µβ̂k
, with β̂k estimated from X1, . . . , Xk). The estimation of µ does not depend

on the strategy that is used (which corresponds to a separation property in

control theory), and Theorem 9 still holds: we can thus asymptotically sample

from ξ∗α, without constructing ξ∗α beforehand and even without knowing µ in

advance. Illustrative examples are presented in the next section.

Consider finally a nonlinear situation where the information matrix M de-

pends on the model parameters θ, so that local optimum design is based

on M(θ̂0) with θ̂0 a nominal value for θ. When θ can be estimated on line,

it is natural to replace θ̂0 by an estimate, θ̂k at step k. When using least

squares estimation in a nonlinear regression problem with independent ob-

servations Yk = η(Xk, θ̄) + εk, where (εk) is a sequence of i.i.d. errors with

zero mean and finite variance, consistency and asymptotic normality of θ̂k

will hold under Hµ3 (and additional conditions on higher order derivatives

of η(θ, x) with respect to θ and their tail cross product, see Jennrich (1969)).

The sampling strategy Sα(µ) will then ensure φk → φ[ξ∗α(θ̄)], µ-a.s., k → ∞,

with ξ∗α(θ̄) ≤ µ/α a φ-optimum constrained design measure for the true value

θ̄ of the model parameters. This is illustrated by Example 12 below.
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5 Examples

We take Φ(·) = log det(·) in all the examples below. Note that all the condi-

tions HΦ are then satisfied, see Appendix A.

Example 10 We consider the quadratic regression model η(θ,X) = θ0 +

θ1X+θ2X
2. Let µc correspond to the normal distribution N (0, 1) and µd be the

discrete measure supported at the points {−1,−1/2, 0, 1/2, 1} with respective

weights (1/8, 1/4, 1/4, 1/4, 1/8). We take µ = 0.5µc + 0.5µd and α = 0.1.

Easy calculations show that the φ-optimum constrained measure ξ∗
α is equal to

µ/α on X ∗
α = (−∞,−a] ∪ [a,∞), with a ' 1.5625, and puts the rest of its

weight, approximately 0.4091, at zero. Figure 1 presents a plot of the sensitivity

function d(ξ∗α, x) = FΦ(ξ∗α, x) + 3 = f>(x)M−1(ξ∗α)f(x) and illustrates the

optimality of ξ∗α. Figure 2, left, gives a histogram of the first 1000 samples

accepted by Sα(µ̂k), with µ̂k the empirical measure of the Xk’s. The right part

of the figure presents φk as a function of k (log scale), with the optimal value

φ∗
0.1 indicated by the dashed line. (Note the fast convergence of φk, the large

value of N being required only to have enough points for the histogram plot.)

Example 11 We consider again the case of a measure µ having both dis-

crete and continuous components. The response of the regression model is

η(θ,X) = θ0 + θ1x1 + θ2x2 with θ = (θ0, θ1, θ2) and X is two-dimensional,

X = (x1, x2). The continuous component µc corresponds to the normal dis-

tribution N (0, I2), with I2 the 2-dimensional identity matrix, the discrete

component µd puts weight 1/4 at each one of the points (±1,±1). Define

B(a) = {x / ‖x‖ > a}. When µ = (1/2)(µc + µd) the results are as follows.
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Fig. 1. Sensitivity function d(ξ∗α, x) for the optimal constrained measure ξ∗α in Ex-

ample 10.
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Fig. 2. Left: histogram of the 1000 first samples Xk accepted by Sα(µ̂k) in Example

10. Right: φk as a function of k (log scale); the value of φ∗
0.1 corresponds to the

dashed line.
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Fig. 3. φ∗
α as a function of α in Example 11.

For 0 < α ≤ 1/(2e), with e = exp(1), ξ∗α = coincides with µc/(2α) on B(aα)

with aα =
√

2 log[1/(2α)]} ≥
√

2; φ∗
α = 2 log[1 − log(2α)].

For 1/(2e) < α ≤ 1/(2e)+1/2, ξ∗α = µ/α on B(
√

2) and ξ∗α = 2[α−1/(2e)]µ/α

on the four points (±1,±1); φ∗
α = 2 log[1 + 1/(2eα)].

For 1/(2e)+ 1/2 < α ≤ 1, ξ∗α = µ/α on B(bα) with bα =
√

2 log[1/(2α − 1)] <
√

2; φ∗
α = 2 log{1 − [(2α − 1) log(2α − 1)]/(2α)}.

Figure 3 presents φ∗
α as a function of α (although it does not appear clearly

from the figure, φ∗
α tends to infinity when α tends to zero). Here cα(ξα) is a

continuous function of α, so that φ∗
α is differentiable with respect to α, see

Pronzato (2004).

We take N = 10 000, n = 2000 and use Sαk
(µ̂k), see (19,21), with µ̂k the

empirical measure of the Xk’s. (Note that α = 0.2 is related to the intermediate

case 1/(2e) < α ≤ 1/(2e) + 1/2.) In the simulation presented M(ξk) has full

rank after the first three samples X1, X2, X3 have been accepted, and Figure 4

(top) presents a histogram of the remaining 1997 points accepted by Sαk
(µ̂k).
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Fig. 4. Top: histogram of the 2000 points accepted by Sαk
(µ̂k) in a sequence of 10 000

points; bottom: φk as a function of k (log scale), the value of φ∗
0.2 corresponds to

the dashed line (Example 11).

Figure 4 (bottom) gives φk as a function of k = 4, . . . , 2000 (log scale), with

the optimal value φ∗
0.2 ' 1.3043 indicated by the dashed line. (Again, notice

the fast convergence of φk, the large value of N being required only to have

enough points for the histogram plot.)

Example 12 We consider now the nonlinear regression model used in (Box

and Lucas, 1959), where

E{Yk|Xk = x; θ} = η(θ, x) =
θ1

θ1 − θ2

[exp(−θ2x) − exp(−θ1x)] .

We estimate θ = (θ1, θ2) by LS, and use at step k the information matrix

corresponding to the current estimated value θ̂k. The numerical values used

to generate the observations Yk correspond to θ̄ = (0.7, 0.2) and the stan-

dard deviation of the measurement errors is 0.2. (With this value for θ̄, the

D-optimal experiment corresponds to performing the same number of obser-

vations at x ' 1.23 and 6.86.)
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Fig. 5. Histogram of the 2, 500 first samples Xk accepted by Sα(µ̂k) in Example 12.

We assume that the experimental variables Xk have a lognormal distribution:

log(Xk) is normally distributed N (1, 0.25). Figure 5 gives a histogram of the

first 2,500 points accepted by Sα(µ̂k), with µ̂k the empirical measure of the

Xk’s, when α = 0.5. Easy calculations show that ξ∗α(θ̄) = 2µ on [0, a]∪ [b,∞),

with a ' 1.996 and b ' 3.922, and φ[ξ∗α(θ̄)] ' −2.143.

6 Concluding remarks and further developments

Possible extensions of these results, that will be the subject of future work,

include the following situations.

First, there are cases where the design variables are not directly observed: an

example is when one observes covariates Zk and the conditional probability

measure µ(·|Zk) for the experimental conditions Xk is known for any k. A

sequential selection strategy for this problem might reveal useful in phase-I

clinical trials, where covariates Zk such as the size, weight and age of volunteers

could be used for their selection, in order to build a model of the tolerance dose

as a function of (unobserved) pharmacokinetic/pharmacodynamic variables
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Xk.

Second, applications to parameter estimation in dynamical systems, nonlin-

ear in particular, call for an extension to correlated design variables Xk. A

simple example is when Xk = (Uk, Uk−1, . . . , Uk−m), with (Ui) a random input

sequence for the system. Note, however, that when the model contains an au-

toregressive part, that is, when Xk = (Uk, Uk−1, . . . , Uk−m, Yk−1, . . . , Yk−l), the

decision not to observe Yk implies that l future experimental conditions are

unknown, which makes the problem much different from the one we considered

here and will require specific developments.

In the one dimensional case d = dim(θ) = 1, asymptotic optimality of a

strategy similar to Sαk
(µ), see (19, 21), is proved in (Pronzato, 2001a) for

N → ∞ with n fixed, provided the distribution function of X is a von Mises

function (see, e.g., Embrechts et al. 1997, p. 138), with a tail decreasing faster

than any power law. Extending Theorem 1 to the situation where n is fixed but

d > 1 remains an open issue. Note in particular that in this case, although (12)

gives an upper bound on the expected performance, the optimal performance

achievable by a sequential strategy is unknown (not to speak about the optimal

strategy itself). Also, all intermediate situations, between n fixed and n =

bαNc, such as n = blog Nc, or bNβc with β < 1, etc., are of interest. A

possible application concerns the construction of optimum design algorithms.

Indeed, classical algorithms for the determination of ξ∗ (unconstrained) that

maximizes φ(·) rely on the determination at iteration k of a design point Xk

that maximizes FΦ(ξk−1, x) with respect to x ∈ X , with ξk−1 the current

design measure. This (global) maximisation problem may prove cumbersome,

especially if X is high dimensional, so that it is sometimes recommended to

accept any Xk such that FΦ(ξk−1, Xk) > δ, with δ some small positive number,
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see Fedorov and Hackl (1997), p. 49. A consequence of the results presented

above is that generating candidates Xk randomly with some suitably chosen

measure µ, with an acceptation rule such as (19), will ensure the convergence

of ξk to ξ∗, provided α tends to zero at a proper speed. Whether or not efficient

algorithms can be obtained in this way remains an open issue.

A Appendix (Assumptions and notations)

HΦ1: Φ is strictly concave and Φ(M) > −∞ for non singular M.

HΦ2: Φ is linearly differentiable; that is, the directional derivative

FΦ(M1,M2) = lim
ε→0+

{Φ[(1 − ε)M1 + εM2] − Φ(M1)}/ε

satisfies FΦ(ξ1; ξ2) = FΦ[M(ξ1),M(ξ2)] =
∫

X FΦ(ξ1, x)ξ2(dx) for any ξ1, ξ2 with

φ(ξ1) = Φ[M(ξ1)] > −∞, where FΦ(ξ, x) = FΦ(ξ; δx) and δx is the Dirac

measure supported at x.

HΦ3: Φ is increasing: M2−M1 non negative definite implies Φ(M2) ≥ Φ(M1).

HΦ4: λmin(M) ≥ l > 0 implies FΦ(M, ff>) ≥ −δ1(l) for any f , for some

δ1(l) < ∞.

HΦ5: there exist a function g1(·) from IR+ to IR and a function g2(·) from

IR+ to IR+ such that lima→1+ g1(a) = 0, lima→1+ g2(a) = 1 and Φ(aM) ≤

g1(a) + g2(a) Φ(M) for any non-negative definite M and any a ≥ 1. Note that

this assumption is satisfied for homogeneous criteria with g1 = 0 and g2 the

identity. Also, if one wishes that maximizing Φ(M) be equivalent to maximiz-
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ing Φ(aM) (which is often implicitly assumed when approximate designs are

used), the assumption Φ(aM) = g1(a) + g2(a) Φ(M) comes naturally.

HΦ6: Φ is two times differentiable. We denote by ∇2
Φ(M1,M2) the second

order directional derivative

∇2
Φ(M1,M2) =

∂2Φ[(1 − γ)M1 + γM2]

∂γ2
|γ=0+

.

It satisfies, for any ‖f‖ ≤ R and M such that λmin(M) ≥ l > 0: ∇2
Φ(M, ff>) ≥

−δ0(l) − δ2(l)R
4, for some δ0(l) < ∞ and δ2(l) < ∞.

Hµ1: −∞ < φ(µ) < ∞.

Hµ2: µ4 =
∫

X ‖f(x)‖4 µ(dx) < ∞. Note that Chebyshev’s inequality implies

Prob{ ‖f(X1)‖ ≥ R } ≤ µ4/R
4.

Hµ3: For α ∈ (0, 1) the proportion of interest, there exists l > 0 and ε ∈ (0, α)

such that for any design measure ξ ≤ µ/(α − ε), λmin[M(ξ)] > l.

Discussion of the assumptions.

In the case of D-optimality, where Φ(M) = log detM, we have FΦ(ξ, x) =

f>(x)M−1(ξ)f(x) − d with d = dim(θ). HΦ1-HΦ4 are satisfied, with δ1(l) =

d in HΦ4. HΦ5 is satisfied with g1(a) = d log a and g2(a) = 1. Finally,

∇2
Φ(M1,M2) = − trace{[M−1

1 (M2 − M1)]
2} so that

∇2
Φ(M, ff>) = −(f>M−1f)2 + 2(f>M−1f) − d

and HΦ6 is satisfied with δ0 = d, δ2(l) = 1/l2.

Take now Φ(M) = − trace(AM−p), with p a positive integer and A a pos-

itive definite matrix (Kiefer’s Φp-class of optimality criteria). We can as-
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sume that A = Id, the d-dimensional identity matrix, by a linear trans-

formation on the set M(Ξ) = {M(ξ), ξ ∈ Ξ}. We have FΦ(M1,M2) =

p trace[M
−(p+1)
1 (M2−M1)]. HΦ1-HΦ4 are satisfied, with δ1(l) = p/lp in HΦ4.

HΦ5 is satisfied with g1(a) = 0 and g2(a) = a−d. Finally, ∇2
Φ(M1,M2) =

−p
∑

a+b=p+2, a,b≥1 trace[M−a
1 (M2 − M1)M

−b
1 (M2 − M1)], see Wu and Wynn

(1978), and easy calculations give ∇2
Φ(M, ff>) = −p

∑

a+b=p+2, a,b≥1[(f
>M−bf)

(f>M−af)] +2p(p + 1)f>M−(p+1)f − p(p + 1) trace[M−p]. Therefore, HΦ6 is

satisfied with δ0(l) = p(p + 1)/lp, δ2(l) = p/lp+2.

Hµ1-Hµ3 are satisfied for instance when: (i) the functions f(x) are linearly

independent on any open subset of X with finite Lebesgue measure, (ii) µ has

a component µc absolutely continuous with respect to the Lebesgue measure,

with density ϕ, and a finite number of discrete components, (iii) the mass of

µc is larger than 1−α + ε (that is, the mass of the discrete components is less

than α − ε), and (iv) X is compact or ϕ(x) is exponentially decreasing when

‖x‖ → ∞.

B Appendix (Proofs)

Proof of Lemma 2. From HΦ3, for n1 ≤ n2 ≤ N , Ψ(S∗
N,n1

) = Φ(M∗
N,n1

) ≤

Φ[(n2/n1)M
∗
N,n2

], with M∗
N,n the normalized information matrix associated

with the n points selected by S∗
N,n, see (2). Since αN → α, for any ε such that

0 < ε < min(α, 1 − α) and for N large enough, α − ε < αN < α + ε. This

implies that there exists N0 such that, for any N > N0,

Φ(M∗
N,bαNNc) ≤ Φ

(

α + ε

α − ε
M∗

N,b(α+ε)Nc

)
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and

Φ(M∗
N,b(α−ε)Nc) ≤ Φ

(

α + ε

α − ε
M∗

N,bαNNc

)

.

Denote aε = (α + ε)/(α − ε), notice that aε > 1 for α > 0 and aε → 1 when

ε → 0. HΦ5 then gives

Φ(M∗
N,b(α−ε)Nc) − g1(aε)

g2(aε)
≤ Φ(M∗

N,bαNNc) ≤ g2(aε) Φ(M∗
N,b(α+ε)Nc) + g1(aε)

and thus, from (10),

lim sup
N→∞

Φ(M∗
N,bαNNc)≤ g2(aε) φ∗

α+ε + g1(aε)

φ∗
α−ε − g1(aε)

g2(aε)
≤ lim inf

N→∞
Φ(M∗

N,bαNNc) ,

µ-a.s. The continuity of φ∗
α with respect to α (Theorem 6) and lima→1+ g1(a) =

0, lima→1+ g2(a) = 1 give limN→∞ Φ(M∗
N,bαNNc) = φ∗

α, µ-a.s. 2

Proof of Lemma 3. The strategy S∗
N,n satisfies Ψ(S∗

N,n) = Φ(M∗
N,n) with

M∗
N,n =

1

n

N
∑

i=1

f(Xi)f
>(Xi)Jn[Xj(j = 1, . . . , N, j 6= i), Xi] ,

where Jn ∈ {0, 1} defines the decision function (the decision to accept Xi

depends on the rest of the sequence). Therefore,

E{M∗
N,n} =

1

n

∫

XN

{

N
∑

i=1

f(xi)f
>(xi)Jn[xj(j = 1, . . . , N, j 6= i), xi]

}

N
∏

j=1

µ(dxj) .

Using the fact that decisions are invariant by any permutation of the sequence,

we get

E{M∗
N,n} =

∫

X

f(x)f>(x)ξ∗N,n(dx) = M(ξ∗N,n)

where

ξ∗N,n(dx) =
N

n







∫

XN−1

Jn[xj(j = 1, . . . , N − 1), x]
N−1
∏

j=1

µ(dxj)





 µ(dx) .
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Since Jn ∈ {0, 1}, ξ∗N,n(dx) satisfies ξ∗N,n(dx) ≤ (N/n)µ(dx). This implies

Φ[M(ξ∗N,n)] ≤ φ(ξ∗n/N). Concavity of Φ(·) finally gives

E{Φ(M∗
N,n)} ≤ Φ[E{M∗

N,n}] ≤ φ(ξ∗n/N)

which concludes the proof. 2

Proof of Theorem 9.

Since Xk is accepted with probability α, ak/k → α µ-a.s. as k → ∞.

The rest of the proof is decomposed in three steps. In (i), we construct a

lower bound on E{φk|Xk−1
1 }, where Xk−1

1 denotes the collection X1, . . . , Xk−1.

In (ii) we show that lim supk→∞ φk = φ∗
α, µ-a.s. Finally, in (iii) we show

that lim infk→∞ φk = φ∗
α, µ-a.s., by an approach similar to Doob’s upcrossing

Lemma, see Williams (1991, p. 108).

(i) From HΦ2, HΦ6, criterion value φk associated with the empirical design

measure ξk generated by Sα(µ) satisfies the recurrence

φk = φk−1 +

[

1

1 + ak

FΦ(ξk−1, Xk) +
1

2(1 + ak)2
HΦ(ξk−1, Xk, γk)

]

×
[

IX2,k
(Xk) + I[0,Pk(α)](Z)IX3,k

(Xk)
]

, (B.1)

where ak is defined by (4), Z is a random variable uniformly distributed in

[0, 1], IA(·) denotes the indicator function of the set A, and

HΦ(ξk−1, Xk, γk) = ∇2
Φ[(1 − γk)M(ξk−1) + γkf(Xk)f

>(Xk), f(Xk)f
>(Xk)]

for some γk ∈ [0, 1/(1 + ak)].

Since ak/k → α µ-a.s., from Hµ3 there exists K0 (µ-a.s.) such that for any

k > K0, λmin[M(ξk−1)] > l/2. Since λmin[(1−γk)M(ξk−1)+γkf(Xk)f
>(Xk)] ≥
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[1 − 1/(1 + ak)]λmin[M(ξk−1)], there exists K1 (µ-a.s.) such that for k > K1,

λmin[(1 − γk)M(ξk−1) + γkf(Xk) f>(Xk)] > l/4. From HΦ6, this implies

HΦ(ξk−1, Xk, γk) > −δ0(l/4)− δ2(l/4) ‖f(Xk)‖4. We can now compute a lower

bound on E{φk|Xk−1
1 }. Notice that

E{FΦ(ξk−1, Xk)
[

IX2,k
(Xk) + I[0,Pk(α)](Z)IX3,k

(Xk)
]

|Xk−1
1 } =

α FΦ[ξk−1; TΦ,α(ξk−1)]

which gives for k > K1,

E{φk|Xk−1
1 } ≥ φk−1 +

α

1 + ak

FΦ[ξk−1; TΦ,α(ξk−1)] − α
δ0(l/4) + δ2(l/4)µ4

2(1 + ak)2

with µ4 =
∫

X ‖f(x)‖4µ(dx), and µ4 < ∞ from Hµ2. Using (17), we obtain

E{φk|Xk−1
1 } ≥ φk−1 +

α

1 + ak

(φ∗
α − φk−1) −

A

(1 + ak)2
(B.2)

for k > K1, where A = α [δ0(l/4) + δ2(l/4)µ4]/2.

(ii) Assume that lim sup φk < φ∗
α − δ for some δ > 0, (B.2) gives

E{φk|Xk−1
1 } > φk−1 +

αδ

2(1 + ak)
(B.3)

for k larger than some K2. Since φk < Ψ(S∗
k,ak+1

) and ak+1/k > α/C for any

k, see Remark 8.2, we have −∞ ≤ E{φk} < E{Ψ(S∗
k,ak+1

)} < φ(ξ∗ak+1/k) <

φ(ξ∗α/C) < ∞ (see Lemma 3, Hµ1, HΦ3) and E{φk} is well defined. Also, for

k > K2, (B.3) gives E{φk} > E{φK2
} > −∞ and thus supk E{|φk|} < ∞.

The martingale convergence theorem then says that φk converges µ-a.s. to

a finite limit, which contradicts (B.3). Repeating the same arguments for a

countable number of rational δ gives lim supk→∞ φk ≥ φ∗
α. At the same time,
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lim supk→∞ φk ≤ limk→∞ Ψ(S∗
k,ak+1

) = φ∗
α µ-a.s. from Lemma 2, so that

lim sup
k→∞

φk = φ∗
α , µ-a.s. (B.4)

(iii) Assume that lim infk→∞ φk < φ∗
α − ε for some ε > 0. We show that this

event has probability zero.

First, we show that there exists K∗ (µ-a.s.) such that for any k > K∗,

φk−1 < φ∗
α + ε/6 , (B.5)

(ε/6) [α/(1 + ak)] − A/(1 + ak)
2 > 0 , (B.6)

φk − φk−1 > −ε/6 . (B.7)

(B.5) follows from (B.4) and (B.6) from ak/k → α µ-a.s. HΦ4 implies that

FΦ(ξk−1, Xk) ≥ −δ1(l/2) for k > K0 (since λmin[M(ξk−1)] > l/2 for k > K0)

and (B.1) gives

φk − φk−1 ≥ −δ1(l/2)

1 + ak

− δ0(l/4) + δ2(l/4)‖f(Xk)‖4

2(1 + ak)2

for k > K1. Hµ2 implies Prob{‖f(Xk)‖ > kγ} ≤ µ4/k
4γ and therefore, from

Borel-Cantelli, Prob{‖f(Xk)‖ > kγ infinitely often } = 0 for any γ > 1/4. It

implies that exists K3 (µ-a.s.) such that for any k > K3

φk − φk−1 ≥ −δ1(l/2)

1 + ak

− δ0(l/4) + δ2(l/4)k
4γ

2(1 + ak)2
.

Take γ < 1/2, (B.7) then follows from ak/k → α µ-a.s. We work conditionally

on k > K∗ in the rest of the proof.

Take ε > 0 arbitrarily small and define U ε
k as the number of down-crossings

by φk of the interval (φ∗
α − ε, φ∗

α − ε/6) for k > K∗: lim infk→∞ < φ∗
α − ε thus

implies U ε
∞ = ∞. Also define a previsible process (Ck) as follows: set Ck to

one when φk−1 gets above φ∗
α − ε/6 (strictly) and turn it to zero when φk−1
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gets below φ∗
α − ε (strictly). This defines a new process

Vk =
k

∑

i=K∗

Ci(φi − φi−1)

which satisfies

Vk < −(5ε/6) U ε
k + max{0, φk − (φ∗

α − ε/6)} . (B.8)

Define kj, . . . , k̄j as the jth set of consecutive indices for which Ci = 1, that is,

such that Ckj−1 = 0, Ckj
= Ckj+1 = · · · = Ck̄j

= 1, Ck̄j+1 = 0. Within this set,

we define k∗
j as the largest index such that φk−1 ≤ φ∗

α−ε/6 for all k∗
j ≤ k ≤ k̄j.

Note that necessarily k∗
j > kj (since φkj−1 > φ∗

α−ε/6) and k∗
j < k̄j (since (B.7)

is satisfied for k > K∗). We bound E{Vk̄j
− Vkj

|Xkj−1
1 } as follows.

We have φk∗

j
−2 > φ∗

α−ε/6 (from the definition of k∗
j ) and φk∗

j
−1−φk∗

j
−2 > −ε/6

from (B.7). Also, (B.5) implies φkj−1 < φ∗
α + ε/6. Therefore, φk∗

j
−1 − φkj−1 >

−ε/2. Now, for all k such that k∗
j ≤ k ≤ k̄j, φk−1 ≤ φ∗

α − ε/6 and thus

E{φk−φk−1|Xk−1
1 } > 0 from (B.6) and (B.2). We obtain E{Vk̄j

−Vkj
|Xkj−1

1 } >

−ε/2 and E{Vk|XK∗−1
1 } > −(ε/2)E{U ε

k|XK∗−1
1 }, which, together with (B.8)

gives

E{U ε
k|XK∗−1

1 } <
3

ε
E{max{0, φk − (φ∗

α − ε/6)}|XK∗−1
1 } < ∞

where the last inequality follows from E{|φk|} < ∞. It implies Prob{U ε
∞ =

∞} = 0, that is, lim infk→∞ φk > φ∗
α− ε, µ-a.s. Repeating the same arguments

for a countable number of rational ε gives lim infk→∞ φk = φ∗
α, µ-a.s., which

completes the proof. 2
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