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Abstract

Optimum design theory sometimes yields singular designs. An example with a linear
regression model often mentioned in the literature is used to illustrate the difficulties
induced by such designs. The estimation of the model parameters θ, or of a function
of interest h(θ), may be impossible with the singular design ξ∗. Depending on how ξ∗

is approached by the empirical measure ξn of the design points, with n the number
of observations, consistency is achieved but the speed of convergence may depend
on ξn and on the value of θ. Even in situations where convergence is in 1/

√
n and

the asymptotic distribution of the estimator of θ or h(θ) is normal, the asymptotic
variance may still differ from that obtained from ξ∗.
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1 Introduction

We consider the following linear regression model

η(x, θ) = θ1x + θ2x
2 = f⊤(x)θ (1)

with f(x) = (x, x2)⊤, x ∈ X = [−1, 1] and observations yk = η(xk, θ̄) + εk

where θ̄ is the (unknown) true value of the model parameters and the errors εk

are i.i.d. with zero mean and variance σ2. We shall take σ = 1 throughout the
paper. We shall denote θ̂n the LS estimator of θ obtained from the observations
y1, y2, . . . , yn; ξn will denote the empirical measure of the associated design
points x1, x2, . . . , xn. We shall also denote

M(ξ) =
∫

X

f(x)f⊤(x) ξ(dx)

the information matrix for a design measure ξ.

We assume that θ̄1 ≥ 0 and θ̄2 < 0 and are interested in the estimation of

h(θ) = − θ1

2θ2

, (2)

the value of x where η(x, θ) is maximal. When the design space is X = [−1, 1],
the optimum design measure ξ∗ = ξ∗θ for the estimation of h(θ) (c-optimality)
has its support included in {−1, 1}, the weight of each point depending on the
value of h(θ) (a standard situation in nonlinear problems). One can show, see,
e.g., Silvey (1980, p. 57), that

ξ∗(1) =











1
2

+ 1
4h

if h ≥ 1
2
,

1
2

+ h if 0 ≤ h ≤ 1
2
,

(3)

so that when h(θ) = 1/2 the optimum design is singular with ξ∗(1) = 1 (and
ξ∗(−1) = 0). Therefore, if we know a priori that h(θ̄) is close to 1/2 we should
put the design points, or the majority of them, close to 1. It is the purpose
of this paper to show that depending how this is realized, the asymptotic
behavior of θ̂n, or of h(θ̂n), may have some unexpected features. Note that
h(θ) is not estimable when ξ∗ is singular. Therefore, when h(θ̂n) obtained
with the design ξn converges to h(θ̄), n → ∞, it means that the sequence
x1, x2, . . . itself, not the limiting design ξ∗, is responsible for consistency. In
particular, it thus seems legitimate to question the adjective “optimum” for
ξ∗.
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The example considered is extremely simple but the conclusions are of general
consequences: we show that it is only in very particular circumstances that
approaching a singular “optimum” design conveys some optimal properties
to the nonlinear LS estimation for which it was designed. The example has
been chosen due to its frequent use in the optimum-design literature, see e.g.
Silvey (1980); Ford and Silvey (1980); Ford et al. (1985); Wu (1985). Here, the
singularity of ξ∗ is obtained for a particular value of h(θ). This should not give
the reader the impression that singular “optimum” designs are exceptional. For
instance, the estimation of h(θ) = −θ1/(2θ2) in the full quadratic regression
model η(x, θ) = θ0 + θ1x + θ2x

2 yields singular “optimum” designs for a full
range of values of h, see Chaloner (1989); Fedorov and Müller (1997). See also
Buonaccorsi and Iyer (1986) for the estimation of ratios of linear combinations
of the parameters.

Sections 2 and 3 concern the situation where we know a priori that h(θ̄) is
close to 1/2 and non-sequential designs approaching the singular measure ξ∗

are used: ξn converges weakly to ξ∗ in Section 2 whereas strong convergence
is considered in Section 3. The iterative construction of the design is briefly
discussed in Section 4. Throughout the paper we denote

1 =







1

1





 and 0 =







0

0





 .

2 ξn converges weakly to ξ∗

By weak convergence we mean convergence in distribution, which we denote
w→. Let ξ∗ be the singular measure that puts weight 1 at x = 1. Throughout
the section we use the design measure ξn constructed from

xi =











1 if i = 2k − 1 ,

1 + (1/k)1/4 if i = 2k ,

for k = 1, 2, . . . so that ξn
w→ ξ∗, n → ∞.
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2.1 Consistency.

From Corollary 1 of (Wu, 1980), u⊤θ̂n a.s.→ u⊤θ̄ for any u ∈ R
2 when S∞(w) =

∑∞
i=1[w

⊤f(xi)]
2 = ∞ for all w = (w1 , w2)

⊤ 6= 0. Here we obtain

S∞(w) =
∞
∑

k=1

(w1 + w2)
2 +

∞
∑

k=1

{

w1[1 + 1/k1/4] + w2[1 + 1/k1/4]2
}2

so that S∞(w) = ∞ when w1 + w2 6= 0. For w1 + w2 = 0 (and w1 6= 0 since
w 6= 0) we have

S∞(w) = w2
1

∞
∑

k=1

[1/k1/2 + 1/k1/4]2 > w2
1

∞
∑

k=1

1/k = ∞ .

Therefore u⊤θ̂n a.s.→ u⊤θ̄ for any u ∈ R
2 so that θ̂n a.s.→ θ̄ and h(θ̂n)

a.s.→ h(θ̄),
n → ∞.

2.2 Asymptotic normality of u⊤θ̂n.

This paragraph is auxiliary to the investigation of the asymptotic distribution
of h(θ̂n).

Consider the case u = 1. When the design ξ∗ is used, all design points xi = 1,
but 1⊤θ̂n is estimable in spite of the singularity of ξ∗ since 1 is in the range of

M(ξ∗) =







1 1

1 1





 .

The variance of 1⊤θ̂n, which we denote varξ∗(1
⊤θ̂n), then satisfies

n varξ∗(1
⊤θ̂n) = 1⊤M−(ξ∗)1 = 1

with M− any g-inverse of M. On the other hand, the variance of 1⊤θ̂n for the
design ξn satisfies

lim
n→∞

n varξn
(1⊤θ̂n) = 9/5 6= 1⊤M−(ξ∗)1 , (4)

where n varξn
(1⊤θ̂n) = 1⊤M−1(ξn)1. Indeed, take n = 2m, then

M(ξn) =







µ2(n) µ3(n)

µ3(n) µ4(n)
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with µi(n) = (1/n)[m+
∑m

k=1(1+k−1/4)i]. We then obtain (4) by direct calcula-
tions. The difference between limn→∞ n varξ∗(1

⊤θ̂n) and limn→∞ n varξn
(1⊤θ̂n)

is due to the discontinuity of the function M(ξ) 7→ n varξ(1
⊤θ̂n), see Pázman

(1980).

Next, following the same lines as in (Huber, 1973), we can show that Linde-
berg’s condition is satisfied, and for any direction u 6= 0

√
n

u⊤(θ̂n − θ̄)
√

u⊤M−1(ξn)u

d→ ζu ∼ N (0, 1) .

For u = 1 it gives

√
n1⊤(θ̂n − θ̄)

d→ ζ1 ∼ N (0, 9/5) ,

but for a direction u such that (u⊤1)2 6= 2‖u‖2 (i.e., not parallel to 1) the
convergence of u⊤(θ̂n − θ̄) is in n−1/4 since u⊤M−1(ξn)u grows as

√
n (note

that u⊤θ is not estimable from the limiting design ξ∗). In particular, one can
check that

n1/4 u⊤(θ̂n − θ̄)
d→ ζ1 ∼ N (0, 9

√
2/10)

for u = (0, 1)⊤ or (1, 0)⊤.

Hence, when u⊤θ is estimable under the limiting design ξ∗, u⊤θ̂n converges
as 1/

√
n but the limiting variance differs from u⊤M−(ξ∗)u; when u⊤θ is not

estimable under ξ∗ (u is not in the range of M(ξ∗)), then u⊤θ̂n converges as
n−1/4.

2.3 Asymptotic normality of h(θ̂n).

Consider now the estimation of h(θ) given by (2).

When θ̄1 + θ̄2 6= 0, we have

h(θ̂n) = h(θ̄) + (θ̂n − θ̄)⊤
[

∓h(θ)

∓θ |θ̄
+ op(1)

]

where ∓h(θ)/ ∓ θ = −1/(2θ2)[1, 2h(θ)]⊤, so that ∓h(θ)/ ∓ θ|θ̄ is not parallel

to 1. Therefore, n1/4[h(θ̂n) − h(θ̄)] has the same limiting distribution as

− 1

2θ̄2

n1/4[1, 2h(θ̄)](θ̂n − θ̄)
d→ ζ2 ∼ N (0, vθ̄) (5)
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with

vθ̄ = 1/(4θ̄2
2) lim

n→∞
(1/

√
n)[1, 2h(θ̄)]M−1(ξn)[1, 2h(θ̄)]⊤ =

9
√

2

10

[2h(θ̄) − 1]2

4θ̄2
2

.

h(θ̂n) is thus asymptotically normal, but converges as n−1/4.

When θ̄1 + θ̄2 = 0, we write

h(θ̂n) = h(θ̄) + (θ̂n − θ̄)⊤
∓h(θ)

∓θ |θ̄
+

1

2
(θ̂n − θ̄)⊤

[

∓2h(θ)

∓θ ∓ θ⊤ |θ̄
+ op(1)

]

(θ̂n − θ̄)

with

∓h(θ)

∓θ |θ̄
= − 1

2θ̄2

1 and
∓2h(θ)

∓θ ∓ θ⊤ |θ̄
=

1

2θ̄2
2







0 1

1 2





 .

Direct calculations, based on the eigenvector decomposition of the matrix
∓2h(θ)/(∓θ∓ θ⊤)|θ̄, show that h(θ̂n) converges as 1/

√
n but is not asymptot-

ically normal.

3 ξn converges strongly to ξ∗

By strong convergence we mean that limn→∞ ξn(x) = ξ∗(x) for all x ∈ X , ξ∗

being the limiting discrete design. In this section we consider different simple
examples of strongly converging ξn and study the asymptotic properties of
estimators. The first example corresponds to a design generated by an opti-
misation algorithm.

3.1 Steepest descent algorithm.

Consider the steepest descent algorithm (Wynn, 1972) for the construction of
an optimum design for the estimation of 1⊤θ in the model (1). The optimum
design ξ∗ on X = [−1, 1] is singular with ξ∗(1) = 1 (and 1⊤θ is estimable for
ξ∗). It is well known that the algorithm generates a sequence of points such
that ξn converges to the optimum, in the sense that limn→∞ 1⊤M−1(ξn)1 =
1⊤M−(ξ∗)1. We show by elementary calculus that ξn converges strongly to
ξ∗, in contrast with the situation considered in Section 2.

Take x1, x2 such that M(ξ2) is non singular. By construction, M(ξk) is then
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non singular for all k and the design sequence is such that

xk+1 = arg max
x∈[−1,1]





1⊤M−1(ξk)







x

x2













2

, (6)

see eq. 4.1 in (Wynn, 1972). Straightforward calculation shows that xk+1 max-
imizes

[

x2
k
∑

i=1

(x2
i − x3

i ) + x
k
∑

i=1

(x4
i − x3

i )

]2

= x2(xS ′
k + Sk)

2

with Sk =
∑k

i=1 x3
i (xi − 1) and S ′

k =
∑k

i=1 x2
i (1 − xi). Note that S ′

k > 0. This
function reaches its maximum in [−1, 1] at x = ±1 and

xk+1 =











1 if Sk > 0 ,

−1 otherwise .

When xk+1 = −1, Sk+1 = 2 + Sk so that Sk ultimately becomes positive
and xj+1 equals 1 for some j. When this happens, Sj+1 = Sj and xi = 1
for all subsequent i, i = j + 1, j + 2, . . . The number of observations at
x 6= 1 is thus finite. The design measure ξn converges strongly to ξ∗ and
limn→∞ nvar(1⊤θ̂n) = 1⊤M−(ξ∗)1 = 1. Notice the difference with (4).

The method of steepest-descent for designing an optimal experiment for the
estimation of h(θ) in the model (1) minimizes ∓h(θ)/∓θ⊤|θ̄M

−(ξ)∓h(θ)/∓θ|θ̄
and is based on the iterations

xk+1 = arg max
x∈[−1,1]







∓h(θ)

∓θ⊤ |θ̄
M−1(ξk)







x

x2













2

. (7)

For h(θ) given by (2), when θ̄1 + θ̄2 6= 0 the limiting optimum design is non
singular and there are no difficulties. When θ̄1 + θ̄2 = 0, the iterations are
given by (6) and ξn converges strongly to ξ∗ which is singular. Moreover, from
the results above the number of observations at x 6= 1 is finite. It is this type
of situation that we investigate below in more details.

In the rest of the section we consider the estimation of h(θ) for different cases
of measures that converge strongly to ξ∗. Suppose that m observations are
performed at x = z for some z ∈ [−1, 1], z 6= 1, z 6= 0, and n − m at x = 1.
The LS estimator of θ is then given by

θ̂n = θ̄ +
1

z − z2







δm√
m







1

−1





+
γn−m√
n − m







−z2

z











 (8)
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where δm =
∑

xi=z εi/
√

m and γn−m =
∑

xi=1 εi/
√

n − m. They are indepen-
dent and both tend to be distributed N (0, 1) when m → ∞ and n−m → ∞.

3.2 Consistency.

We have θ̂n a.s.→ θ̄ (and h(θ̂n)
a.s.→ h(θ̄)) as soon as m → ∞ and n → ∞. However,

when n → ∞ with m fixed, then

θ̂n a.s.→ θ̂# = θ̄ +
1

z − z2

δm√
m







1

−1





 (9)

and θ̂n is not consistent. h(θ̂n) is then not consistent, except when θ̄1 + θ̄2 = 0.
Indeed, in that case we obtain θ̂#

1 + θ̂#
2 = 0 so that h(θ̂#) = h(θ̄) = 1/2. Only

this situation is investigated further when m is fixed.

3.3 Asymptotic distribution of h(θ̂n).

case a) m is fixed and θ̄1 + θ̄2 = 0.

We can write

√
n[h(θ̂n) − h(θ̄)] =

√
n[h(θ̂n) − h(θ̂#)] =

√
n(θ̂n − θ̂#)⊤

[

∓h(θ)

∓θ |θ̂#

+ op(1)

]

,

with ∓h(θ)/ ∓ θ|θ̂# = −1/(2θ̂#
2 ). From (8) and (9),

√
n(θ̂n − θ̂#) =

√
n

z − z2

γn−m√
n − m







−z2

z







d→ ζ3 ∼ N





0,
1

(z − z2)2







z4 −z3

−z3 z2











 ,

which gives

√
n[h(θ̂n) − h(θ̄)]

d→ 1

2

ν

ζ
(10)

where ν ∼ N (0, 1) and ζ ∼ N (θ̄2, 1/[m(z − z2)2]) are independent. h(θ̂n) thus
converges as 1/

√
n but its limiting distribution is not normal and depends on
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the choice of z.

case b) m → ∞ and m/n → 0, n → ∞.

Suppose first that θ̄1 + θ̄2 6= 0. We can write

√
m[h(θ̂n) − h(θ̄)] =

√
m(θ̂n − θ̄)⊤

[

∓h(θ)

∓θ |θ̄
+ op(1)

]

,

with ∓h(θ)/ ∓ θ|θ̄ = −1/(2θ̄2)[1, 2h(θ̄)]⊤. From (8), since m/n → 0,

√
m(θ̂n − θ̄)

d→ ζ4 ∼ N





0,
1

(z − z2)2







1 −1

−1 1













which gives

√
m[h(θ̂n) − h(θ̄)]

d→ ζ5 ∼ N
(

0,
(θ̄1 + θ̄2)

2

4θ̄4
2(z − z2)2

)

. (11)

h(θ̂n) is thus asymptotically normal and converges as 1/
√

m. The limiting
variance depends on z.

Suppose now that θ̄1 + θ̄2 = 0. We obtain from (8),

√
n[h(θ̂n) − h(θ̄)] =

√
n

(

− θ̂n
1

2θ̂n
2

− 1

2

)

= −γn−m

2

√

n

n − m

[

θ̄2 −
δm√
m

1

z − z2
+

γn−m√
n − m

z

z − z2

]−1

so that

√
n[h(θ̂n) − h(θ̄)]

d→ ζ6 ∼ N
(

0,
1

4θ̄2
2

)

. (12)

In contrast with (5, 10) and (11), this is the unique case that leads to the
expression used by Silvey (1980), with a speed of convergence that coincides
with that obtained for non singular designs.
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4 Discussion

Suppose that one knows a priori that θ̄1 + θ̄2 is close to 0, and designs an
experiment that tries to approach ξ∗ which puts weight 1 at x = 1, for esti-
mating h(θ) given by (2) in the model (1). The justification for this choice lies
in the asymptotic result (12): h(θ̂n) converges in 1/

√
n, the asymptotic vari-

ance 1/(4θ̄2
2) is the minimum over all possible designs when θ̄1 + θ̄2 = 0, that

is, when h(θ̄) = 1/2. However, the results of Sections 2 and 3 give evidence of
the risk of using a design approaching ξ∗.

• When h(θ̄) = 1/2 but ξn converges weakly to ξ∗, the limiting variance of
h(θ̂n) is larger than 1/(4θ̄2

2), see (4).
• When h(θ̄) = 1/2 but the number of observations at x 6= 1 is finite, as is the

case of a design generated by the steepest descent algorithm, the limiting
distribution of h(θ̂n) is not normal, see (10).

• When h(θ̄) 6= 1/2, although close to 1/2 (and one cannot be sure that h(θ̄) =
1/2, otherwise no experiment would be needed), the speed of convergence of
h(θ̂n) is slower than

√
n, see (5, 11), and h(θ̂n) may even be not consistent,

see (9).

A first possibility to avoid these difficulties is to use a non singular design,
at the cost of a possible loss of efficiency. For instance, a design ξα that puts
weight α at x = 1 and 1 − α at −1, 0 < α < 1, ensures

√
n-convergence of

h(θ̂n), and

√
n[h(θ̂n) − h(θ̄)]

d→ ζ7 ∼ N
(

0,
1

4θ̄2
2

[1, 2h(θ̄)]M−1(ξα)[1, 2h(θ̄)]⊤
)

as n → ∞. When one knows that θ̄1 + θ̄2 is close to 0, one may then use ξα

with α close to 1. Its efficiency is given by

eff(α, h) =
[1, 2h]M−1(ξα∗)[1, 2h]⊤

[1, 2h]M−1(ξα)[1, 2h]⊤

where α∗ = α∗(h) corresponds to ξ∗(1) in (3). The function eff(α, h) is plotted
in Figure 1 for α ∈ [0.5, 1), h ∈ [0.25, 0.75]. Although eff(α, 1/2) quickly
decreases when α moves away from 1, the loss of efficiency remains reasonable
for small departures. In particular, ξ3/4 is maximin-efficient, see Silvey (1980,
p. 59): it guarantees eff(3/4, h) ≥ 0.75 for any h ≥ 0, the minimum efficiency
being obtained for h = 0 and h = 1/2. (Note the difference with (Schwabe,
1997) where θ1 is not restricted to be positive. The maximin-efficient design
is then ξ1/2, it is D-optimal and its minimum efficiency is 0.5.)

Another option consists in designing ξn sequentially, that is, using the algo-
rithm (7) with ∓h(θ)/∓ θ|θ̂k substituted for ∓h(θ)/∓ θ|θ̄ in the determination
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Fig. 1. Efficiency eff(α, h).

of xk+1. Strong consistency of θ̂n is proved in (Ford and Silvey, 1980), ξn

converges to the optimum design ξ∗θ̄ for θ̄, and the asymptotic normality

√
n[h(θ̂n) − h(θ̄)]

d→ ζ8 ∼ N
(

0,
1

4θ̄2
2

[1, 2h(θ̄)]M−(ξ∗θ̄)[1, 2h(θ̄)]⊤
)

(13)

n → ∞, is proved in (Wu, 1985). The asymptotic efficiency thus equals one.
In particular, (13) remains valid when θ̄1 + θ̄2 = 0, and then coincides with
(12). When feasible, sequential design thus appears as the natural remedy to
the issues raised in Sections 2 and 3. However, some difficulties should not
be underestimated. The proof in (Wu, 1985) of the asymptotic result (13)
under a sequential design is very much problem specific. Strong consistency
of the LS estimator in the linear model under a sequential design requires
stronger conditions than M−1(ξn)/n → 0, see Lai and Wei (1982). Bayesian
imbedding permits to weaken those conditions (Sternby, 1977) (at the expense
of obtaining strong consistency of the estimator for almost all values of θ̄ with
respect to some prior distribution), but its application to the sequential design
of experiments (Hu, 1998) prohibits singular designs.

We hope we have convinced the reader of the richness of possible asymptotic
behaviors of estimators under asymptotically singular designs. Combining this
with a sequential construction of the design raises many challenging issues.
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