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Optimum design theory sometimes yields singular designs. An example with a linear regression model often mentioned in the literature is used to illustrate the difficulties induced by such designs. The estimation of the model parameters θ, or of a function of interest h(θ), may be impossible with the singular design ξ * . Depending on how ξ * is approached by the empirical measure ξ n of the design points, with n the number of observations, consistency is achieved but the speed of convergence may depend on ξ n and on the value of θ. Even in situations where convergence is in 1/ √ n and the asymptotic distribution of the estimator of θ or h(θ) is normal, the asymptotic variance may still differ from that obtained from ξ * .

Introduction

We consider the following linear regression model η(x, θ) = θ 1 x + θ 2 x 2 = f ⊤ (x)θ

(1) with f (x) = (x, x 2 ) ⊤ , x ∈ X = [-1, 1] and observations y k = η(x k , θ) + ε k where θ is the (unknown) true value of the model parameters and the errors ε k are i.i.d. with zero mean and variance σ 2 . We shall take σ = 1 throughout the paper. We shall denote θn the LS estimator of θ obtained from the observations y 1 , y 2 , . . . , y n ; ξ n will denote the empirical measure of the associated design points x 1 , x 2 , . . . , x n . We shall also denote

M(ξ) = X f (x)f ⊤ (x) ξ(dx)
the information matrix for a design measure ξ.

We assume that θ1 ≥ 0 and θ2 < 0 and are interested in the estimation of

h(θ) = - θ 1 2θ 2 , (2) 
the value of x where η(x, θ) is maximal. When the design space is X = [-1, 1], the optimum design measure ξ * = ξ * θ for the estimation of h(θ) (c-optimality) has its support included in {-1, 1}, the weight of each point depending on the value of h(θ) (a standard situation in nonlinear problems). One can show, see, e.g., Silvey (1980, p. 57), that

ξ * (1) =      1 2 + 1 4h if h ≥ 1 2 , 1 2 + h if 0 ≤ h ≤ 1 2 , (3) 
so that when h(θ) = 1/2 the optimum design is singular with ξ * (1) = 1 (and ξ * (-1) = 0). Therefore, if we know a priori that h( θ) is close to 1/2 we should put the design points, or the majority of them, close to 1. It is the purpose of this paper to show that depending how this is realized, the asymptotic behavior of θn , or of h( θn ), may have some unexpected features. Note that h(θ) is not estimable when ξ * is singular. Therefore, when h( θn ) obtained with the design ξ n converges to h( θ), n → ∞, it means that the sequence x 1 , x 2 , . . . itself, not the limiting design ξ * , is responsible for consistency. In particular, it thus seems legitimate to question the adjective "optimum" for ξ * .

2

The example considered is extremely simple but the conclusions are of general consequences: we show that it is only in very particular circumstances that approaching a singular "optimum" design conveys some optimal properties to the nonlinear LS estimation for which it was designed. The example has been chosen due to its frequent use in the optimum-design literature, see e.g. [START_REF] Silvey | Optimal Design[END_REF]; [START_REF] Ford | A sequentially constructed design for estimating a nonlinear parametric function[END_REF]; [START_REF] Ford | Inference and sequential design[END_REF]; [START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF]. Here, the singularity of ξ * is obtained for a particular value of h(θ). This should not give the reader the impression that singular "optimum" designs are exceptional. For instance, the estimation of h(θ) = -θ 1 /(2θ 2 ) in the full quadratic regression model η(x, θ) = θ 0 + θ 1 x + θ 2 x 2 yields singular "optimum" designs for a full range of values of h, see [START_REF] Chaloner | Bayesian design for estimating the turning point of a quadratic regression[END_REF]; [START_REF] Fedorov | Another view on optimal design for estimating the point of extremum in quadratic regression[END_REF]. See also [START_REF] Buonaccorsi | Optimal designs for ratios of linear combinations in the general linear model[END_REF] for the estimation of ratios of linear combinations of the parameters.

Sections 2 and 3 concern the situation where we know a priori that h( θ) is close to 1/2 and non-sequential designs approaching the singular measure ξ * are used: ξ n converges weakly to ξ * in Section 2 whereas strong convergence is considered in Section 3. The iterative construction of the design is briefly discussed in Section 4. Throughout the paper we denote

1 =    1 1    and 0 =    0 0    .
2 ξ n converges weakly to ξ * By weak convergence we mean convergence in distribution, which we denote w →. Let ξ * be the singular measure that puts weight 1 at x = 1. Throughout the section we use the design measure ξ n constructed from

x i =      1 if i = 2k -1 , 1 + (1/k) 1/4 if i = 2k , for k = 1, 2, . . . so that ξ n w → ξ * , n → ∞.
2.1 Consistency.

From Corollary 1 of [START_REF] Wu | Characterizing the consistent directions of least squares estimates[END_REF]

, u ⊤ θn a.s. → u ⊤ θ for any u ∈ R 2 when S ∞ (w) = ∞ i=1 [w ⊤ f (x i )] 2 = ∞ for all w = (w 1 , w 2 ) ⊤ = 0.
Here we obtain

S ∞ (w) = ∞ k=1 (w 1 + w 2 ) 2 + ∞ k=1 w 1 [1 + 1/k 1/4 ] + w 2 [1 + 1/k 1/4 ] 2 2
so that S ∞ (w) = ∞ when w 1 + w 2 = 0. For w 1 + w 2 = 0 (and w 1 = 0 since w = 0) we have

S ∞ (w) = w 2 1 ∞ k=1 [1/k 1/2 + 1/k 1/4 ] 2 > w 2 1 ∞ k=1 1/k = ∞ .
Therefore u ⊤ θn a.s. → u ⊤ θ for any u ∈ R 2 so that θn a.s. → θ and h( θn )

a.s. → h( θ), n → ∞. 2.2 Asymptotic normality of u ⊤ θn .
This paragraph is auxiliary to the investigation of the asymptotic distribution of h( θn ).

Consider the case u = 1. When the design ξ * is used, all design points

x i = 1, but 1 ⊤ θn is estimable in spite of the singularity of ξ * since 1 is in the range of M(ξ * ) =    1 1 1 1    .
The variance of 1 ⊤ θn , which we denote var ξ * (1 ⊤ θn ), then satisfies

n var ξ * (1 ⊤ θn ) = 1 ⊤ M -(ξ * )1 = 1
with M -any g-inverse of M. On the other hand, the variance of 1 ⊤ θn for the design ξ n satisfies

lim n→∞ n var ξn (1 ⊤ θn ) = 9/5 = 1 ⊤ M -(ξ * )1 , (4) 
where

n var ξn (1 ⊤ θn ) = 1 ⊤ M -1 (ξ n )1. Indeed, take n = 2m, then M(ξ n ) =    µ 2 (n) µ 3 (n) µ 3 (n) µ 4 (n)    with µ i (n) = (1/n)[m+ m k=1 (1+k -1/4 ) i ].
We then obtain (4) by direct calculations. The difference between lim n→∞ n var ξ * (1 ⊤ θn ) and lim n→∞ n var ξn (1 ⊤ θn ) is due to the discontinuity of the function M(ξ) → n var ξ (1 ⊤ θn ), see [START_REF] Pázman | Singular experimental designs[END_REF].

Next, following the same lines as in [START_REF] Huber | Robust regression: asymptotics, conjectures and Monte Carlo[END_REF], we can show that Lindeberg's condition is satisfied, and for any direction u = 0

√ n u ⊤ ( θn -θ) u ⊤ M -1 (ξ n )u d → ζ u ∼ N (0, 1) . For u = 1 it gives √ n 1 ⊤ ( θn -θ) d → ζ 1 ∼ N (0, 9/5) , but for a direction u such that (u ⊤ 1) 2 = 2 u 2 (i.e., not parallel to 1) the convergence of u ⊤ ( θn -θ) is in n -1/4 since u ⊤ M -1 (ξ n )u grows as √ n (note
that u ⊤ θ is not estimable from the limiting design ξ * ). In particular, one can check that

n 1/4 u ⊤ ( θn -θ) d → ζ 1 ∼ N (0, 9 √ 2/10) for u = (0, 1) ⊤ or (1, 0) ⊤ .
Hence, when u ⊤ θ is estimable under the limiting design ξ * , u ⊤ θn converges as 1/ √ n but the limiting variance differs from u ⊤ M -(ξ * )u; when u ⊤ θ is not estimable under ξ * (u is not in the range of M(ξ * )), then u ⊤ θn converges as n -1/4 .

Asymptotic normality of h( θn ).

Consider now the estimation of h(θ) given by (2).

When θ1 + θ2 = 0, we have

h( θn ) = h( θ) + ( θn -θ) ⊤ ∓h(θ) ∓θ | θ + o p (1)
where ∓h(θ)/ ∓ θ = -1/(2θ 2 )[1, 2h(θ)] ⊤ , so that ∓h(θ)/ ∓ θ | θ is not parallel to 1. Therefore, n 1/4 [h( θn )h( θ)] has the same limiting distribution as

- 1 2 θ2 n 1/4 [1, 2h( θ)]( θn -θ) d → ζ 2 ∼ N (0, vθ) (5) 
with

vθ = 1/(4 θ2 2 ) lim n→∞ (1/ √ n)[1, 2h( θ)]M -1 (ξ n )[1, 2h( θ)] ⊤ = 9 √ 2 10 [2h( θ) -1] 2 4 θ2 2 .
h( θn ) is thus asymptotically normal, but converges as n -1/4 . When θ1 + θ2 = 0, we write

h( θn ) = h( θ) + ( θn -θ) ⊤ ∓h(θ) ∓θ | θ + 1 2 ( θn -θ) ⊤ ∓ 2 h(θ) ∓θ ∓ θ ⊤ | θ + o p (1) ( θn -θ) with ∓h(θ) ∓θ | θ = - 1 2 θ2 1 and ∓ 2 h(θ) ∓θ ∓ θ ⊤ | θ = 1 2 θ2 2    0 1 1 2    .
Direct calculations, based on the eigenvector decomposition of the matrix

∓ 2 h(θ)/(∓θ ∓ θ ⊤ ) | θ,
show that h( θn ) converges as 1/ √ n but is not asymptotically normal.

3 ξ n converges strongly to ξ * By strong convergence we mean that lim n→∞ ξ n (x) = ξ * (x) for all x ∈ X , ξ * being the limiting discrete design. In this section we consider different simple examples of strongly converging ξ n and study the asymptotic properties of estimators. The first example corresponds to a design generated by an optimisation algorithm.

Steepest descent algorithm.

Consider the steepest descent algorithm [START_REF] Wynn | Results in the theory and construction of D-optimum experimental designs[END_REF] for the construction of an optimum design for the estimation of 1 ⊤ θ in the model (1). The optimum design ξ * on X = [-1, 1] is singular with ξ * (1) = 1 (and 1 ⊤ θ is estimable for ξ * ). It is well known that the algorithm generates a sequence of points such that ξ n converges to the optimum, in the sense that lim n→∞ 1

⊤ M -1 (ξ n )1 = 1 ⊤ M -(ξ * )1.
We show by elementary calculus that ξ n converges strongly to ξ * , in contrast with the situation considered in Section 2.

Take x 1 , x 2 such that M(ξ 2 ) is non singular. By construction, M(ξ k ) is then non singular for all k and the design sequence is such that

x k+1 = arg max x∈[-1,1]   1 ⊤ M -1 (ξ k )    x x 2       2 , (6) 
see eq. 4.1 in [START_REF] Wynn | Results in the theory and construction of D-optimum experimental designs[END_REF]. Straightforward calculation shows that x k+1 maximizes

x 2 k i=1 (x 2 i -x 3 i ) + x k i=1 (x 4 i -x 3 i ) 2 = x 2 (xS ′ k + S k ) 2 with S k = k i=1 x 3 i (x i -1) and S ′ k = k i=1 x 2 i (1 -x i ). Note that S ′ k > 0.
This function reaches its maximum in [-1, 1] at x = ±1 and

x k+1 =      1 if S k > 0 , -1 otherwise .
When x k+1 = -1, S k+1 = 2 + S k so that S k ultimately becomes positive and x j+1 equals 1 for some j. When this happens, S j+1 = S j and x i = 1 for all subsequent i, i = j + 1, j + 2, . . . The number of observations at x = 1 is thus finite. The design measure ξ n converges strongly to ξ * and lim n→∞ nvar(1 ⊤ θn ) = 1 ⊤ M -(ξ * )1 = 1. Notice the difference with (4).

The method of steepest-descent for designing an optimal experiment for the estimation of h(θ) in the model ( 1

) minimizes ∓h(θ)/ ∓ θ ⊤ | θ M -(ξ) ∓ h(θ)/ ∓ θ | θ
and is based on the iterations

x k+1 = arg max x∈[-1,1]    ∓h(θ) ∓θ ⊤ | θM -1 (ξ k )    x x 2       2 . (7) 
For h(θ) given by (2), when θ1 + θ2 = 0 the limiting optimum design is non singular and there are no difficulties. When θ1 + θ2 = 0, the iterations are given by ( 6) and ξ n converges strongly to ξ * which is singular. Moreover, from the results above the number of observations at x = 1 is finite. It is this type of situation that we investigate below in more details.

In the rest of the section we consider the estimation of h(θ) for different cases of measures that converge strongly to ξ * . Suppose that m observations are performed at x = z for some z ∈ [-1, 1], z = 1, z = 0, and nm at x = 1. The LS estimator of θ is then given by

θn = θ + 1 z -z 2    δ m √ m    1 -1    + γ n-m √ n -m    -z 2 z       (8) 
where

δ m = x i =z ε i / √ m and γ n-m = x i =1 ε i / √ n -m.
They are independent and both tend to be distributed N (0, 1) when m → ∞ and nm → ∞.

Consistency.

We have θn a.s.

→ θ (and h( θn ) a.s.

→ h( θ)) as soon as m → ∞ and n → ∞. However, when n → ∞ with m fixed, then θn a.s.

→ θ

# = θ + 1 z -z 2 δ m √ m    1 -1    (9)
and θn is not consistent. h( θn ) is then not consistent, except when θ1 + θ2 = 0. Indeed, in that case we obtain θ# 1 + θ# 2 = 0 so that h( θ# ) = h( θ) = 1/2. Only this situation is investigated further when m is fixed.

Asymptotic distribution of h( θn ).

case a) m is fixed and θ1 + θ2 = 0.

We can write

√ n[h( θn ) -h( θ)] = √ n[h( θn ) -h( θ# )] = √ n( θn -θ# ) ⊤ ∓h(θ) ∓θ | θ# + o p (1) , with ∓h(θ)/ ∓ θ | θ# = -1/(2 θ# 2 )
. From ( 8) and ( 9),

√ n( θn -θ# ) = √ n z -z 2 γ n-m √ n -m    -z 2 z    d → ζ 3 ∼ N   0, 1 (z -z 2 ) 2    z 4 -z 3 -z 3 z 2       , which gives √ n[h( θn ) -h( θ)] d → 1 2 ν ζ (10) 
where ν ∼ N (0, 1) and ζ ∼ N ( θ2 , 1/[m(zz 2 ) 2 ]) are independent. h( θn ) thus converges as 1/ √ n but its limiting distribution is not normal and depends on the choice of z.

case b) m → ∞ and m/n → 0, n → ∞.

Suppose first that θ1 + θ2 = 0. We can write

√ m[h( θn ) -h( θ)] = √ m( θn -θ) ⊤ ∓h(θ) ∓θ | θ + o p (1) , with ∓h(θ)/ ∓ θ | θ = -1/(2 θ2 )[1, 2h( θ)] ⊤ . From (8), since m/n → 0, √ m( θn -θ) d → ζ 4 ∼ N   0, 1 (z -z 2 ) 2    1 -1 -1 1       which gives √ m[h( θn ) -h( θ)] d → ζ 5 ∼ N 0, ( θ1 + θ2 ) 2 4 θ4 2 (z -z 2 ) 2 . (11) 
h( θn ) is thus asymptotically normal and converges as 1/ √ m. The limiting variance depends on z.

Suppose now that θ1 + θ2 = 0. We obtain from (8),

√ n[h( θn ) -h( θ)] = √ n - θn 1 2 θn 2 - 1 2 = - γ n-m 2 n n -m θ2 - δ m √ m 1 z -z 2 + γ n-m √ n -m z z -z 2 -1 so that √ n[h( θn ) -h( θ)] d → ζ 6 ∼ N 0, 1 4 θ2 2 . ( 12 
)
In contrast with (5, 10) and ( 11), this is the unique case that leads to the expression used by [START_REF] Silvey | Optimal Design[END_REF], with a speed of convergence that coincides with that obtained for non singular designs. of x k+1 . Strong consistency of θn is proved in [START_REF] Ford | A sequentially constructed design for estimating a nonlinear parametric function[END_REF], ξ n converges to the optimum design ξ * θ for θ, and the asymptotic normality

n[h( θn ) -h( θ)] d → ζ 8 ∼ N 0, 1 4 θ2 2 [1, 2h( θ)]M -(ξ * θ )[1, 2h( θ)] ⊤ (13)
n → ∞, is proved in [START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF]. The asymptotic efficiency thus equals one.

In particular, (13) remains valid when θ1 + θ2 = 0, and then coincides with (12). When feasible, sequential design thus appears as the natural remedy to the issues raised in Sections 2 and 3. However, some difficulties should not be underestimated. The proof in [START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF] of the asymptotic result (13) under a sequential design is very much problem specific. Strong consistency of the LS estimator in the linear model under a sequential design requires stronger conditions than M -1 (ξ n )/n → 0, see [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF]. Bayesian imbedding permits to weaken those conditions [START_REF] Sternby | On consistency for the method of least squares using martingale theory[END_REF] (at the expense of obtaining strong consistency of the estimator for almost all values of θ with respect to some prior distribution), but its application to the sequential design of experiments [START_REF] Hu | On sequential designs in nonlinear problems[END_REF] prohibits singular designs.

We hope we have convinced the reader of the richness of possible asymptotic behaviors of estimators under asymptotically singular designs. Combining this with a sequential construction of the design raises many challenging issues.
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Discussion

Suppose that one knows a priori that θ1 + θ2 is close to 0, and designs an experiment that tries to approach ξ * which puts weight 1 at x = 1, for estimating h(θ) given by (2) in the model (1). The justification for this choice lies in the asymptotic result (12): h( θn ) converges in 1/ √ n, the asymptotic variance 1/(4 θ2 2 ) is the minimum over all possible designs when θ1 + θ2 = 0, that is, when h( θ) = 1/2. However, the results of Sections 2 and 3 give evidence of the risk of using a design approaching ξ * .

• When h( θ) = 1/2 but ξ n converges weakly to ξ * , the limiting variance of h( θn ) is larger than 1/(4 θ2 2 ), see (4). • When h( θ) = 1/2 but the number of observations at x = 1 is finite, as is the case of a design generated by the steepest descent algorithm, the limiting distribution of h( θn ) is not normal, see (10). • When h( θ) = 1/2, although close to 1/2 (and one cannot be sure that h( θ) = 1/2, otherwise no experiment would be needed), the speed of convergence of h( θn ) is slower than √ n, see (5, 11), and h( θn ) may even be not consistent, see

A first possibility to avoid these difficulties is to use a non singular design, at the cost of a possible loss of efficiency. For instance, a design ξ α that puts weight α at x = 1 and 1α at -1, 0 < α < 1, ensures √ n-convergence of h( θn ), and

as n → ∞. When one knows that θ1 + θ2 is close to 0, one may then use ξ α with α close to 1. Its efficiency is given by

Although eff(α, 1/2) quickly decreases when α moves away from 1, the loss of efficiency remains reasonable for small departures. In particular, ξ 3/4 is maximin-efficient, see Silvey (1980, p. 59): it guarantees eff(3/4, h) ≥ 0.75 for any h ≥ 0, the minimum efficiency being obtained for h = 0 and h = 1/2. (Note the difference with [START_REF] Schwabe | Maximin efficient designs. Another view at D-optimality[END_REF] where θ 1 is not restricted to be positive. The maximin-efficient design is then ξ 1/2 , it is D-optimal and its minimum efficiency is 0.5.)

Another option consists in designing ξ n sequentially, that is, using the algorithm (7) with ∓h(θ)/ ∓ θ | θk substituted for ∓h(θ)/ ∓ θ | θ in the determination