
HAL Id: hal-00416015
https://hal.science/hal-00416015v2

Submitted on 30 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS Based Desing Process for Pervasive Computing
Applications

Christine Louberry, Philippe Roose, Marc Dalmau

To cite this version:
Christine Louberry, Philippe Roose, Marc Dalmau. QoS Based Desing Process for Pervasive Com-
puting Applications. ACM Mobility, Sep 2009, Nice, France. pp.7. �hal-00416015v2�

https://hal.science/hal-00416015v2
https://hal.archives-ouvertes.fr

QoS-Based Design Method for Constraint Device Based
Applications

Christine Louberry
LIUPPA

IUT de Bayonne
64600 Anglet, France

+33559574326

Christine.louberry@univ-pau.fr

Philippe Roose
LIUPPA

IUT de Bayonne
64600 Anglet, France

+33559574348

Philippe.roose@univ-pau.fr

Marc Dalmau
LIUPPA

IUT de Bayonne
64600 Anglet, France

+33559574321

Marc.dalmau@univ-pau.fr

ABSTRACT
We are currently facing with an important evolution in
communication area. People use more and more some mobile and
tiny devices to interact with their favourite services. However,
these devices have resource constraints which are necessary to be
aware in order to offer effective applications in terms of quality
and lifetime. In this article we propose a design method allowing
to manage constraint and particularities of such devices to react to
context evolution with reconfiguration reflecting quality and
sustainability of the deployed solution.

Categories and Subject Descriptors
D.2.9 [Management]: Software configuration management

D.2.10 [Design]: Methodologies

General Terms
Design.

Keywords
Design method, QoS, sensor network, software components,
supervision platform.

1. INTRODUCTION
We are currently facing with an important evolution of usages in
the communication domain. The recent technological overhangs
have allowed the democratization of wireless networks and the
mass-marketing of devices allowing users to communicate such as
mobile phones, Smart phones, PDA and mini PC. These devices
present the advantage to be tiny, mobile and to be equipped of one
or several wireless communication medium. They embed a
software part allowing receiving, computing and transmitting
information. So-equipped, these peripherals contribute to the
ubiquity of services in the sense where users can access to their
favorite services from anywhere and any support.

Characteristics of mobile devices present both advantages and
disadvantages. Advances in microelectronics domain allowed to
strongly increase the abilities of such devices. However hardware
resources such as CPU, memory, data rate and battery as well as
software resources are still very limited. Also the mobile
characteristic is a source of constraint. Mobility may imply some
connection losses and disrupt the functioning of the services

provided. To resume, these characteristics evolve during time and
affect the QoS of the service provided [1].

We are particularly interested in QoS management of distributed
applications faced with hardware limits, users’ needs and current
circumstances of use. Although the characteristics offered by such
mobile devices improve the QoS, their integration into traditional
systems implies to take up the challenge of the durability of the
application and the continuity of services faced with connectivity
problems due to mobility, weak data rate and limited battery.

In this article, we are interested in the adaptation to the context by
QoS management of the applications. Indeed, when context
evolves, the QoS evolves too and thus the application must be
adapted in order to provide to the user an efficient service. We
propose to resolve the problems raised by the changes of context
by dynamic reconfiguration of the applications. For that purpose,
we defined a supervision platform for distributed context sensitive
applications where the context is the main source of information
for the QoS evaluation [11]. However, in order to provide to the
platform all the necessary information for configurations’
evaluation, we propose a design method of the architecture of
such applications allowing the integration of QoS information.

The section 2 presents the definition of the quality of service that
we use for these works. In the section 3, we present an example of
application to illustrate the design method we propose. The
section 4 details the steps of this method since the unrefined
decomposition of the application up to the detail of every possible
configuration. The section 5 lists the events leading to a
reconfiguration of the application and the corresponding actions.
The section 6 presents elements driving the choice of the
configuration to be implemented. The section 7 concludes and
presents the perspectives of these works.

2. QoS DEFINITION
There is no consensus about QoS definition. None definition is
convenient for all the domains. Nevertheless the standard X.902,
defined by International Telecommunication Union [6], describes
the quality of service as a set of requirements concerning the
collective behaviour of one or several objects.

Usually used in network to mesure the performance of
transmissions according to quantitative criteria such as delay,
gigue, rate of error, etc, the most common definition found in
literature says that it is not possible nowadays to consider QoS
only as a network and hardware criterion [14] [12] [2].The

consideration of the user’s point of view is necessary but not
sufficient for the QoS evaluation when dealing with constraint
devices. Indeed the works actually done in the QoS sensor
networks domain show that this one is estimated in terms of
precision of the collected data and the lifetime of the network.
Moreover, the precision of the data is a function of the level of
energy of nodes [7]. To obtain relevant and effective results, it is
of interest to optimize the energy consumption and to protect at
most the lifetime of the nodes.

In previous works [9], we defined the quality of service as "the
adequacy between the service wished by the user and the service
which is provided to him". This definition allows taking into
account the classic definition of network QoS but also the
functional aspects like the ergonomics and the customization of
the service. However it is not sufficient when we use constrained
devices, so we wish to act at the three levels, represented in the
figure 1.

Figure 1. Qos types and levels

At the infrastructure level, we have to guarantee the continuity of
the service, whatever are the evolutions of the infrastructure and
in spite of hardware or network failure. At the application level,
we have to guarantee the durability of the application. Indeed, the
use of energy-autonomous peripherals raises the problem of their
lifetime. Finally, at the user level, we have to guarantee the
respect for the constraints of use of the application.

Continuity of service. Considering application QoS, the main
objective is to guarantee the continuity of the service in spite of
the hardware, software and network failures. Indeed, the use of
wireless networks implies disturbances such as rate getting lower,
data unavailability, etc. Furthermore we have to face the problems
of heterogeneousness due to the use of several kinds of devices, as
well as the problems of hardware fails like the level of the battery
of mobile devices.

Durability of application. We wish to guarantee the continuity of
the service devices on which are executed the applications have
limited resources. One way to guarantee the continuity of service
is to maximize the lifetime of the application because a device
which does not have energy anymore causes the disconnection of
all services it provides and consequently may compromise the
continuity of service. Works on wireless sensor radio showed that
data transmission on the network consumes between ten and
hundred times more energy than computation. Solutions based on
service mobility may decrease transmissions and therefore
increase lifetime.

Usage constraints. We defined the usage constraints as the
functional specifications of the application. There are constraints
on the functioning which the system has to respect. For example,
in a remote surveillance application, the designer can express
constraints as follows:

- when the luminosity is lower than the required minimal
threshold, activate the infrared function of cameras.

- when a movement is detected, activate cameras and
microphones.

3. AN EXAMPLE OF AN APPLICATION IN
A CONSTRAINT ENVIRONMENT: VISIT
OF MUSEUM
Throughout this article, we illustrate our method with an example
of an application intended for the tourism: the visit of a museum.

The application is used by three visitors, each of them having a
mobile device (PDA or smartphone for example). The museum
provides a server proposing a video information service (fig. 2).
We consider that the best QoS is to broadcast a color video.

Figure 2. Visit of a museum application

The following paragraph details possible scenarios for the use of
this application. The three visitors are getting the information
video service. The visitor #3 moves in the museum. The platform
is advised of this movement and consequently estimates the
quality of the video service provided to the user #3. Three
scenarios appear. First, although it moves, the device of the visitor
#3 always can reach the video server and the rate still allows
transmitting a color video. Secondly, the rate is weak but the
device can always reach the server. To ensure the continuity of
service, a solution is to reduce the number of data transmitted.
The server does not broadcast a color video anymore, but a black
and white one. Thirdly, the device cannot reach the server. The
platform has to look for a new route to reach the device #3 and
assure the continuity of the service. For example, the device of the
visitor #2, which also uses the video service, can be a relay for the
device #3.

Discovering a new route to transmit information is a classic
problem, many protocols as AODV [5] can be implemented.
However, we use a supervision platform distributed on each host
permitting to have a complete and global knowledge of the
application. It allows us proposing more interesting solutions not
only based on technical criteria of feasibility. Indeed because the
color video is already broadcasted to the users #1 and #2, it is
possible to use one of these two users as a relay for the user #3
which cannot reach the video service anymore. However if the
relay device does not have enough energy available, the
brodcasting of a color video is not possible. We can thus propose
to install a color/black and white conversion component on the

relay device in order to transmit a black and white video which is
more compatible with the energy available. So, to ensure the
continuity of service, before sending the video to the device #3,
the device #2 performs a conversion into black and white. The
energy consumption depends of the quantity of data transmitted.
The conversion of the video into black and white allows to reduce
the quantity of data to transmit to the device #3 and thus to
preserve its energy as well as that of the transmitter. Furthermore
distributing a part of the services allows balancing of
responsibilities in the network. Obviously such a solution requires
a good knowledge of the whole application in terms of services.
Our approach by reconfiguration allows proposing reliable
solutions from both points of view of the infrastructure and the
QoS.

The following paragraphs detail the design of these solutions and
the decision of reconfiguration.

4. DESIGN METHOD FOR
APPLICATIONS IN CONSTRAINT
ENVIRONMENT
This paragraph presents the various steps of the design method we
propose. This method aims at bringing the necessary information
to the reconfiguration platform so that it manages in best possible
way the quality and the lifetime of the application which it
supervises.

4.1 Identification of services
As we presented it in the section 2, our definition of the QoS is
not only user centered. We are particularly interested in functional
aspects and not only in the QoS perceived by the user. The
method we used in [9] was centered on the categories of user and
was too specific. Therefore, we decide to decompose the
application into services. Each service can be implemented by one
or several assemblies of components, dynamically changing
during time according to the required QoS. These components are
interconnected by connectors and data streams (fig. 3).

Figure 3. Application composition

Each assembly provide the same service but with various QoS.
The role of the platform is to choose, for each provided service,
the assembly offering the best quality compatible with the QoS
criteria expressed in 2. The deployment of components onto the
infrastructure is also done by the platform. The platform can
dynamically adapt the application according to the context’s
evolutions because it can choose both the composition of a service
and the deployment of a service. As we said in the section 3, the

minimization of the energy consumption is essentially achieved by
minimizing transmissions. That is why solutions requiring many
components can be more economic than simpler ones. So, in our
previous example, the broadcasting of a color video towards the
user #3 could perfectly operate using the users 1 and 2 as relay
but asking them to transmit only half of the video (for example
one image or one block of images out of two). In order to have
such an available solution, during design, the video service should
have been proposed to be realized by such an assembly and
components of partial broadcasting and shares reception should
have been available.

The first step of the design method we propose consists in
identifying all the services constituting the application. In our
example, the visit museum application provides services of video,
audio and text.

4.2 Configurations
Once services are identified, we decompose them and determine
each configuration.

Figure 4. Possible assemblies realizing the video service

In the case of the video service we list three possible assemblies.
The first one is made of two components: a component of color
video emission and a component of color video reception. The
second is also made of two black and white video components:
one for emission and one for reception. Finally the third assembly
is made of these last four components and a black and white
conversion one (fig. 4). Naturally, the compositions listed here are
not exhaustive. The number of configurations proposed by the
designer will depend on the type of applications and on the
context in which they will be used. In our example, we can satisfy
QoS with only few assemblies because we can suppose that there
will be numerous visitors in the museum and that it will always be
possible to use them as relays to reach services. It would not be
the same in a situation where the distances would be more
important and bigger the risk of having an isolated user would be
bigger.

Moreover, we propose to classify these configurations in order to
drive the platform during the choice of the most appropriate
configuration. The designer has to classify the configurations by
QoS level. The assembly in first position is the assembly
providing the result of upper quality and so on. This classification
determines the order in which the configurations will be evaluated
by the platform when a reconfiguration event is raised. Such a
classification allows improving the QoS. Indeed, when a
reconfiguration event is raised, the platform first evaluates the
configuration of upper level to try to improve the QoS, and if it
does not suit, it then evaluates the configurations less classified.
Furthermore this classification allows reducing strongly the
number of solutions to evaluate indeed some works showed that
the research of the optimal assembly is a NP-complete problem
[15] [8] [3].

In the example of the video service, the assembly situated in first
position is the one providing a color video. Then comes the
assembly providing a black and white video. The one using direct
broadcast and the one with relays are equivalent. However to use
a relay allows to balance the responsibility of the network and
when a device is very far from the server, using a relay will
consume fewer resources than maintaining a rather powerful
signal to receive the data.

5. RECONFIGURATION EVENTS
Our applications are supervised by a platform which role is
evaluate the provided QoS and reconfigure the application.
Choices of reconfigurations are based on three levels: 1)
continuity, 2) durability and 3) constraints services (section 2).

Figure 5. Dependences links between action and events

triggering reconfigurations

Here are the three operations that we propose in order to

provide adaptation policy:
- Create a new instance of a service,

- Suppress a new instance of a service,

- Implement a new configuration of a service. By
deploying a new assembly providing the same result but
with different QoS in order to ensure the current
service.

The figure 5 illustrates the dependencies between events likely to
trigger a reconfiguration of the application.

The first and the second operations are due to a change in user’s
needs, environment context or moving of a device. When a new
visitor comes into the museum, the platform deploys the assembly
which provides the video service to this user. Reciprocally, when

a visitor does not want any more this service or when he is out of
the area where this service is interesting, the platform suppresses
it from the host. An environment contextual change can imply a
functional change. For example, if a speech is given into a room
of the museum, it is necessary not to disturb it, so to forbid the
access to the audio service of the application for users entering
into this room and to replace it with a text service. The third
operation is related to a resources’ change on the host onto the
service is running. A too low level of energy, an overload of the
processor, a fall in the network data rate can provide a negative
evolution of the QoS and therefore, imply to provide a new
assembly of components in order to ensure the continuity of the
current service and to preserve the lifetime of the application. In
the previous museum example, when the battery of the peripheral
of the visitor #3 indicates a 50% of remaining charge, the platform
will evaluate the possibility to deploy an assembly consuming less
energy than the current one. For example, if the visitor #3 was

using a color video service, the platform can evaluate the
assembly providing a black and white one (fig. 6).

Figure 6. Reconfiguration caused by resource changes

Figure 7. Reconfiguration caused by host mobility

The mobility has the particularity to provoke the three adaptation
policies. Let’s take the example of the visitor #3 (fig. 7). If he
moves too far from the visitor #2 and can no more reach him, the

part of the assembly deployed on visitor #2’s host has to be
deleted. If visitor #3 goes back and visitor #2 becomes reachable
again, a new instance of the video service has to be deployed on
visitor #2’s host. Consequently, if visitor #3 is near from video
server and if it has enough energy, it is not necessary to use the
visitor #2 as a relay and the platform can directly deploy the
assembly and send a black & white video.

6. CHOICE OF A SOLUTION
The objective of our method is to propose to users a good QoS
and to ensure the continuity of the service, whatever happens.
Moreover, we particularly focus on the case of embedded
peripherals for which the lifetime is essential. Our method
guarantees the durability of the service at a functional and time
point of view. The choice of the solution to deploy will
consequently be guided by two criteria: the quality of the solution
and its durability.

Durability is mainly a resources problem. We must preserve hosts’
resources by implementing solutions adapted to the energy
consumption problem, the power of computation and the network
data rate.

The designer must establish an ID Card for each component and
each host of the application. This ID Card is made of 2 parts:

- A static part listing all characteristics that do not evolve.
For example, for one component, the designer has to
indicate the amount of needed memory and for one host,
its type which it can be: fix, CDC1 or CLDC2. Fixed
hosts have insignificant resources constraints, whereas
CDC or CLDC hosts are the most constrained.

- A dynamic part representing the current state of the
component or the host. Such characteristics evolve
during execution time like state (active/inactive),
memory space, data rate, battery level, CPU charge or
available memory.

These ID Cards allow avoiding compatibilities errors (deployment
of a CDC component on a CLDC capable host) or a too big
component on a host without enough remaining memory. ID Card
will guide the platform’s heuristic to get the best solution.
Optimizing a whole application is too complex problem, when a
reconfiguration event is raised, the platform evaluate only services
currently running on the host where the event comes from. The
heuristic is based on two criteria: the intrinsic QoS and the
durability:),(DuInfQoS =

In previous works, we choose to evaluate the first configuration
with minor change in order to ensure application stability [10].
Nevertheless, both the environment and the time have a negligible
impact on QoS evolution comparatively to the one they have
when mobile peripherals are used.

With the particular context of embedded peripheral, it is not
possible to loose time and energy to grope about in order to find
an optimal solution. We must implement a solution good enough
to rapidly adapt the application to the evolution of the
environment [13].

1 Connected Device Configuration
2 Connected Limited Device Configuration

Our heuristic evaluates solutions according to the classification
made at the second step of the method, and then evaluates the
durability using components’ and hosts’ ID Cards. The algorithm
stops when it finds a solution candidate to be deployed. The last
step consists in ensuring that the selected solution can be
implemented using the topology map of hosts.

In our example, visitors #1, #2 and #3 want to use the video
service. ID Cards of hosts indicate that there is neither energy nor
data rate problem. The solution #1 broadcasting colour video
stream is deployed onto the three hosts. If visitor #3 moves and
becomes out of reach of the video service, the platform is advised
about this move and look for a route to reach it. This route needs
to go through visitor #2. Each peripheral has consumed a bit of
energy. According to the QoS service function, the more durable
solution is one that preserves energy of the host #2. The solution
#2 allows reducing the amount of data to transmit by including a
black and white conversion software component. So, the solution
#2 is deployed with this conversion software component
implemented on visitor #2’s host. Next, this visitor does not want
anymore this video service. However, its position does not change
and visitor #3 still wants to use this video service. As well as
visitor #2’s resources allows it, the solution #2 remain
implemented. But, as soon as an event concerning visitor #2’s
resources is raised, the heuristic looks for a new solution to
deploy, starting by looking for a new relay allowing keeping the
solution #2. If it is not possible, it will check for solution #3.

Reconfigurations events are those presented at figure 5. They are
transmitted to the platform by the software components and the
data flows. Software components and data flows are encapsulated
into containers (called Osagaia for software components and
Korrontea for data flow containers). Both containers are first class
containers. The role of containers is to allow hosts compatibility
(one implementation for each type of host – ie: fixed, CDC or
CLDC). They are the main information source for the platform.
When a container detects an evolution of its context, it raises an
event to inform the platform. This one runs its heuristic in order to
reconfigure the application if needed, ie - suppress/add/move
software components and reconnect them.

7. CONCLUSION AND FUTURE WORK
Pervasive computing is becoming a reality. Nowadays, people can
contact each other at anytime, anywhere with any device. This
brings new challenges to traditional applications. As said in [16],
applications should be context aware because of limited resources
of the devices and the variability of the execution context. [16]
propose to solve the constrained devices problem using a fault-
tolerance driven approach. In [4] authors propose an ILP model to
take into account different context parameters essentially based on
resources constraints. Although theses approaches allow to
provide service adaptation in a seamlessly way to the end user,
they do not take into account the QoS dimension as we define it in
section 2. Our approach monitors and adapts the whole
application since the devices to end users.

So we propose a method allowing to identify all needed
information in order to guaranty the continuity of applications’
services and to maximize their lifetime. The durability is a
fundamental notion with embedded hosts because a high quality
application is useless if it just run for a few time.

The classification step that we propose allows limiting the number
of solutions to be checked when an event occurs and so it avoids
the well knowing NP-complete problem to look for an optimal
assembly in order to reach the best QoS. This classification allows
guiding the choice of the solution to deploy. It is associated to a
durability criterion evaluated with the ID Cards of hosts.

However, it still exist an obvious limit to our method. The
algorithm to select a solution is a heuristic that just evaluates the
QoS of the host where the reconfiguration event occurred, and not
the whole application. When reconfiguring, we offer the
possibility to get the best QoS for one service. The
reconfiguration of one service does not imply the reconfiguration
of another one on another host. But, the modification and de
implementation of the application (its deployment) has
consequences on the execution context because it modifies the
charge of hosts and the network traffic. So, a reconfiguration of
one service may induce the raise of events that will trigger new
reconfigurations.

Future works focus on the design and test of this configuration
choice heuristic. We must specifically work on:

- Does the platform have to manage priorities on events in
order to manage quicker reaction for some of them?

- When an event is managed, do we have to manage those
waiting or ignore them? Doing a reconfiguration modify the
context and consequently some events produced before this
configuration may be obsolete.

- The evaluation function),(DuInf manages intrinsic QoS
and durability. The importance between these to criteria
depends on the application. For example, a video
surveillance application needs to give priority to durability
whereas the one presented for museums visits gives priority
to intrinsic QoS in order to produce good quality
information corresponding to users’ demands.

Even if we do not develop this aspect in this paper, we also
manage the integration of wireless sensors into such applications.
We particularly work with Sun Spots through cooperation with
Sun Microsystems. However such peripherals are very
constrained, they can host software components and do some
local processing. Moreover, they are a good information source
about the environment (temperature, light, movements, etc.) and
can strongly enrich applications. Such hosts can be considered by
the platform as hosts participating to the infrastructure of the
application and so, can be included in software component
deployments.

8. REFERENCES
[1] David, P. C. et T. Ledoux. 2005. Wildcat: a generic

framework for context-aware applications. In S. Terzis et D.
Donsez (Eds.), MPAC, Volume 115 of ACM International
Conference Proceeding Series. 1–7. ACM.

[2] Franken, L. J. N. et B. R. Haverkort. 1997. Quality of
service management using generic modelling and monitoring
techniques. Distributed Systems Engineering. 4, 1 (1997),
28–37.

[3] Garey M. R., Johnson D. S. 1979. Computers and
Interactibility: a guide to the theory of NP-completeness, W.
H. Freeman and Compagny (San Francisco, 1979).

[4] Hens R., Boone B., De Turk F., Dhoelt B. 2007. Runtime
Deployment Adaptation for Resouce Constrained Devices.
IEEE International Conference on Pervasive Services. (2007)
335-340.

[5] Ian D. Chakeres and Elizabeth M. Belding-Royer. 2004.
AODV Routing Protocol Implementation Design. In
Proceedings of the International Workshop on Wireless Ad
Hoc Networking (Tokyo, Japan, March 2004). WWAN’04.

[6] ITU. International Telecommunications Union. Technical
report. (htpp://www.itu.int/net/home/index-fr.aspx).

[7] Karl, H., A. Willig, and A. Wolisz (Eds.). 2004. Wireless
Sensor Networks. In Proceedings of the First European
Workshop on Wireless Sensor Networks (Berlin, Germany,
January 19-21, 2004). EWSN 2004. Volume 2920 of Lecture
Notes in Computer Science. Springer.

[8] Kuipers F., Van Mieghem P. 2002. MAMCRA : a
constrained-based multicast routing algorithm. Computer
Communications. 15, 802-811.

[9] Laplace, S. 2006 Conception d’Architectures Logicielles
pour intégrer la qualité de service dans les applications
multimédias réparties. Doctoral Thesis. Université de Pau et
des Pays de l’Adour.

[10] Laplace, S., Dalmau M., Roose P.. 2007. Modèle de qualité
de service pour les applications multimédias reconfigurables.
Numéro Spécial Revue ISI Conception : patrons et
spécifications formelles. 12,4 (2007), 115–136.

[11] Louberry, C., Dalmau M., Roose P. 2008. Architecture
logicielle pour des applications hétérogènes, distribuées et
reconfigurables. In Proceedings of the 8th Conférence
Internationale sur les Nouvelles TEchnologies de la
REpartition (Lyon, France, 2008). NOTERE 2008.

[12] Moomena, F. J. 2007 Modélisation des architectures
logicielles dynamiques : application à la gestion de la qualité
de service des applications à base de services Web. Doctoral
Thesis. Institut National Polytechnique de Toulouse.

[13] Tournier J. C., Babau J. P., Olive V. 2005. Qinna, a
component-based QoS architecture. In Proceedings of the 8th
International Symposium on Component Based Software
Engineering. (St. Louis MO, 14-15 May 2005). CBSE’05.
Lecture notes in computer science. Springer.

[14] Vogel, A., B. Kerhervé, G. von Bochmann, et J. Gecsei.
1995. Distributed multimedia and qos : A survey. IEEE
MultiMedia. 2, 2, 10–19.

[15] Wang Z., Crowcroft J. 1996. Quality-of-service routing for
supporting multimedia applications. Journal of Selected
Areas in Communications. 14, 7 (September, 1996), 1228-
1234.

[16] Zheng D., Wang J., Jia Y., Han W., Zou P. 2007.
Deployment of Context-Aware Component-Based
Applications Based on Middleware. UIC. Volume 4611 of
Lecture Notes in Computer Science. Springer.

