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Abstract

Optimal design under a cost constraint is considered, with a scalar coefficient setting the
compromise between information and cost. It is shown that for suitable cost functions,
by increasing the value of the coefficient one can force the support points of an optimal
design measure to concentrate around points of minimum cost. An example of adaptive
design in a dose-finding problem with a bivariate binary model is presented, showing the
effectiveness of the approach.
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1. Introduction and motivation

In the papers (Dragalin and Fedorov, 2006; Dragalin et al., 2008) the authors make
a stimulating step towards a clear formalization of the necessary compromise between
individual and collective ethics in experimental design for dose-finding studies. The idea
is to use a penalty function that accounts for poor efficacy and for toxicity, and to construct
a penalized D-optimal design (or equivalently a cost-constrained D-optimal design, the
cost being defined through the penalty function, see (Fedorov and Hackl, 1997, Chap. 4)).
Using a parametric model for the dose/efficacy-toxicity responses, a Gumbel or Cox model
in (Dragalin and Fedorov, 2006) or a bivariate probit model in (Dragalin et al., 2008), the
Fisher information matrix can be calculated and locally optimal designs can be obtained
through (now standard) algorithmic methods. This shows a neat advantage over more
standard approaches. Indeed, D-optimal design alone (and its extensions to Bayesian,
minimax and adaptive variants) favors collective ethics in the sense that future patients
will benefit from the information collected in the trials, but it neglects individual ethics

IThis work was partly accomplished while the author was invited at the Isaac Newton Institute for
Mathematical Sciences, Cambridge, UK, in July 2008. The support of the Newton Institute and of CNRS
are gratefully acknowledged.

Email address: pronzato@i3s.unice.fr (Luc Pronzato)

Preprint submitted to JSPI July 3, 2009



in the sense that the patients enroled in the trials may receive doses with low efficacy
or high toxicity. In contrast, dose-finding approaches based on up-and-down (Kpamegan
and Flournoy, 2001) or bandit methods (Hardwick and Stout, 2001) focuss on individual
ethics by determining the best dose associated with some predefined criterion (e.g., the
probability of efficacy and no toxicity) but may result in a poor learning from the trial
and thus in poorly adapted dosage regimen for future individuals. By a suitable tuning of
the penalty function, the approach used in (Dragalin and Fedorov, 2006; Dragalin et al.,
2008) makes a clear compromise between the efficient treatment of individuals in the
trial (by preventing the use of doses with low efficacy or high toxicity) and the precise
estimation of the model parameters (accompanied with measures of statistical accuracy),
to be used for making efficient decisions for future treatments. As such, it has a great
potential in combining traditional phase I and phase II clinical trials into a single one,
thereby accelerating the drug development process.

The aim of the present paper is to introduce flexibility in setting the compromise
between the information gained (in terms of precision of parameter estimation) and the
cost of the experiment (in terms of poor success for the patients enroled in the trial). We
show in particular that, for suitable penalty functions, by increasing the weight set on the
penalty one guarantees that all doses in the experiment have a small cost (and concentrate
around the optimal dose when this one is unique). This permits the avoidance of extreme
doses generally suggested by optimal design for parameter estimation.

Penalized optimal design is introduced in Sect. 2, where the two equivalent formu-
lations of the constrained design problem considered in (Dragalin and Fedorov, 2006;
Dragalin et al., 2008) are presented. The maximization of information under a cost con-
straint is considered in Sect. 3. An example with a bivariate binary model is presented in
Sect. 4, illustrating the effectiveness of the approach.

2. Penalized D-optimal design

The setting is rather standard for optimal design of experiments. The admissible
domain for the experimental variables x (design points) is a compact subset of Rd denoted
by X , and we denote by θ ∈ Rp the (p-dimensional) vector of parameter of interest in a
parametric model generating the log-likelihood l(Y, x; θ) for an observation Y at the design
point x. We suppose that θ ∈ Θ, a compact subset of Rp. For N independent observations
Y = (Y1, . . . , YN) at non-random design points X = (x1, . . . , xN), the log-likelihood at θ is
l(Y,X; θ) =

∑N
i=1 l(Yi, xi; θ). Let M(X, θ) denote the corresponding Fisher information

matrix, M(X, θ) = −IEθ

{
∂2l(Y,X; θ)/(∂θ∂θ>)

}
. Because of the independence of the Yi’s,

M(X, θ) can be written as M(X, θ) =
∑N

i=1 µ(xi, θ). When N(xi) denotes the number
of observations made at x = xi, we get the following normalized information matrix per
observation M(ξ, θ) = (1/N)M(X, θ) =

∑K
i=1[N(xi)/N ] µ(xi, θ), where K is the number

of distinct design points and ξ denotes the design measure (a probability measure on X )
that puts mass N(xi)/N at xi. Following the usual approximate design approach, we
shall relax the constraints on design measures and consider ξ as any element of Ξ, the set
of probability measures on X , so that M(ξ, θ) =

∫
X µ(x, θ) ξ(dx).
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In a regression model with independent and homoscedastic observations satisfying
IEθ(Y |x, θ) = η(x, θ), with η(x, θ) differentiable with respect to θ for any x, we have

µ(x, θ) = I ∂η(x, θ)

∂θ

∂η(x, θ)

∂θ>
(1)

with I =
∫

[ϕ′(t)/ϕ(t)]2 ϕ(t) dt the Fisher information for location, where ϕ(·) is the
probability density function of the observation errors and ϕ′(·) its derivative.

In a dose-response problem with single response Y ∈ {0, 1} (efficacy or toxicity re-
sponse at the dose x for instance) and Prob{Y = 1|x, θ} = π(x, θ), we have l(Y, x; θ) =
Y log[π(x, θ)] + (1− Y ) log[1− π(x, θ)] . Therefore, assuming that π(x, θ) is differentiable
with respect to θ for any x,

µ(x, θ) =
∂π(x, θ)

∂θ

∂π(x, θ)

∂θ>
1

π(x, θ)[1− π(x, θ)]
.

Bivariate extensions, where both efficacy and toxicity responses are observed at a dose
x, are considered in (Dragalin and Fedorov, 2006) with Gumbel and Cox models and in
(Dragalin et al., 2008) with a bivariate probit model. See also the example in Sect. 4.
Besides a few additional technical difficulties, the main difference with the single response
case is the fact that µ(x, θ) may have rank larger than one, so that less than p support
points in ξ may suffice to estimate θ consistently. The same situation occurs for regression
models when dim(η) > 1 so that (1) may have rank larger than one. We shall always
assume that µ(x, θ) is bounded on X .

In its now traditional form, local optimal design consists in determining a measure ξ∗

that maximizes a concave function Ψ(·) of the Fisher information matrix M(ξ, θ) for a
given value of θ. We assume that Ψ(·) is monotone for the Loewner ordering (therefore,
Ψ(aM) is a non-decreasing function of a ∈ R+ for any non-negative definite matrix M)
and shall pay special attention to local D-optimal design, for which Ψ(M) = log detM.
We shall denote Λmin(M) and Λmax(M) the minimum and maximum eigenvalues of the
matrix M.

In many circumstances, besides the optimality criterion ψ(ξ) = Ψ[M(ξ, θ)], it is desir-
able to introduce a constraint of the form Φ(ξ, θ) ≤ C for the design measure, accounting
for the cost of the experiment. In dose-finding problems, the introduction of such a con-
straint allows one to take individual ethical concerns into account. For instance, when
both the efficacy and toxicity responses are observed, one can relate Φ(ξ, θ) to the prob-
ability of success (efficacy and no toxicity) for a given dose, as done in (Dragalin and
Fedorov, 2006; Dragalin et al., 2008). See also Sect. 4. We suppose that the cost function
Φ(ξ, θ) is linear in ξ, that is

Φ(ξ, θ) =

∫

X
φ(x, θ) ξ(dx) .

It simply expresses that the total cost of an experiment with observations at X =
(x1, . . . , xN) is the sum of the costs induced by single observations at the xi’s. The
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extension to nonlinear constraints is considered, e.g., in (Cook and Fedorov, 1995) and
(Fedorov and Hackl, 1997, Chap. 4). Also, we shall restrict our attention to the case
where a single (scalar) constraint is present, some of the issues caused by the presence
of several constraints are addressed in the same references. We shall always assume that
φ(x, θ) is bounded on X .

The fact that a single cost function is present permits to consider the problem of max-
imizing information per cost-unit, which can be formulated as a design problem without
constraint. (We shall see in Sect. 3 that this is different, however, from maximizing infor-
mation per observation under a cost constraint of the form Φ(ξ, θ) ≤ C.) Suppose that
φ(x, θ) > 0 for all x ∈ X . The approach used in (Dragalin and Fedorov, 2006; Dragalin
et al., 2008) formulates the problem as follows.

Problem P1(θ): maximize the total information for N observations, that is, maximize
Ψ[NM(ξ, θ)] with respect to N and ξ ∈ Ξ satisfying the total cost constraint NΦ(ξ, θ) =
N

∫
X φ(x, θ) ξ(dx) ≤ C.

By considering this problem more closely, one can show that it is equivalent to
another design problem without constraint. Indeed, for any ξ, the optimal value of
N is N∗(ξ) = C/Φ(ξ, θ), so that an optimal measure ξ∗ ∈ Ξ for P1(θ) maximizes
Ψ[C M(ξ, θ)/Φ(ξ, θ)]. Denote now ν = Nξ, which is a mesure on X not normalized
to 1; we have

∫
X ν(dx) = N which becomes a free variable. P1(θ) is then equivalent to

the maximization of Ψ[M(ν, θ)] under the constraint Φ(ν, θ) ≤ C. The constraint is sat-
urated at the optimum, i.e. Φ(ν∗, θ) = C, which we can thus set as an active constraint.
Imposing Φ(ν, θ) = C and defining ξ′(dx) = ν(dx)φ(x, θ)/C we obtain

∫
X ξ′(dx) = 1 and

M(ν, θ) =
∫
X µ(x, θ) ν(dx) =

∫
X C [µ(x, θ)/φ(x, θ)] ξ′(dx) = M′(ξ′, θ). The constraint

design problem P1(θ) is thus equivalent to a standard unconstrained one, with µ(x, θ)
simply replaced by C µ(x, θ)/φ(x, θ). Call P2(θ) this problem.

Problem P2(θ): maximize Ψ[M′(ξ, θ)] with respect to ξ ∈ Ξ.

The equivalence between P1(θ) and P2(θ) is further evidenced by considering the
necessary and sufficient conditions for optimality expressed by the Equivalence Theorem,
see Kiefer and Wolfowitz (1960) for D-optimality and, e.g., Pukelsheim (1993) for a general
formulation. For P1(θ) with ψ(ξ) = log det[M(ξ, θ)/Φ(ξ, θ)], the measure ξ∗ is optimal if
and only if

∀x ∈ X , trace[µ(x, θ)M−1(ξ∗, θ)] ≤ p
φ(x, θ)

Φ(ξ∗, θ)
(2)

(note that the condition does not depend on the normalization constant
∫
X ξ∗(dx)). For

P2(θ) with ψ(ξ′) = log detM′(ξ′, θ), ξ′∗ is optimal in Ξ if and only if

∀x ∈ X , C trace

[
µ(x, θ)

φ(x, θ)
M′−1

(ξ′∗, θ)
]
≤ p (3)

(note that M′ is proportional to C which thus cancels out). The two conditions are
equivalent: (3) can be written as (2) by setting ξ∗(dx) = C ξ′∗(dx)/φ(x, θ).
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One should note that the value of C plays no role in the definition of optimal designs
for P1(θ) and P2(θ). For the dose-response problem considered in (Dragalin and Fedorov,
2006; Dragalin et al., 2008) this has the important consequence that the prohibition of
excessively low (with poor efficacy) or high (with high toxicity) doses can only be obtained
by an ad-hoc modification of the penalty function φ(x, θ). Indeed, this is the only way to
modify the optimal design and hopefully to change its support. This can be contrasted
with the solution of the constrained design problem that we present in the next section
and then consider in the rest of the paper.

3. Maximizing information per observation under cost constraint

3.1. Problem statement

A direct formulation of the optimal design problem under constraint is as follows.

Problem P3(θ): maximize Ψ[M(ξ, θ)] with respect to ξ ∈ Ξ under the constraint
Φ(ξ, θ) ≤ C.

We say that a design measure ξ ∈ Ξ is θ-admissible if Φ(ξ, θ) ≤ C. We suppose that a
strictly θ-admissible measure exists in Ξ: Φ(ξ, θ) < C for some ξ ∈ Ξ. Then, a necessary
and sufficient condition for the optimality of a θ-admissible ξ∗ ∈ Ξ is the existence of
λ∗ ≥ 0 such that λ∗ [C − Φ(ξ∗, θ)] = 0 with ξ∗ = ξ∗(λ∗) maximizing the design criterion
Lθ(ξ, λ

∗) = Ψ[M(ξ, θ)] + λ∗ [C − Φ(ξ, θ)] (the Lagrangian of the problem) with respect
to ξ ∈ Ξ. Moreover, the Lagrange coefficient λ∗ minimizes Lθ[ξ

∗(λ), λ] with respect to
λ ∈ R+. When Ψ(·) = log det(·), the necessary and sufficient condition for the optimality
of a θ-admissible ξ∗ ∈ Ξ becomes

∃λ∗ ≥ 0 such that





λ∗ [C − Φ(ξ∗, θ)] = 0
and
∀x ∈ X , trace[µ(x, θ)M−1(ξ∗, θ)] ≤ p + λ∗ [φ(x, θ)− Φ(ξ∗, θ)] .

(4)
In practice, ξ∗ can be determined by maximizing

Hθ(ξ, λ) = Ψ[M(ξ, θ)]− λ Φ(ξ, θ) (5)

for an increasing sequence (λi) of Lagrange coefficients λ, starting at λ0 = 0 and stopping
at the first λi such that the associated optimal design ξ∗ satisfies Φ(ξ∗, θ) ≤ C, see,
e.g., Mikulecká (1983) (for C large enough, the unconstrained optimal design for Ψ(·)
is optimal for the constrained problem). The parameter λ can thus be used to set the
tradeoff between the maximization of Ψ[M(ξ, θ)] (gaining information) and minimization
of Φ(ξ, θ) (reducing cost). It can be considered as a penalty coefficient, and φ(·, θ) as a
penalty function that penalizes a design for the cost it induces. An optimal design for
Hθ(ξ, λ) is thus called a penalized optimal design.

Remark 1.
One may notice that maximizing Hθ(ξ, λ) for λ ≥ 0 is equivalent to maximizing (1 −
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γ) Ψ[M(ξ, θ)]+γ [−Φ(ξ, θ)] with γ = λ/(1+λ) ∈ [0, 1) (one may refer to Cook and Wong
(1994) for the equivalence between constrained and compound optimal designs).

Similarly to the case of unconstrained optimal design with a strictly concave criterion,
the optimal matrix M(ξ∗, θ) is unique when the function Ψ(·) is strictly concave on the set
of positive definite matrices (but the optimal design measure ξ∗ is not necessarily unique).

3.2. Properties

Let ξ∗(λ) denote an optimal design for Hθ(ξ, λ) given by (5). One can easily check
that both Ψ{M[ξ∗(λ), θ]} and Φ[ξ∗(λ), θ] are non-increasing functions of λ, see Cook and
Wong (1994) for examples. Two questions naturally arise concerning the tradeoff between
maximization of Ψ[M(ξ, θ)] and minimization of Φ(ξ, θ).

• (i) How fast does the cost Φ(ξ, θ) decrease when λ increases?

• (ii) How big is the loss of information (decrease of Ψ[M(ξ, θ)]) when Φ(ξ, θ) de-
creases?

Suppose that µ(x, θ) and φ(x, θ) are continuous in x ∈ X (X is a compact subset of Rd).
For any ξ ∈ Ξ, we define

∆θ(ξ) = Φ(ξ, θ)− φ∗θ ,

where
φ∗θ = φ(x∗, θ) with x∗ = x∗(θ) = arg min

x∈X
φ(x, θ) . (6)

Note that we do not assume here that x∗ is unique.
We focuss our attention on D-optimality and denote by ξ∗D a D-optimal design that

maximizes log detM(ξ, θ) with respect to ξ ∈ Ξ. We assume that ∆θ(ξ
∗
D) > 0 (otherwise

ξ∗D maximizes log detM(ξ, θ) − λΦ(ξ, θ) for any λ ≥ 0) and that log detM(ξ∗D, θ) >
0 (otherwise M(ξ, θ) is singular for any ξ ∈ Ξ). We then have the following results
concerning the two questions above.

Proposition 1. Let ξ∗ = ξ∗(λ) be an optimal design that maximises Hθ(ξ, λ) given by
(5) with respect to ξ ∈ Ξ, with Ψ(M) = log detM. It satisfies
(i) ∆θ(ξ

∗) ≤ p/λ;
(ii) for any ξ such that ∆θ(ξ) > 0, any a > 0 and any λ ≥ a/∆θ(ξ),

log detM(ξ∗, θ) ≥ log detM(ξ, θ) + p log{a/[λ∆θ(ξ)]} − a , (7)

moreover, Λmin[M(ξ∗, θ)] > δ/(p + λ[φ̄θ − φ∗θ]) for some positive constant δ, where
φ̄θ = maxx∈X φ(x, θ).

The proof is given in Appendix.

Property (i) shows the guaranteed cost-reduction obtained when λ is increased and (ii)
shows that Λmin[M(ξ∗, θ)] decreases not faster than 1/λ. Notice that taking ξ = ξ∗D in (7)
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ensures detM(ξ∗, θ) ≥ det[M(ξ∗D, θ) exp(−a/p)] for λ = a/∆θ(ξ
∗
D) and log detM(ξ∗, θ) ≥

log detM(ξ∗D, θ) + p log[∆θ(ξ
∗)/∆θ(ξ

∗
D)] for any λ ≥ 0 (take a = λ∆θ(ξ

∗) in (16)).

By increasing λ in (5) one reduces the total cost of the experiment, but this does
not necessarily imply that the cost φ(x, θ) will be small for every support point of the
experiment. However, the property below shows that for suitable penalty functions the
additional flexibility offered by the tuning parameter λ in (5) compared to problems P1(θ)
and P2(θ) can be used to obtain a small cost value φ(x̂i, θ) at every support point x̂i of
an optimal design ξ∗(λ).

Proposition 2. Let ξ∗ = ξ∗(λ) be an optimal design that maximises Hθ(ξ, λ) given by
(5) with respect to ξ ∈ Ξ, with Ψ(M) = log detM. Take any design measure ξλ ∈ Ξ such
that ∆θ(ξλ) ≥ p/λ. The cost at any support point x̂ of ξ∗ satisfies

φ(x̂, θ) ≤ φ∗θ + 2∆θ(ξλ) trace[µ(x̂, θ)M−1(ξλ, θ)] . (8)

The proof is given in Appendix.

Remark 2. When x∗ is unique, Proposition 2 implies that if there exist designs ξλ ∈ Ξ
such that

∆θ(ξλ) ≥ p/λ and ∀ε > 0 , lim sup
λ→∞

sup
‖x−x∗‖>ε

2∆θ(ξλ) trace[µ(x, θ)M−1(ξλ, θ)]

φ(x, θ)− φ∗θ
< 1 , (9)

then the supporting points of ξ∗ converge to x∗ as λ →∞. The choice of suitable designs
ξλ is central for testing if (9) is satisfied, designs with support points in the neighborhood of
x∗ being good candidates, see Example 1 and Sect. 4. Notice that, when rank[µ(x, θ)] < p,
for (9) to be satisfied the ξλ’s must necessarily have support points that approach x∗ as
λ →∞. Indeed, suppose that it is not the case. It means that there exists γ > 0 such that,
for all λ larger than some λ0, the support points x

(i)
λ of ξλ satisfy ‖x(i)

λ −x∗‖ > γ. Replace
X by X ′ = X \B(x∗, γ)∪{x∗}, that is, remove the ball B(x∗, γ) = {x : ‖x−x∗‖ ≤ γ} from
X but keep x∗. Then, ξλ is a design measure on X ′ for λ > λ0 and (9) would indicate
that the optimal design ξ∗ on X ′ is the delta measure δ∗x, which is impossible since the
optimal information matrix must have full rank. The same is true if the designs ξλ have
one support point at x∗ and the others outside the ball B(x∗, γ) for λ larger than some
λ0. Finally, note that the support points of ξ∗(λ′) for λ′ > λ must also satisfy (8) for the
same ξλ (since ∆θ(ξλ) > p/λ′).

For dose-response problems, the property (9) has the important consequence that
excessively high or low doses can be prohibited by choosing C small enough in P3(θ) or,
equivalently, λ large enough in (5). Its effectiveness very much depends on the choice of
the penalty function φ(·, θ), and in particular on its local behavior around x∗. Contrary to
what intuition might suggest, it requires φ(·, θ) to be sufficiently flat around x∗. Indeed,
in that case a design ξ supported in the neighborhood of x∗ can at the same time have
a small cost Φ(ξ, θ) and be dispersed enough to carry significant information through
log detM(ξ, θ). This is illustrated by the example below.

7



Example 1.

The example, simple enough to make the optimal designs calculable explicitly, illus-
trates the influence of λ on the support points of an optimal design for (5) (or, equiv-
alently, the influence of C in problem P3(θ)). We consider a linear regression model
η(x, θ) = f>(x)θ with homoscedastic errors and f(x) = (1 x x2)>, so that

µ(x) =




1
x
x2


 (

1 x x2
)

=




1 x x2

x x2 x3

x2 x3 x4


 .

Note that µ(·) does not depend on θ so that we write µ instead of µθ; the same will be
true for the penalty functions considered in the example, and we shall write φ(x) instead
of φ(x, θ).

We take X = [−1, 1], Ψ(·) = log det(·) and consider several penalty functions φ(x),
symmetric with respect to x = 0 where their reach their minimum value: φ(x) = 1 + x2q,
q = 1, 2, 3, 4; φ(x) = 1 + x2 + x4; φ(x) = 1/(1− x2); the minimum cost φ∗ equals one for
each of them. For any λ, the optimal designs ξ∗ for (5) are symmetric with respect to 0
and take the form

ξ∗ =

{ −z 0 z
1−α

2
α 1−α

2

}
, (10)

where the first row gives the support points and the second their respective weights. This
gives detM(ξ∗) = α(1 − α)2z6. The D-optimal design ξ∗D corresponds to z = 1 and
α = 1/3.

For φ(x) = 1 + x2q, q integer, the optimal designs for problems P1 and P2 correspond
to α = min{q/[3(q − 1)], 1/2} and z = min{[3/(2q − 3)]1/2q, 1} (note that z < 1 only for
q ≥ 4). The penalty functions φ(x) = 1 + x2 + x4 and φ(x) = 1/(1− x2) respectively give
the optimal designs defined by (α = 3/5, z = 1) and (α = 5/9, z =

√
3/5).

The optimal designs ξ∗ for P3 obtained for the different φ(·) mentioned above are given
in Table 1, together with the optimal value λ∗(C) of the Lagrange coefficient associated
with C. When there is no solution, it means that λ∗(C) = ∞. When there is one, then
Φ(ξ∗) = C.

In order to check if the support points of ξ∗ concentrate around x∗ = 0 when λ increases
(without computing ξ∗), we use (8) with the test designs

ξλ = ξλ(γ) =

{ −γ 0 γ
1/3 1/3 1/3

}
.

For φ(x) = 1 + x2q we get ∆(ξλ) = 2γ2q/3 and the condition (8) then gives x̂2q ≤
[4γ2q/3] trace[µ(x̂)M−1(ξλ)]. Noticing that trace[µ(γ t)M−1(ξλ)] = P (t) = 3(1 − 3/2t2 +
3/2t4) independently of γ (a property of D-optimal design for polynomial regression), we
obtain that a support point x̂ of ξ∗ must satisfy t2q ≤ 4P (t)/3, with t = |x̂|/γ. For q = 3
we obtain t ≤ [1+(1+β1/3)2]1/2/β1/6 with β = 4+2

√
2, that is t . 2.2252. For q = 4, we

get t ≤ √
2. Since we need to have ∆(ξλ) ≥ p/λ = 3/λ, we take γ = [9/(2λ)]1/(2q) (which
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corresponds to α = 1 and ξ̃λ = ξλ in the proof of Proposition 1-(ii)). It gives |x̂| ≤ x̂max

with x̂max ' 2.860 λ−1/6 for q = 3 and x̂max =
√

2[9/(2λ)]1/8 ' 1.707 λ−1/8 for q = 4. This
is consistent with the rate of decrease of z in Table 1 when C tends to 1 (and λ∗(C) tends
to infinity). When q = 1, 2 all t are admissible and we cannot obtain a bound on |x̂|; the
same situation occurs for the penalty function φ(x) = 1 + x2 + x4.

The case φ(x) = 1/(1− x2) illustrates that it is the local behavior of φ(x) around the
minimum x∗ that influences the support of ξ∗ when λ tends to infinity. Indeed, 1/(1−x2)
tends to infinity for x tending to±1 but equals 1+x2+x4+O(x6) around x∗ = 0. Condition
(8) then becomes φ(γt)− φ(0) = γ2t2/(1− γ2t2) ≤ 2 ∆(ξλ) P (t) = (4/3)γ2P (t)/(1− γ2).
The bound obtained for t now depends on γ; the best bound (minimum) for |x̂| is x̂max '
0.9649, obtained at γ ' 0.7385, and ∆(ξλ) ≥ p/λ imposes λ & 3.7516. Therefore, we only
learn from (8) that the support of ξ∗ is included in [−0.9649, 0.9649] for λ large enough.
This is consistent with the behavior of the support points −z, z of ξ∗ as λ tends to infinity,
which do not converge to zero (limλ→∞ z = limC→1+ z = 1/

√
3, see Table 1). ¤

3.3. Nonlinear cost-constrained design

In a nonlinear situation, like in the example presented in Sect. 4, where M(ξ, θ) and
Φ(ξ, θ) depend on θ, robustness with respect to misspecifications of θ can be achieved by
considering average-optimal design. Problem P3(θ) is then transformed into: maximize
IEθ{Ψ[M(ξ, θ)]} with respect to ξ ∈ Ξ under the constraint IEθ{Φ(ξ, θ)} ≤ C, where the
expectation IEθ is calculated for some prior probability measure ν for θ. For D-optimality,
the optimality condition (4) becomes

∃λ∗ ≥ 0 such that





λ∗ [C − IEθ{Φ(ξ∗, θ)}] = 0
and
∀x ∈ X , IEθ{trace[µ(x, θ)M−1(ξ∗, θ)]} ≤

p + λ∗ IEθ{φ(x, θ)− Φ(ξ∗, θ)} .

Apart from additional numerical cost (which remains reasonable when ν is a discrete
measure with a limited number of support points), the introduction of a prior probability
for θ does not raise any special difficulty. This is used by Haines et al. (2003), with
φ(x, θ) = II[QR(θ),∞)(x), where IIA(x) is the indicator function of the set A (1 if x ∈ A,
0 otherwise) and QR(θ) is a quantile of the probability of toxicity, parameterized by
θ, defining the maximum acceptable probability of toxicity (note that IEθ{φ(x, θ)} =
ν{QR(θ) ≤ x}, the prior probability that x exceeds QR).

Another common approach to overcome the issue of dependence of the optimum design
in θ consists in designing the experiment sequentially. In adaptive D-optimal design for
instance, the design point after N observations is taken as

xN+1 = arg max
x∈X

trace[µ(x, θ̂N)M−1(ξN , θ̂N)] , (11)

where θ̂N is the current estimated value of θ. By alternating between estimation based
on previous observations and determination of the next design point where to observe,

9



φ(x) C λ∗(C) α z
1 + x2 5/3 ≤ C 0 1/3 1

1 < C ≤ 5/3 5−3C
(C−1)(2−C)

2− C 1

C ≤ 1 ∞ — no solution —

1 + x4 5/3 ≤ C 0 1/3 1
4/3 ≤ C ≤ 5/3 5−3C

(C−1)(2−C)
2− C 1

1 < C ≤ 4/3 3/[2(C − 1)] 2/3 [3(C − 1)]1/4

C ≤ 1 ∞ — no solution —

1 + x6 5/3 ≤ C 0 1/3 1
3/2 ≤ C ≤ 5/3 5−3C

(C−1)(2−C)
2− C 1

1 < C ≤ 3/2 1/(C − 1) 1/2 [2(C − 1)]1/6

C ≤ 1 ∞ — no solution —

1 + x8 5/3 ≤ C 0 1/3 1
14/9 ≤ C ≤ 5/3 5−3C

(C−1)(2−C)
2− C 1

1 < C ≤ 14/9 3/[4(C − 1)] 4/9 [9(C − 1)/5]1/8

C ≤ 1 ∞ — no solution —

1 + x2 + x4 7/3 ≤ C 0 1/3 1
1 < C ≤ 7/3 7−3C

(C−1)(3−C)
(3− C)/2 1

C ≤ 1 ∞ — no solution —

1/(1− x2) 1 < C 2
C(C−1)

C
3C−2

(3C−2)1/2

(3C)1/2

C ≤ 1 ∞ — no solution —

Table 1: Optimal designs ξ∗ for problem P3 in Example 1, see (10). The optimal support points ±z
concentrate around 0 when λ∗(C) →∞ for the penalty functions 1 + x4, 1 + x6 and 1 + x8.
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one forces the empirical design measure to progressively adapt to the correct (true) value
of the model parameters. Adaptive design is considered in (Dragalin and Fedorov, 2006;
Dragalin et al., 2008), but the convergence of the procedure (strong consistency of the
parameter estimator and convergence of the empirical design measure to the optimal
non-sequential design for the true value of the model parameters) is left as an open issue.

The difficulty of proving the consistency of the estimator when design variables are
sequentially determined is usually overcome by considering an initial experiment (non
adaptive) that grows in size when the total number of observations increases, see, e.g.,
Chaudhuri and Mykland (1993). Although this number is often severely limited in prac-
tise, especially for clinical trials, we think that it is reassuring to know that, for a given
initial experiment, adaptive design guarantees suitable asymptotic properties under rea-
sonable conditions. Using simple arguments, one can show that this is indeed the case
when the design space is finite, which forms a rather natural assumption in the context of
clinical trials. The case of adaptive D-optimal design is considered in (Pronzato, 2009b)
(notice that is also covers the situation considered by Dragalin and Fedorov (2006); Dra-
galin et al. (2008), which can be formulated as a standard D-optimal design problem).

In the case of adaptive penalized D-optimal design, the design point after N observa-
tions is taken as

xN+1 = arg max
x∈X

{
trace[µ(x, θ̂N)M−1(ξN , θ̂N)]− λN φ(x, θ̂N)

}
. (12)

Following an approach similar to that in (Pronzato, 2009b), one can show that when X
is finite, λN is the optimal Lagrange coefficient for problem P3(θ̂

N), and under rather
standard regularity assumptions, this procedure is asymptotically “optimal” in the sense
that the estimated value of the parameters (by least-squares in a nonlinear regression
model or by maximum-likelihood in Bernoulli trials) converges a.s. to its true value θ̄
and the information matrix tends a.s. to the penalized D-optimal matrix at θ̄ as N →
∞, see Pronzato (2009a). (Note that the true optimal design for sequential dependent
observations is extremely difficult to construct, see, e.g., Gautier and Pronzato (1998,
2000) for suboptimal attempts.) Moreover, the estimator is asymptotically normal, with
variance-covariance matrix given by the inverse of the usual information matrix, similarly
to the non-adaptive case, see Pronzato (2009a). The strong consistency of θ̂N is preserved
when λN is taken as a control parameter that tends to infinity not too fast (more slowly
than N/(log log N)). As in (Pronzato, 2000), by letting λN tend to infinity one focusses
more and more on cost minimization and thus obtain design measures that converge
weakly to the delta measure at x∗ = arg minx∈X φ(x, θ̄) (and when, moreover, the property
(9) is satisfied, all design points tend to concentrate around x∗).

As an illustration, an example with a nonlinear model with binary responses is con-
sidered in the next section, first for local penalized optimal design and then for adaptive
penalized optimal design through simulations.
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4. Example: Cox model for efficacy-toxicity response

The example is taken from (Dragalin and Fedorov, 2006) and concerns a problem with
bivariate binary responses. Let Y (respectively Z) denote the binary outcome indicating
efficacy (resp. toxicity) for a trial at dose x. The set of available doses consists of 11 points
equally spaced in the interval [−3, 3], X = {x(1), . . . , x(11)}, x(i) < x(i+1), i = 1, . . . , 10.
We write Prob{Y = y, Z = z|x, θ} = πyz(x, θ), Y, y, Z, z ∈ {0, 1}. The following six-
parameter model is used in (Dragalin and Fedorov, 2006) (we refer to that paper for
motivations and justifications):

π11(x, θ) =
ea11+b11 x

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

π10(x, θ) =
ea10+b10 x

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

π01(x, θ) =
ea01+b01 x

1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

π00(x, θ) =
(
1 + ea01+b01 x + ea10+b10 x + ea11+b11 x

)−1

with θ = (a11, b11, a10, b10, a01, b01)
>. The log-likelihood function of a single observation

(Y, Z) at dose x is then l(Y, Z, x; θ) = Y Z log π11(x, θ) + Y (1 − Z) log π10(x, θ) + (1 −
Y )Z log π01(x, θ) + (1− Y )(1−Z) log π00(x, θ) and elementary calculations show that the
contribution to the Fisher information matrix is

µ(x, θ) =
∂p>(x, θ)

∂θ

(
P−1(x, θ) + [1− π11(x, θ)− π10(x, θ)− π01(x, θ)]−111>

) ∂p(x, θ)

∂θ>

where p(x, θ) = [π11(x, θ), π10(x, θ), π01(x, θ)]>, P(x, θ) = diag{p(x, θ)} and 1 = (1, 1, 1)>.
Note that µ(x, θ) is generally of rank 3. As in (Dragalin and Fedorov, 2006), we take
θ = (3, 3, 4, 2, 0, 1)>. The D-optimal design is then supported on x(1), x(4), x(5) and x(10)

with respective weights 0.3318, 0.3721, 0.1259 and 0.1701.
Next section illustrates how a locally optimal design for (5) depends on the choice of

λ and φ.

4.1. Locally optimal design

We first choose a penalty function given by the inverse of the probability π10(x, θ) of
efficacy and no toxicity (probability of success) and take

φ1(x, θ) = π−1
10 (x, θ) .

The Optimal Safe Dose (OSD), maximizing π10(x, θ), is x(5) = −0.6. Figure 1 presents
the optimal designs ξ∗(λ) for λ varying between 0 and 100 along the horizontal axis. The
weight associated with each x(i) on the vertical axis is proportional to the thickness of
the plot. The design measure tends to give more and more weight to the OSD x(5) as λ
increases, but some support points remain far from x(5).
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Figure 1: Optimal designs ξ∗(λ) as function of λ ∈ [0, 100] for the cost function π−1
10 (x, θ): each horizontal

dotted line corresponds to a point in X , the thickness of the plot indicates the associated weight.

Consider now the cost function

φ2(x, θ) = {π−1
10 (x, θ)− [max

x
π10(x, θ)]−1}2 , (13)

also related to the probability of success, but more flat than π−1
10 (x, θ) around its minimum

(at the OSD). Using the condition (8) with the test designs ξλ,1, giving weights (1−α)/2, α
and (1−α)/2 at x(4), x(5) and x(6) respectively, and ξλ,2, giving weights 1−β and β at x(4)

and x(5) respectively, we obtain that the support of ξ∗(λ) is included in {x(4), x(5), x(6)} for
α & 0.9993 and β & 0.4508, showing that the optimal designs concentrate on three doses
around the optimal one when λ is large enough. Figure 2 presents the optimal designs
ξ∗(λ) for λ varying between 0 and 100 along the horizontal axis. It shows that for λ & 75
the optimum designs are supported on x(4) and x(6) only, with weights approximately 1/2
each, that is, all patients in a trial defined by ξ∗(λ) receive a dose close to the optimal one,
x(5). Note, however, that none receives the OSD (compare with Figure 2). The situations
changes for larger values of λ, see Figure 3 where the optimal design is supported on
{x(4), x(5), x(6)} for λ & 160 and the weight of the optimal dose x(5) increases with λ.

Finally, one may also consider a penalty function that puts more stress on toxicity
avoidance, for instance

φ3(x, θ) = π−1
10 (x, θ)[1− π·1(x, θ)]−1 , (14)

which is used in (Dragalin and Fedorov, 2006), with π·1(x, θ) = π01(x, θ)+π11(x, θ) denot-
ing the marginal probability of toxicity (the dose minimizing φ3(x, θ) is then x(4)). For λ
large enough the optimal designs then tend to avoid large doses, compare Figure 4 with
Figures 1 and 2.

4.2. Adaptive design

As an illustration of the behavior of the adaptive scheme (12), we present now some
simulation results (using the value θ = (3, 3, 4, 2, 0, 2)>). For comparison, we use the

13



0 10 20 30 40 50 60 70 80 90 100

−3

−2

−1

0

1

2

3

λ

ξ* {x
(i)

}

Figure 2: Same as Figure 1, but for the cost-function (13).
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Figure 3: Same as Figure 2, but for λ ∈ [0, 1000].

up-and-down rule of Ivanova (2003) (which is also considered by Dragalin and Fedorov
(2006), see also (Kpamegan and Flournoy, 2001, p. 221)), defined by

xN+1 =





max{x(iN−1), x(1)} if ZN = 1 ,
x(iN ) if YN = 1 and ZN = 0 ,
min{x(iN+1), x(11)} if YN = 0 and ZN = 0 ,

(15)

where the index iN ∈ {1, . . . , 11} is defined by x(iN ) = xN and (YN , ZN) denotes the
observation for xN . The stationary allocation distribution ξu&d is log-concave and is
approximately given by

ξu&d(θ) '
{

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

1.70 10−3 2.12 10−2 0.146 0.426 0.345 5.88 10−2 1.90 10−3 1.13 10−5

}
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Figure 4: Same as Figure 1, but for the cost-function (14).

(the total weight on x(9), x(10), x(11) is less than 10−7). Note that the mode is at x(4), one
dose below the OSD x(5). See Durham and Flournoy (1994); Giovagnoli and Pintacuda
(1998); Ivanova (2003) for analytical results.

We consider trials on 36 patients, organized in a similar way as in (Dragalin and
Fedorov, 2006): the allocation for the first 10 patients uses the up-and-down rule above,
starting with the lowest dose x(1); after the 10th patient, the up-and-down rule is still used
until the first observed toxicity (ZN = 1); we then switch to the adaptive design rule (12),
with the restriction that we do not allow allocation at a dose one step higher than the
maximum level tested so far (following recommendations for practical implementation, see
Dragalin and Fedorov (2006)). The parameters are estimated by maximum likelihood (the
log-likelihood

∑
i l(Yi, Zi, xi; θ) being regularized by the addition of the term 0.01 ‖θ‖2,

which is equivalent to maximum a posteriori estimation with the normal prior N (0, 50 I),
with I the 6-dimensional identity matrix).

We first use the penalty function φ1(x, θ) = π−1
10 (x, θ), with minimum value at the OSD

x(5), φ1(x
(5), θ) ' 1.2961. Figure 5 shows the progress of a typical trial with λN ≡ 2. The

symbols indicate the values of the observations at the given points: M for (Y = 0, Z = 0),
. for (Y = 1, Z = 0), ¦ for (Y = 1, Z = 1) and O for (Y = 0, Z = 1). The up-and-down
rule is used until N = 15 where toxicity is observed. The next dose should have been x(4)

but the adaptive design rule (12) selects x(6) instead.
As noticed by a referee, in a practical implementation one would certainly be more

cautious than what is shown on Figure 5: although toxicity is observed for subjects 17
and 19, the design recommends escalation to a higher dose. As shown on Figure 6, the
substitution of the penalty function φ3(x, θ) given by (14) for φ1(x, θ) permits to avoid
this type of behavior (compare with Figure 5).

We now perform 1,000 independent repetitions of similar trials, using three differ-
ent adaptive rules: (i) the up-and-down rule (15) used along the whole trial, for the
36 patients; (ii) the up-and-down rule followed by adaptive D-optimal design (11); and
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Figure 5: Graphical presentation of a trial with φ1(x, θ) = π−1
10 (x, θ) and λN ≡ 2 in (12); M is for

(Y = 0, Z = 0), . for (Y = 1, Z = 0), ¦ for (Y = 1, Z = 1) and O for (Y = 0, Z = 1).

(iii) the up-and-down rule followed by adaptive penalized D-optimal design (12), with
φ1(x, θ) = π−1

10 (x, θ) and λN ≡ 2. Since the choice λN ≡ 2 may seem arbitrary, we also
considered the situation (iv) where λN is adapted to the estimated value of θ. To re-
duce the computational cost, we only adapt λN once in the trial, at the value Ns when
we abandon the up-and-down rule. The value λN = λ∗Ns

, N = Ns, . . . , 36, is chosen as

the solution for λ of Φ[ξ∗(λ), θ̂Ns
ML] = Cγ = (1 + γ) minx∈X φ(x, θ̂Ns

ML); we take γ = 0.52

because it yields λ = 2 when θ is substituted for θ̂Ns
ML, that is, Φ[ξ∗(2), θ]/φ∗θ ' 1.52 (it

corresponds to allowing an average reduction of about 34% for the probability of success
compared to maxx∈X π10(x, θ̂Ns

ML)). The solution for λ is easily obtained by dichotomy,
since we know that the solution satisfies 0 < λ ≤ (1 + 1/γ) p/Cγ, see Proposition 1-(i),
and Φ[ξ∗(λ), θ] decreases when λ increases (note that this is more economical in terms
of computations than the Lagrangian approach proposed in Sect. 2.3 of Cook and Fe-
dorov (1995) in a more general situation). Table 2 summarizes the results in terms of
the following performance measures: Φ1(ξ36, θ) = (1/36)

∑36
i=1 φ1(xi, θ), the total cost of

the experiment; J(ξ36, θ) = det−1/6[M(ξ36, θ)], which indicates the precision of the esti-
mation of θ; x̂∗{t=i}, the number of times the estimated OSD at the end of the trial, that

is, arg maxx∈X π10(x, θ̂36
ML), coincided with x(i), for i = 4, 5, 6, and x̂∗{t<4} (resp. x̂∗{t>6}),

the number of times the estimated OSD was smaller than x(4) (resp. larger than x(6));
finally #x(11), the percentage of patients that received the highest dose x(11). The values
of Φ1(ξ, θ) and J(ξ, θ) for the designs ξu&d, ξ∗D and ξ∗(λ = 2) computed at the true value
of θ are also indicated.

Table 2 reveals that the up-and-down rule (15) is very cautious: its associated cost
Φ1(ξ36, θ) is low, the extreme dose x(11) has never been used over the 1,000 repetitions.
One the other hand, it fails at providing a precise estimation of the model parameters, and
the OSD is estimated at values higher than x(6) in almost 14% of the cases. Parameter
estimation is naturally more precise with adaptive D-optimal design, and the true OSD
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Figure 6: Graphical presentation of a trial, in the same conditions as in Figure 5 but with the penalty
φ3(x, θ) given by (14).

design rule Φ1(ξ, θ) J(ξ, θ) x̂∗{t<4} x̂∗{t=4} x̂∗{t=5} x̂∗{t=6} x̂∗{t>6} #x(11)

(i): (15) 1.87 28.02 20 386 369 86 139 0
ξu&d(θ) 1.47 29.4
(ii): (15)–(11) 3.16 17.23 0 198 705 78 19 5%
ξ∗D(θ) 4.45 14.99
(iii): (15)–(12), φ1, λN ≡ 2 2.25 19.22 3 231 693 59 14 1.6%
ξ∗(λ = 2, θ), φ1 1.97 17.00
(iv): (15)–(12), φ1, λ∗N 2.38 18.78 0 223 682 70 25 2.3%
(v): (15)–(12), φ3, λN ≡ 2 2.09 21.08 4 330 575 61 23 0.5%

Table 2: Performance measures of different adaptive designs for 36 patients (sample mean over 1,000
repetitions for Φ1(ξ) =

∫
X φ1(x, θ) ξ(dx) and J(ξ, θ) = det−1/6[M(ξ, θ)]; x̂∗A is the number of times

arg maxx∈X π10(x, θ̂36
ML) ∈ A and #x(11) is the percentage of patients that received the highest dose

x(11) over the 1,000 repetitions). The values of Φ1(ξ, θ) and J(ξ, θ) for ξu&d, ξ∗D and ξ∗(λ = 2) are also
indicated. In (iii) and (iv), the adaptive rule (12) uses the penalty function φ1(x, θ) = π−1

10 (x, θ), (v) uses
the penalty φ3(x, θ) given by (14).

x(5) is recognized in more than 70% of the cases. However, this successful behavior
in terms of collective ethics is obtained at the price of having about 5% of patients
receiving a dose as high as x(11); also, the associated value of Φ1(ξ36, θ) is rather high.
The adaptive penalized D-optimal design appears to make a good compromise between
the two strategies: the value of Φ1(ξ36, θ) is close to that of the up-and-down rule, the
value of det−1/6[M(ξ36, θ)] is close to that obtained for adaptive D-optimal design. It
recognized x(5) as the OSD in about 70% of the cases and only 1.6% of the patients
received the dose x(11) when λN ≡ 2 (2.3% when λN is adapted). Of course, other choices
of λ would set other compromises. Also, other penalty functions can be used to define
design rules more reluctant at allocating high doses: the performance of the adaptive
penalized D-optimal design with the penalty (14) is indicated on line (v) of the table;
comparison with line (iii) shows that the less precise estimation of the OSD is balanced
by a more cautious strategy (only 0.5% of the patients receive the highest dose x(11)).
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In order to limit more severely the number of patients that receive very high doses, we
finally consider a compromise strategy that implements a smoother (and less arbitrary)
transition between up-and-down and adaptive penalized D-optimal design.

Letting λN increase with N in (12) might be controversial in the context of clini-
cal trials (as mentioned by a referee, it implies a loss of randomization feature in the
trial and brings potential for operational bias, not to mention the difficulties induced
concerning the statistical analysis of the data accumulated during the trial due to the
nonhomogeneous treatments at the beginning and the end of the trial). Thus, letting
λN depend on N might not be a realistic practical situation in this context. It is in-
structive, however, to investigate though simulations the performance achieved by such
“non-stationary” designs. We thus consider much longer trials, with NT = 240 patients
enroled. Define x∗∗(θ) = arg minx∈R φ(x, θ) and h(x, θ) = ∂φ(x, θ)/∂x. From the implicit
function theorem,

∇θx
∗∗(θ) =

dx∗∗(θ)
dθ

= −
[
∂h(x, θ)

∂x |x=x∗∗(θ)

]−1
∂h(x, θ)

∂θ |x=x∗∗(θ)

and, when using the up-and-down rule (15) the estimator θ̂N
ML asymptotically satisfies

√
NV

−1/2
N [x∗∗(θ̂N

ML)− x∗∗(θ̄)]
d→ z ∼ N (0, 1) , N →∞ ,

where VN = [∇θx
∗∗(θ̂N

ML)]>M−1(ξN , θ̂N
ML)[∇θx

∗∗(θ̂N
ML)]. Based on that, we decide to

switch from the up-and-down rule to the adaptive one when
√

VN/N < x(2) − x(1), the
interval between two consecutive doses. If Ns is the index of the patient for which the rule
changes, we take λNs as the solution for λ of Φ[ξ∗(λ), θ̂Ns

ML] = Cγ = (1+γ) minx∈X φ(x, θ̂Ns
ML)

with γ = 0.5 (thus targeting 33% of decrease with respect to the maximum of π10(x, θ̂Ns
ML)).

The value of λNT
at the end of the trial is chosen as the solution for λ of the same equation

with γ = 0.1 (allowing only 9% of decrease with respect to the maximum of π10(x, θ̂Ns
ML)).

In between λN increases at a logarithmic rate, that is, λN = λNs [1 + a log(N/Ns)],
N = Ns, . . . , NT , with a = (λNT

/λNs − 1)/ log(NT /Ns). When uncertainty on the OSD is
large, that is when

√
VN/N > [x(2)−x(1)]/2, we also restrict the allocations at high doses

by adapting the design space, taken as XN = {x(1), . . . , x(iN )} at step N : the maximum
dose x(iN ) allowed in (12) is never more than one step higher than previous dose and is
smaller than previous dose if toxicity was observed.

The results obtained for 150 repetitions of the experiment are summarized in Table 3
(the results obtained when the up-and-down rule (15) is used for the 240 patients are also
indicated). One may notice the precise estimation of the OSD for the adaptive penalized
design compared to the up-and-down rule (it even does slightly better than the up-and-
down rule both in terms of Φ1(ξ, θ) and det−1/6[M(ξ, θ)]). At the same time, only about
0.11% of the patients received the maximal dose x(11).

5. Conclusions

We have shown that constrained optimal design can be formulated in a way that
allows a clear balance between gaining information and minimizing a cost. A dose-finding
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Φ1(ξ, θ) J(ξ, θ) x̂∗{t<4} x̂∗{t=4} x̂∗{t=5} x̂∗{t=6} x̂∗{t>6} #x(11)

(15) 1.54 29.04 0 21 116 11 2 0
(15)–(12), φ1, λN ↗ 1.52 27.87 0 13 135 1 1 0.11%

Table 3: Performance measures of adaptive design (12) with increasing λN for 240 patients (sample mean
over 150 repetitions for Φ1(ξ) =

∫
X φ1(x, θ) ξ(dx) and J(ξ, θ) = det−1/6[M(ξ, θ)]; x̂∗A is the number of

times arg maxx∈X π10(x, θ̂200
ML) ∈ A and #x(11) is the percentage of patients that received the highest dose

x(11) over the 150 repetitions). The adaptive rule (12) uses the penalty function φ1(x, θ) = π−1
10 (x, θ).

example with bivariate binary responses has illustrated the potential of adaptive penalized
D-optimal design to set compromises between individual ethics (cost of the experiment,
related to the probability of success through the penalty function) and collective ethics
(information gained from the trial, to be used for future patients). Further developments
and numerical studies are required to define suitable rules for selecting cost functions and
for choosing the value (or the sequence of values) for the penalty coefficients λN .

Appendix

Proof of Proposition 1.
(i) Since ξ∗ is optimal, we have for all x ∈ X : trace[µ(x, θ)M−1(ξ∗, θ)] ≤ p +

λ [φ(x, θ) − Φ(ξ∗, θ)], see (4). This is true in particular at a x∗ defined by (6) and
trace[µ(x∗, θ)M−1(ξ∗, θ)] ≥ 0 gives the result.

(ii) For any a > 0, take λ ≥ a/∆θ(ξ) and define ξ̃ = (1−α)ξ +αδx∗ with δx∗ the delta
measure at a point x∗ satisfying (6) and α = 1−a/[λ∆θ(ξ)]. This gives Φ(ξ̃, θ)−φ∗θ = a/λ
and log detM(ξ̃, θ) ≥ p log(1− α) + log detM(ξ, θ). Therefore,

log detM(ξ∗, θ)− λ[Φ(ξ∗, θ)− φ∗θ] ≥ log detM(ξ̃, θ)− λ[Φ(ξ̃, θ)− φ∗θ]

≥ p log a− a− p log ∆θ(ξ) + log detM(ξ, θ)− p log λ . (16)

Since Φ(ξ∗, θ) ≥ φ∗θ, the result follows.
When φ(x, θ) is bounded by φ̄θ, the optimality of ξ∗ implies that for all x ∈ X ,

trace[µ(x, θ)M−1(ξ∗, θ)] ≤ B = p+λ (φ̄θ−φ∗θ). Write µ(x, θ) = F>θ (x)Fθ(x) with F>θ (x) =
[f1,θ(x), . . . , fm,θ(x)] and fi,θ(x) a p-dimensional vector, i = 1, . . . , m. From the inequality
trace[µ(x, θ)M−1(ξ∗, θ)] ≤ B we obtain that f>i,θ(x)M−1(ξ∗, θ)fi,θ(x) ≤ B, i = 1, . . . , m.
We have

Λmin[M(ξ∗, θ)] = Λ−1
max[M

−1(ξ∗, θ)] = [max
‖u‖=1

u>M−1(ξ∗, θ)u]−1 .

Consider the optimization problem defined by: maximize u>A>Au with respect to A
and u respectively in Rn×p and Rp, n ≤ p, subject to the constraints ‖u‖ = 1 and
f>i,θ(x)A>Afi,θ(x) ≤ B, ∀x ∈ X and ∀i = 1, . . . , m. The optimal solution is obtained for

A = v> ∈ Rp such that |f>i,θ(x)v| ≤ √
B, ∀x ∈ X , ∀i = 1, . . . , m, and b = v>v is maximal.

For x varying in X the fi,θ(x)’s span Rp (since a nonsingular information matrix exists).
Therefore, there exists a positive constant δ such that the optimal value for b is bounded
by B/δ, and Λmin[M(ξ∗, θ)] > δ/B.
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Proof of Proposition 2.
Since trace[µ(x, θ)M−1(ξ∗, θ)] ≤ p + λ [φ(x, θ) − Φ(ξ∗, θ)] for all x ∈ X when ξ∗ is

optimal, and
∫
X {trace[µ(x, θ)M−1(ξ∗, θ)]− λφ(x, θ)} ξ∗(dx) = p − λ Φ(ξ∗, θ), we have

trace[µ(x̂, θ)M−1(ξ∗, θ)] = p + λ [φ(x̂, θ)−Φ(ξ∗, θ)] at any x̂ support point of ξ∗. Suppose
that λ is large enough so that there exists a design ξλ ∈ Ξ satisfying ∆θ(ξλ) ≥ p/λ.
We proceed as for Proposition 1-(ii) and construct a design ξ̃λ = (1 − α)ξλ + αδx∗ with
α = 1−p/[λ∆θ(ξλ)] so that Φ(ξ̃λ, θ)−φ∗θ = p/λ. With the same notation as in the proof of
Proposition 1-(ii), we can write trace[µ(x̂, θ)M−1(ξ̃λ, θ)] =

∑m
i=1 f>i,θ(x̂)M−1(ξ̃λ, θ)fi,θ(x̂).

We then follow the same approach as in Harman and Pronzato (2007) and define

H(ξ∗, ξ, θ) = M1/2(ξ∗, θ)M−1(ξ, θ)M1/2(ξ∗, θ) .

We obtain

trace[µ(x̂, θ)M−1(ξ̃λ, θ)] =
m∑

i=1

f>i,θ(x̂)M−1/2(ξ∗, θ)H(ξ∗, ξ̃λ, θ)M
−1/2(ξ∗, θ)fi,θ(x̂)

≥ Λmin[H(ξ∗, ξ̃λ, θ)] trace[µ(x̂, θ)M−1(ξ∗, θ)]

= Λmin[H(ξ∗, ξ̃λ, θ)] {p + λ [φ(x̂, θ)− Φ(ξ∗, θ)]}
≥ Λmin[H(ξ∗, ξ̃λ, θ)]

{
p + λ [φ(x̂, θ)− Φ(ξ̃λ, θ)]

}

= Λmin[H(ξ∗, ξ̃λ, θ)] λ [φ(x̂, θ)− φ∗θ]

where we used the property ∆θ(ξ
∗) ≤ p/λ = ∆θ(ξ̃λ), see (i). Therefore,

trace[µ(x̂, θ)M−1(ξλ, θ)] ≥ (1− α)trace[µ(x̂, θ)M−1(ξ̃λ, θ)] (17)

≥ p Λmin[H(ξ∗, ξ̃λ, θ)] [φ(x̂, θ)− φ∗θ]
∆θ(ξλ)

. (18)

The last step consists in deriving a lower bound on Λmin[H(ξ∗, ξ̃λ, θ)] that does not depend

on ξ∗. Since trace
[
H−1(ξ∗, ξ̃λ, θ)

]
=

∫
X trace [µ(x, θ)M−1(ξ∗, θ)] ξ̃λ(dx), the optimality of

ξ∗ implies

trace
[
H−1(ξ∗, ξ̃λ, θ)

]
≤ p + λ

∫

X
[φ(x, θ)− Φ(ξ∗, θ)] ξ̃λ(dx)

= p + λ
[
Φ(ξ̃λ, θ)− Φ(ξ∗, θ)

]

≤ p + λ
[
Φ(ξ̃λ, θ)− φ∗θ

]
= 2p . (19)

Therefore, Λmin[H(ξ∗, ξ̃λ, θ)] ≥ 1/(2p), which, together with (18), concludes the proof.

One might notice that, following Harman and Pronzato (2007), a tighter bound could
be obtained in (8) by using

trace[H(ξ∗, ξ̃λ, θ)] ≤ max
x∈X

[µ(x, θ)M−1(ξ̃λ, θ)] ≤ (1− α)−1 max
x∈X

[µ(x, θ)M−1(ξλ, θ)]

in addition to (19). However, since (1−α)−1 = λ∆θ(ξλ)/p, the improvement obtained for
the lower bound 1/(2p) on Λmin[H(ξ∗, ξ̃λ, θ)] is negligible for large λ.
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