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Introduction and motivation

Consider a nonlinear regression model with observations

Y i = Y (x i ) = η(x i , θ) + ε i , (1) 
where {ε i } is a martingale difference sequence with respect to an increasing sequence of σ-fields F i such that sup i IE{ε 2 i |F i-1 } < ∞ almost surely (a.s.), and η(x, θ) is a known function of a parameter vector θ ∈ Θ (a compact subset of R p ) and a design variable

x ∈ X (a compact subset of R d ). Here θ denotes the unknown true value of θ and we assume that θ is in the interior of Θ. The martingale difference sequence assumption for {ε i } in (1) is rather common in a stochastic control framework. It covers situations where ε i = h i δ i with h i being a measurable function of past ε and {δ i } forming an i.i.d. sequence with zero mean also independent of past ε. A typical example is given by ARCH (autoregressive conditionally heteroscedastic) processes.

The strong consistency of the Least-Squares (LS) estimator θn that minimizes

S n (θ) = n k=1 [Y (x k ) -η(x k , θ)] 2 (2)
is established in [START_REF] Jennrich | Asymptotic properties of nonlinear least squares estimation[END_REF] in the case where ε i are independent identically distributed (i.i.d.) errors with unknown variance σ 2 and x i are non-random constants, under the assumption that (1/n)D n (θ, θ ) converges uniformly to a continuous function J(θ, θ )

with J(θ, θ ) > 0 for all θ = θ , where

D n (θ, θ ) = n i=1 [η(x i , θ) -η(x i , θ )] 2 . ( 3 
)
In a linear regression model, where η(x, θ) = f (x)θ with f (x) a p-dimensional vector, the condition above is equivalent to (1/n)X n X n → M , with M some positive definite matrix and X = [f (x 1 ), . . . , f (x n )] , a condition thus much stronger than the well-known condition for weak and strong consistency of θn

(X n X n ) -1 → 0 , (4) 
see, e.g., [START_REF] Lai | Strong consistency of least squares estimates in multiple regression[END_REF]; [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF]. The analogue of (4) for nonlinear regression would be D n (θ, θ ) → ∞ for all θ = θ . This condition is shown in [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF] to be necessary for the existence of a weakly consistent estimator of θ when ε i are supposed to be i.i.d. with a positive almost everywhere and absolutely continuous density with finite Fisher information. It is also shown in the same paper to be sufficient for the (weak and strong) consistency of the nonlinear LS estimator θn when Θ is a finite set. When Θ is a compact set of R p , it is complemented by additional assumptions to establish the strong consistency of θn , see Th. 3 in [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF].

Suppose now that x i is a F i-1 measurable random variable. The motivation we have in mind corresponds to adaptive experimental design, where the design point x i at step i depends on observations Y 1 , . . . , Y i-1 through the estimate θi-1 . [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF] show that the conditions The case of nonlinear stochastic regression models is considered in [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF], where sufficient conditions for strong consistency are given, which reduce to (5) and the [START_REF] Christopeit | Strong consistency of least squares estimators in linear regression models[END_REF] 

λ min [X n X n ] → ∞ a.s. (5) {log λ max [X n X n ]} ρ = o λ min [X n X n ] a.s. for some ρ > 1 , ( 6 
condition, λ max [X n X n ] = O{λ ρ min [X n X n ]} a.s. for some ρ ∈ (1, 2) , in the case of a linear model.
It is the purpose of this paper to show that when the design space X is finite, a sufficient condition for the strong consistency of θn in the model ( 1) is that with probability one D n (θ, θ ) → ∞ faster than (log n) ρ for all θ = θ for some ρ > 1, a condition equivalent to (5, 6) for linear models and much weaker than the conditions of [START_REF] Jennrich | Asymptotic properties of nonlinear least squares estimation[END_REF] or [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] for nonlinear models. Under the additional assumption

lim i→∞ IE{ε 2 i |F i-1 } = σ 2 a.s. for some constant σ , (7) 
we also give a sufficient condition for the asymptotic normality of θn in (1). It should be noticed that the assumption that X is finite is seldom limitative in situations where the experiment is designed since practical considerations often impose such a restriction on possible choices for x i . This is especially true for clinical trials where only certain doses of the treatment are available, see Sect. 4 and Pronzato (2009b). Although less natural in a stochastic control context where x i denotes the system input at time i, the assumption that X is finite is satisfied when a suitable quantization is applied to the input sequence.

It can be contrasted with the less natural assumption that the admissible parameter set Θ is finite, see, e.g., [START_REF] Caines | A note on the consistency of maximum likelihood estimates for finite families of stochastic processes[END_REF].

Sect. 2 concerns the strong consistency of θn and Sect. 3 its asymptotic normality.

The results obtained, which rely on a repeated sampling principle that can be used when 

X
= sup u =1 Mu ≤ p max i,j |{M} ij |.
2. Strong consistency of the nonlinear LS estimator when X is finite

Next theorem shows that the strong consistency of θn in ( 1) is a consequence of D n (θ, θ)

tending to infinity fast enough for θ -θ ≥ δ > 0. The fact that the design space X is finite makes the required rate of increase for D n (θ, θ) quite slow. The result is valid whether x i are non-random constants or are F i-1 -measurable random variables.

Theorem 1. Suppose that X is a finite set. If D n (θ, θ) given by ( 3) satisfies for all δ > 0 , inf

θ-θ ≥δ/τn D n (θ, θ) /(log n) ρ a.s. → ∞ (n → ∞) , for some ρ > 1 , ( 8 
)
with {τ n } a nondecreasing sequence of positive deterministic constants, then the LS estimator θn in the model ( 1) satisfies

τ n θn -θ a.s. → 0 (n → ∞) . ( 9 
)
Proof. The first part of the proof is based on Lemma 1 in [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF]. Suppose that ( 9)

is not satisfied. It implies that exists δ > 0 such that Pr(lim sup n→∞ τ n θn -θ ≥ δ) > 0 . ( 10 
) Since S n ( θn ) ≤ S n ( θ), (10) implies Pr(lim inf n→∞ inf θ-θ ≥δ/τn [S n (θ) -S n ( θ)] ≤ 0) > 0 . Therefore, lim inf n→∞ inf θ-θ ≥δ/τ n [S n (θ) -S n ( θ)] > 0 a.s. for any δ > 0 (11)
implies ( 9). The second part consists in establishing a sufficient condition for (11) based on the growth rate of D n (θ, θ). Denote I n (x) = {i ∈ {1, . . . , n} : x i = x}. We have

S n (θ) -S n ( θ) ≥ D n (θ, θ)   1 -2 x∈X i∈I n (x) ε i |η(x, θ) -η(x, θ)| D n (θ, θ)   .
Under the condition ( 8), it thus suffices to prove that lim sup

n→∞ sup θ-θ ≥δ/τ n x∈X i∈I n (x) ε i |η(x, θ) -η(x, θ)| D n (θ, θ) = 0 a.s. for any δ > 0 (12)
to obtain (11) and thus (9). Denote u i (x) the variable defined by

u i (x) = 1 if x = x i and u i (x) = 0 otherwise, so that n i=1 u i (x) = n i=1 u 2 i (x) = r n (x), the number of times x appears in the sequence x 1 , . . . , x n . Notice that u i (x) is F i-1 -measurable. Since D n (θ, θ) ≥ D 1/2 n (θ, θ)r 1/2 n (x)|η(x, θ) -η(x, θ)| for all x in X , we have x∈X i∈In(x) ε i |η(x, θ) -η(x, θ)| D n (θ, θ) ≤ 1 D 1/2 n (θ, θ) x∈X | n i=1 u i (x)ε i | [ n i=1 u 2 i (x)] 1/2 . Moreover, A n (x) = | n i=1 u i (x)ε i | [ n i=1 u 2 i (x)] -1/2 is a.s. finite if r n (x) is finite and lim n→∞ | n i=1 u i (x)ε i | [ n i=1 u 2 i (x)] 1/2 [log n i=1 u 2 i (x)] α = 0 a.s.
for every α > 1/2 otherwise, see Lemma 2-(iii) of [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF] and Corollary 7 of [START_REF] Chow | Local convergence of martingales and the law of large numbers[END_REF]. Since n i=1 u 2 i (x) ≤ n for all x, (8) implies ( 12), which concludes the proof.

Remark 1. The case where the errors ε i in (1) are i.i.d. with finite variance σ 2 is considered in (Pronzato, 2009a). A n (x) is then asymptotically normal N (0, σ 2 ) when r n (x) → ∞ and, using the law of the iterated logarithm, we obtain (9) under the weaker condition for all δ > 0 , inf

θ-θ ≥δ/τ n D n (θ, θ) /(log log n) a.s. → ∞ (n → ∞) , ( 13 
)
see also Th. 3 below. Under the same assumption of i.i.d. errors with finite variance and using a similar approach, we also obtain in (Pronzato, 2009a) that θn is weakly consistent

when D n (θ, θ) p → ∞ for all θ = θ as n → ∞, which can be extended to τ n θn -θ p → 0 when inf θ-θ ≥δ/τ n D n (θ, θ) p → ∞ for all δ > 0.
The same property still holds when {ε i } in ( 1) is a martingale difference sequence that satisfies (7) and r n (x), the number of times

x appears in the sequence x 1 , . . . , x n , satisfies r n (x)/IE{r n (x)} p → 1 for all x ∈ X . In that case, (9) can be obtained under a slightly weaker condition than (8) using results on the law of the iterated logarithm for martingales, see Hall and Heyde (1980, Chap. 4).

Asymptotic normality of the nonlinear LS estimator when X is finite

We make the following regularity assumption on the model response η(x, θ) in ( 1):

H η : η(x, θ
) is two times continuously differentiable with respect to θ in some open neighborhood of θ for all x ∈ X .

We denote f θ (x) = ∂η(x, θ)/∂θ and

M n (θ) = 1 n n i=1 f θ (x i )f θ (x i ) . ( 14 
)
Theorem 2. Suppose that X is a finite set, that the errors ε i in ( 1) satisfy ( 7) and that η(x, θ) satisfies the regularity condition H η . Suppose that there exist non-random symmetric positive definite p × p matrices C n such that

C -1 n M 1/2 n ( θ) p → I , ( 15 
)
with I the p-dimensional identity matrix, and that c n = λ min (C n ) and D n (θ, θ) satisfy

n 1/4 c n → ∞ and ∀δ > 0 , inf θ-θ ≥c 2 n δ D n (θ, θ)/(log n) ρ a.s. → ∞ for some ρ > 1 (n → ∞) . ( 16 
)
Then the LS estimator θn in the model (1) satisfies

√ n M 1/2 n ( θn )( θn -θ) d → ω ∼ N (0, σ 2 I) , n → ∞ . ( 17 
)
Proof. Since X is finite, c n is bounded from above and ( 16) implies θn a.s. → θ, see Th. 1.

Therefore, there exists a ball B( θ, r) centered at θ, included in Θ and such that θn ∈ B( θ, r)

for all n larger than some N 0 . We can thus consider a first-order series expansion of ∂S n (θ)/∂θ around θ, with S n (θ) given by ( 2). This yields

∂S n (θ) ∂θ j θn = 0 = ∂S n (θ) ∂θ j θ + ( θn -θ) ∂ 2 S n (θ) ∂θ∂θ j θn j , j = 1, . . . , p ,
where θn j denotes some value between θn j and θj . Direct calculations give n i=1 ε i fθ(

x i ) = nM n ( θ)( θn -θ) + n(R n,1 + R n,2 + R n,3 )( θn -θ) with {R n,1 } j,k = {M n ( θn j ) -M n ( θ)} jk , {R n,2 } j,k = -(1/n) n i=1 ε i ∂ 2 η(x i , θ)/(∂θ j ∂θ k )| θn j , {R n,3 } j,k = (1/n) n i=1 [η(x i , θn j ) - η(x i , θ)] ∂ 2 η(x i , θ)/(∂θ j ∂θ k )| θn j . We thus obtain 1 √ n C -1 n n i=1 ε i fθ(x i ) = C -1 n M n ( θ) + R n,1 + R n,2 + R n,3 C -1 n C n √ n( θn -θ) , ( 18 
)
where

C -1 n M n ( θ)C -1 n p → I from (15). Consider the three terms C -1 n R n,j C -1 n , j = 1, 2, 3. We have C -1 n [M n (θ) -M n ( θ)]C -1 n ≤ (p/c 2 n ) max j,k |{M n (θ) -M n ( θ)} jk | and thus C -1 n [M n (θ) -M n ( θ)]C -1 n ≤ p c 2 n max j,k max x∈X |{f θ (x)} j {f θ (x)} k -{fθ(x)} j {fθ(x)} k | ≤ A c 2 n θ -θ for some A > 0. Therefore, C -1 n R n,1 C -1 n p
→ 0 as n → ∞ (using (16) and Th. 1). For the second term we obtain

C -1 n 1 n n i=1 ε i ∂ 2 η(x i , θ) ∂θ∂θ C -1 n ≤ 1 c 2 n √ n x∈X | n i=1 u i (x)ε i | √ n max x∈X ,θ∈Θ ∂ 2 η(x i , θ) ∂θ∂θ where u i (x) = 1 if x = x i and u i (x) = 0 otherwise. Since IE(ε 2 i |F i-1 ) < ∞ a.s., we obtain that | n i=1 u i (x)ε i | / √ n is bounded in probability for all x. Therefore, n 1/4 c n → ∞ implies C -1 n R n,2 C -1 n p → 0 as n → ∞.
Finally, we get for the third term,

C -1 n 1 n n i=1 [η(x i , θ) -η(x i , θ)] ∂ 2 η(x i , θ) ∂θ∂θ C -1 n ≤ p c 2 n max j,k max x∈X |η(x, θ) -η(x, θ)| max θ∈Θ ∂ 2 η(x, θ) ∂θ j ∂θ k ≤ B c 2 n θ -θ
for some B > 0, and

C -1 n R n,3 C -1 n p → 0 as n → ∞ for the same reasons as for R n,1 . Substitution in (18) yields (1/ √ n) C -1 n n i=1 ε i fθ(x i ) = [1 + o p (1)]C n √ n( θn -θ) and
thus, using (15), √ nM

1/2 n ( θn )( θn -θ) = [1 + o p (1)](1/ √ n) C -1 n n i=1 ε i fθ(x i ) . Since we have max i (1/ √ n) C -1 n fθ(x i ) ≤ [1/(c n √ n)] max x fθ(x) → 0, IE(ε 2 i |F i-1 ) a.s.
→ σ 2 and

C -1 n (1/n) n i=1 fθ(x i )f θ (x i ) C -1 n p
→ I, we are in the same situation as in (Lai, 1994, Th.2) and ( 17) follows from the martingale central limit Theorem. Indeed, consider

T n = (1/ √ n)u C -1 n n i=1 ε i fθ(x i
), with u any vector of R p with norm 1. The conditional Lindeberg condition and the condition on conditional variances in (Dvoretzky, 1972, Th. 2.2) are satisfied and T n is asymptotically normal N (0, σ 2 ).

Remark 2.

(i) One may notice that compared to [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF], we do not require that (n/τ n )M n ( θ) tends to some positive definite matrix for some τ n → ∞ and, compared to [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] we do not require the existence of high-order derivatives of η(x, θ). On the other hand, we suppose that X is finite and we need that c n = λ min (C n ) decreases more slowly than n -1/4 , see ( 16) (one may notice that when X is finite, the condition (2.5) of [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] imposes that c n is bounded from below).

(ii) When ε i in (1) are i.i.d. with finite variance σ 2 , the condition ( 16) can be replaced by n 1/4 c n → ∞, θn a.s.

→ θ and inf θ-θ ≥c 2 n δ D n (θ, θ) p → ∞ for all δ > 0, see Remark 1.

Indeed, this is enough to obtain θnθ /c 2 n p → 0, which implies that

C -1 n R n,1 C -1 n p → 0 and C -1 n R n,3 C -1 n p → 0 as n → ∞. (iii) When x i is F i-1 measurable, M n (θ)
is not in general the information matrix for parameters θ. This is true in particular for sequential experimental design. Under the assumptions of the theorem, it is legitimate, however, to characterize the asymptotic precision of the estimation by M -1 n ( θn ). For instance, in the case of sequential D-optimal design where x n+1 = arg max x∈X f θn (x)M -1 n ( θn )f θn (x), it is shown in (Pronzato, 2009a) that, under suitable identifiability conditions on the set X (supposed to be finite), θn a.s.

→ θ and M n ( θn ) a.s.

→ M * ( θ), with M * ( θ) the D-optimal information matrix at θ, and one can thus take C n = M 1/2 * ( θ) and c n constant in Th. 2.

Sequential design and ML estimation in Bernoulli trials

Strong consistency

Consider the case of dose-response experiments with

Y ∈ {0, 1} , with Pr{Y = 1|x i , θ} = η(x i , θ) . ( 19 
)
We suppose that Θ is a compact subset of R p , that θ, the 'true' value of θ that generates the observations, lies in the interior of Θ, and that η(x, θ) ∈ (0, 1) for any θ ∈ Θ and x ∈ X .

The log-likelihood for the observation Y at the design point x is given by l

(Y, x; θ) = Y log[η(x, θ)] + (1 -Y ) log[1 -η(x, θ)].
We suppose that when n observations Y 1 , . . . , Y n are performed at the design points x 1 , . . . , x n , the Y i 's are independent conditionally on the x i 's (so that the conditional log-likelihoods satisfy l(

Y i |x i , Y j =i , x j =i , θ) = l(Y i , x i ; θ)
for all i). We assume that x i is a non-random function of Y 1 , . . . , Y i-1 , x 1 , . . . , x i-1 for all i (as it is the case for experiments designed sequentially). The log-likelihood for n

observations is then L n (θ) = n i=1 l(Y i , x i ; θ).
We denote by θn the Maximum-Likelihood (ML) estimator of θ, given by θn = arg max θ∈Θ L n (θ). Although the model and estimator differ from those in Sect. 2, we obtain the following property, similar to Th. 1. Theorem 3. Suppose that X is a finite set. If D n (θ, θ) given by ( 3) satisfies ( 13) with {τ n } a nondecreasing sequence of positive deterministic constants, then the ML estimator θn in the model ( 19) satisfies ( 9).

Proof. The first part of the proof consists in establishing that lim inf n→∞ inf θ-θ ≥δ/τ n [L n ( θ)-L n (θ)] > 0 a.s. for any δ > 0 implies (9). This can be done in a way similar to the proof of Th. 1. The second part uses the following inequality (obtained by straightforward calculations)

L n ( θ) -L n (θ) ≥ D n (θ, θ)   1 - x i∈I n (x) ζ i ( θ) {η x [1 -ηx ]} 1/2 log ηx [1-η x ] η x [1-η x ] D n (θ, θ)  
where we denoted I n (x) = {i ∈ {1, . . . , n} :

x i = x}, η x = η(x, θ), ηx = η(x, θ), ζ i (θ) = Y i -η(x i , θ) {η(x i , θ)[1 -η(x i , θ)]} 1/2 , i = 1, . . . , n , ( 20 
) D n (θ, θ) = n i=1 g[η(x i , θ), η(x i , θ)] ,
with for (a, b) ∈ (0, 1) 2 .

For any fixed a in (0, 1), ρ(a, b) tends to infinity for b tending to 0 or 1 and is bounded on (0, 1). Straightforward calculations then give

L n ( θ) -L n (θ) ≥ D n (θ, θ)   1 - 1 D n (θ, θ) x∈X i∈I n (x) ζ i ( θ) ρ[η(x, θ), η(x, θ)] r n (x)   ≥ 2D n (θ, θ)   1 - 1 2D n (θ, θ) x∈X i∈I n (x) ζ i ( θ) ρ r n (x)   with ρ = sup x∈X , (θ, θ)∈Θ 2 ρ[η(x, θ), η(x, θ)].
Using the law of the iterated logarithm and

(13) we obtain (9).

Asymptotic normality

We suppose that H η is satisfied and denote

f θ (x) = {η(x, θ)[1 -η(x, θ)]} -1/2 ∂η(x, θ) ∂θ . ( 21 
)
When x i are non-random constants, the contribution of the design point x i to the Fisher information matrix for θ is µ(x, θ) = f θ (x)f θ (x). Although M n ( θ) given by ( 14) is not the Fisher information matrix when the design x 1 , . . . , x n is constructed sequentially, we obtain a property similar to Th. 2 when X is a finite set.

Theorem 4. Suppose that X is a finite set and that H η is satisfied. If there exist nonrandom symmetric positive definite p × p matrices C n satisfying (15), with c n = λ min (C n )

and D n (θ, θ) satisfying

n 1/4 c n → ∞ and inf θ-θ ≥c 2 n δ D n (θ, θ)/(log log n) a.s. → ∞ for all δ > 0 (n → ∞) , ( 22 
)
then the ML estimator θn in the model ( 19) satisfies ( 17) with σ 2 = 1.

Proof. The proof is similar to that of Th. 2. It relies on a series expansion of the derivative of L n (θ) (being now maximum at θn ), with

∂L n (θ)/∂θ = n i=1 ζ i (θ)f θ (x i ) and ∂ 2 L n (θ)/(∂θ∂θ ) = -nM n (θ) + n i=1 ζ i ( θ) [η i (1 -ηi )] 1/2 Q i + n i=1 (η i -η i )Q i , where f θ (x i
) is given by ( 21) and ζ i (θ) by ( 20), and where we denoted 

η i = η(x i , θ), ηi = η(x i , θ) and Q i = Q i (θ) = ∂ 2 η i /(∂θ∂θ ) + (2η i -1)f θ (x i )f θ (x i ) /[η i (1 -η i )] . The developments are parallel to those of Th. 2, using M n (θ) -M n ( θ) ≤ A θ -θ for some A > 0, max i |η i -η i | Q i ≤ B θ -θ for some B > 0, max i [η i (1 -ηi )] 1/2 Q i ≤ C for some C > 0 and the fact that | n i=1, x i =x ζ i ( θ)|/ √ n is bounded in probability for all x ∈ X .

Conclusions and applications

Sufficient conditions for the strong consistency and asymptotic normality of the LS estimator in nonlinear regression have been derived under the assumption that the design space is finite. Similar results apply to ML estimation in Bernoulli trials. This has important consequences for studying the asymptotic properties of nonlinear estimates in sequentially constructed experiments.

Sequential D-optimal design is considered in (Pronzato, 2009a), with the results indicated in Remark 2-(iii). Similar properties hold for adaptive penalized D-optimal designs for which

x n+1 = arg max x∈X f θn (x)M -1 n ( θn )f θn (x) -γ n φ(x, θn ) , ( 23 
)
where φ(x, θ) denotes a penalty function related to the cost of an observation made at x.

For instance, in clinical trials φ can be related to the probability of efficacy and no toxicity, see [START_REF] Dragalin | Adaptive designs for dose-finding based on efficacytoxicity response[END_REF]Pronzato (2009b). A construction similar to (23) can be used for self-tuning optimization with φ the function of interest, to be minimized, and f θn (x)M -1 n ( θn )f θn (x)/γ n playing the role of a penalty for poor estimation, see [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF].

When γ n in ( 23) is a non-random constant, under identifiability conditions on the set X similar to those in (Pronzato, 2009a), and assuming that |φ(x, θ)| is bounded for all x ∈ X (finite) and θ ∈ Θ, we obtain that θn is strongly consistent and asymptotically normal. This remains true if γ n is a F n -measurable random variable (with F n generated by Y 1 , . . . , Y n ) that tends a.s. to a non-random constant as n → ∞ (in particular, one may take γ n as a function of θn ). Developments similar to those in (Pronzato, 2009a) show that the strong consistency of θn is preserved when {γ n } is a non-random increasing sequence satisfying γ n → ∞ and γ n (log log n)/n → 0 in model (1) with i.i.d. errors or in model ( 19). For LS estimation in model ( 1) with {ε i } a martingale difference sequence, we require γ n (log n) ρ /n → 0 for some ρ > 1, a condition similar to that obtained in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF] when η(x, θ) is linear in θ (without the assumption that X is finite). The details will be presented elsewhere. Asymptotic normality is difficult to establish when γ n → ∞ since there is no obvious choice for the matrices C n of Th. 2 and 4. A possible candidate is C n = M1/2 n ( θ) with Mn ( θ) the design matrix generated by iterations similar to (23) but with θ substituted for θn .

  ) are sufficient for the strong consistency of θn in the model (1) with η(x, θ) linear in θ, i.e. η(x, θ) = f (x)θ, and stochastic regressors f (x i ) (Example 1 in the same paper shows that these conditions are in some sense weakest possible). Here and in what follows we denote by λ min (M) and λ max (M) the minimum and maximum eigenvalues of a p × p matrix M.

  g(a, b) = a log(a/b) + (1 -a) log[(1 -a)/(1 -b)], (a, b) ∈ (0, 1) 2 . (Notice that, conditionally on x i = x, the random variables ζ i ( θ) are i.i.d. with zero mean and variance 1.) One can easily check that g(a, b) > 2(a -b) 2 with g(a, a) = 0, so that D n (θ, θ) ≥ 2D n (θ, θ) , see (3). Define ρ(a, b) = a(1 -a)/g(a, b) log a(1-b) b(1-a)

  Therefore, we only require that c 2 n √ n → ∞ and θnθ /c 2 n p → 0 as n → ∞, which follows from (22) and Th. 3. Remark 3. The condition (22) can be replaced by inf θ-θ ≥c 2 n δ D n (θ, θ) p → ∞ for all δ > 0, n 1/4 c n → ∞ and θn a.s. → θ. Indeed, a straightforward modification of Th. 3 shows that the first condition is enough to obtain θnθ /c 2 n p → 0 as n → ∞.
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