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Abstract

This paper addresses the issue of automated organization of a personal image collec-
tion, in particular to respond to the emerging needs from a mobile camera phones.
The issues related to browsing through large image collections acquired from such
devices are first discussed. In contrast with retrieval in metadata-less collections,
which necessarily relies on image content, we propose a collection organization tech-
nique based on picture geolocation and timestamps. These descriptors are indeed
available and generally reliable in the proposed context. Collection organization is
formulated as an unsupervised classification problem, in both space and time. The
statistical integrated completed likelihood criterion is chosen, providing effective
solutions both to model complexity determination and the cluster separability ob-
jective, in a setting which limits arbitrary algorithm parametrization. Reliability
of space and time partitions obtained are then assessed to select a segmentation,
which may then provide a calendar-type structured view for navigating in the pic-
ture collection.

Key words: Tmage retrieval, mobile applications, spatio-temporal metadata,
statistical clustering, mixture modelling

1 Problem and context

Content-based image retrieval problems have been dealt with for the past few
years, and the field is now equipped with both recent contributions [1] and
surveys [2]. It was stressed in [3] that extending the scope of this field to
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address personal image collections was an important stake, and that there
was little existing. Very recently, proposals have emerged from most leading
industrials in the field of multimedia [4-8], as well as from academics [9,10].
A first survey on the matter is to appear in [11].

We advocate that, within personal image collections, the following interesting
niche is emerging. Compared with workstations, or even digital cameras, cam-
era phones are always carried by their user, and are hence advantageous both
as an image acquisition device and as an image retrieval terminal [12]. Indeed,
despite the technical issues image retrieval sets on such devices, their perma-
nent availability and the ability to easily share retrieved pictures (eg. through
Multimedia Mobile Messaging) makes this context propitious for building large
collections. A further quality of camera phones resides in their excellent geolo-
cation potential, which founds our proposal. Indeed, they can switch between,
or fuse, measurements from an embedded GPS receiver with infrastructure-
based (GSM/UMTS) position estimation tools, such as E-OTD. Interestingly,
these network techniques enable fast initialization of the GPS receiver, which
is a required feature for comfortable usage without battery-consuming always-
on GPS. Finally, let us point out that these means fortunately complement
each other well, in terms of availability and accuracy (e.g. poor GPS reception
in “urban canyons” is generally made for by a high density cell zone in the
telecom network).

As images are gathered, they progressively build up a valuable memory of
one’s life, which can be later searched, whether for practical, emotional, or
pass-time purposes. The system should offer users not only the possibility of
quickly, reliably and comfortably retrieve a well-defined piece of information
in their potentially large collection, but also functions for browsing, simply to
get an overall idea of the content of the collection. Providing such overviews is
actually also beneficial, let alone necessary, for retrieving a well-defined piece
of information.

A survey of technical issues pertaining to camera phones is provided in [6],
while insight in their usage may be found in [12]. One of the conclusions
drawn in [6] is that the handling (storage and retrieval) of image collections
in this context is an important industrial need and overall an open problem.
Furthermore, we believe this issue is both well-defined (probably better than,
e.g., all world-wide-web content-based image retrieval), and is of practical
significance in the years to come.

Personal image collections may be distinguished from the ordinary “digital
library” viewpoint by :

e the content itself (nature of the scenes, structure of the image collection,
attached meta-data);



e the partial memory that the user has of the collection : the user does not dis-
cover a wholly new collection, but progressively recalls his past as navigation
progresses, thus determining incrementally browsing directions. Browsing
presents advantages over querying to this respect;

e the desired search/browse criteria : user studies [13,14] suggest that the
most convenient browsing criteria are time, geographical location, and “im-
age annotations/semantic image content/topic” (topic would often be in
the form of an audio note). The identity of people present is also among
appealing criteria. On the other side, classical features such as color, shape,
layout and texture cues are rated of little relevance.

Research in content-based image retrieval has often been justified by the lack
of meta-data. With camera phones, both time and location measurements may
be assumed, corresponding to very criteria that users wish to use.

The focus of the present paper is the automated generation of a structured rep-
resentation of the image collection, attempting to recover meaningful episodes
and areas. This should allow the user to effectively browse through time and
space, yet keeping manual organisation only optional. In this paper, we solely
consider time and geolocation meta-data attached to each image, while the
image content itself is ignored. Further, we wish to make the scheme as unsu-
pervised as possible, i.e. the temporal and spatial bounds of the image groups,
and the number of these groups should be, as much as possible, driven by the
data.

Finally, human-computer interactions considerations are important, as they
may define or affect content analysis goals. Research contributions that have
been put forward mainly target the workstation/e-book context, and propose
a variety of strategies for laying out image sets [15,10]. In the case of small
mobile devices with stringent input and display constraints, hardly more than
one to three images may be displayed simultaneously. We argued in [16,17] that
a crux is the ability to generate summaries according to the criteria identified
above as relevant, so as to suit visualization and browsing needs. The present
work proposes a contribution in this direction.

Let us point out that structuring the personal image collection may also ben-
efit also system-level efficiency. Indeed, a personal image collection should be
accessible both from the small mobile terminal and from e.g. a home-based,
larger terminal. For secure storage with multi-terminal access, a distributed
storage system should be envisaged [18], with some degree of laziness in repli-
cation, taking into account the variation of network conditions and transmis-
sion costs (eg. WLAN vs. GPRS/GSM). In this context, handling only higher
levels of the image collection hierarchy (that provide collection overviews) can
help reduce traffic. Besides, pre-fetching and caching strategies can exploit
this collection structure, in conjunction with multi-terminal content adapta-



tion layers, as described in Universal Multimedia Access MPEG-T7 effort [19].
The present paper does not discuss this direction further, but attention is
drawn on the benefit one may expect on this aspect.

The remainder of this paper is organized as follows. Section 2 surveys existing
proposals that exploit time or space for retrieval in image collections. In sec-
tion 3, we propose a technique for spatio-temporal organization of one’s image
collection, first as an overview and then in more detail. Section 4 provides ex-
perimental results, while section 5 depicts a typical user interface exploiting
the results. Finally, section 6 is devoted to concluding remarks.

2 Related work

2.1 Time-based structuring

Structuring an image collection according to the time stamp of each picture is
intuitively appealing, practically quite cheap and reliable. As noted in [9], the
generative process of pictures (i.e. behaviour of users) is likely to exhibit time
clusters and, furthermore, often in a hierarchical fashion. Overall, two types
of techniques may be distinguished. First, change detection techniques, such
as in [4], possess the advantage of not setting a particular parametric model
on the intra-cluster time distribution. A combination of these alternatives is
proposed in [9], in which (preset size)-gap detection leads to initial groups for
clustering. However, how the classical limitations of clustering techniques are
addressed is not detailed (number of clusters, arbitrary intra/inter-class sepa-
ration thresholding). In order to cope with the variety of time scales present in
the image collection, solutions such as log-scaling of inter-frame time gaps have
been examined in [4,8]. Finally, besides direct use of time for image grouping,
it was recently proposed [7] to combine time linearly with camera settings
features and image content information, within an ’image similarity’ measure.

2.2  Geolocation-based structuring

As recently reviewed in [20], geolocation technologies are progressively being
integrated in mobile phones and networks. In practice, geolocation is mainly
pushed on the market by navigation and context-aware services [21], rather
than our image retrieval purpose, but we nevertheless benefit from it and it is
of utmost importance.

The importance of the location for image collection organization is stressed



in [9] but, to our knowledge, there are currently few systems that seem to
have considered the matter closely. Regardless of image consideration but
still with a view to providing structured calendar-type views, we proposed
in [22] a technique towards unsupervised learning of meaningful locations.
Geolocation is measured continuously in time, and partitions of time and space
are extracted at multiple scales, based on a piece-wise parametric trajectory
model. By this means, one attempts to recover significant temporal episodes
and areas. A work close in spirit is [23], although the modelling formalism
differs.

3 Spatio-temporal organization with model-based ICL clustering
3.1 Meta-data used and overview of the proposed approach

We formulate the recovery of the image collection spatio-temporal structure
as a model-based unsupervised classification problem. Probabilistic model-
based clustering is a favourite framework for identifying meaningful groups
in data [24]. Its adequacy for our needs is justified by i) the intra-cluster
homogeneity criterion, which is explicit in the form of a parametric model (the
drawback arising from this aspect is discussed further down), 4i) the possibility
of assessing classifications obtained, iii) the manner in which the process scales
well with large amounts of data (say, a few hundreds or thousands of pictures,
in our case) and has good perspectives towards an incremental version of the
scheme.

Overall, this approach requires setting a functional form on the probability
distribution for the data arising from each cluster, defining a statistical opti-
mality criterion and searching for a suitable solution accordingly.

In our case, the data D is assumed to be drawn from a random Gaussian
mixture process with probability density :

p(D) = Zak-N(D‘H’kaEk)a (1)

where the probabilities oy are the mixing proportions and NV (D|u, ) indicates
a Gaussian distribution with mean p and covariance X.

Here are the main features of the proposed scheme, which will be detailed in
the remainder of this section :

e distinct classifications are built for time and space;



e we resort to the statistical integrated completed likelihood criterion (ICL),
initially proposed in [25]. With its evidence-like aspect, it provides an effec-
tive solution to model complexity determination, i.e. determining a suitable
number of clusters. Besides, it drives the search towards favouring cluster
separability, thereby providing partitions that are more meaningful for our
purpose. An important resulting advantage for our application is improved
robustness to mismatch between the (Gaussian) form of probabilistic model
components and the actual clusters;

e optimization of this criterion is conducted using an Expectation-Maximization
technique, with a dedicated search procedure (implying multiple short searches
and cluster split/merge trials);

e the best spatial and temporal classifications found are assessed, with respect
to how well they succeed in separating the data into clear groups. Among
these two, the partition retained should then provide a structured, calendar-
type (or map-type) organization and view on the picture collection.

3.2 Optimality criterion

By taking a Bayesian hypotheses testing viewpoint, it can be shown that an
effective manner of evaluating the ability of a clustering hypothesis Hyx to
explain the data D, taking into account the need for comparing hypotheses
with various numbers of clusters, is provided by the so-called evidence, or
marginalized likelihood :

P(D|Hy) = [ P(D|0x, Hi) P(Ok|Hi)dOx, 2)

where O indicates the model parameter vector associated to hypothesis H.
In our case, O = (0y,0s, ...,0k) with 6; = (u;, Xi, ) 1 <i < K.

The goal is thus to find the mixture model leading to the greatest evidence for
clustering the data. In order to evaluate this marginalized likelihood, a variety
of computation strategies and approximations exist, as reviewed in [26]. We
opt here for the approximation known as the Bayesian Information Criterion
(BIC) [24], expressed as follows :

BIC’:—ML-I-%-N(K)-log(n), (3)

where ML is the maximized mixture loglikelihood, N(K) is the number of
independent parameters in the model with K components and n is the number
of data elements. An intuitive observation on this approximation is that it acts
as a likelihood criterion penalized by model complexity, illustrating the use of
marginalized likelihood as the Bayesian implementation of Occam’s razor.



Overall, the BIC criterion aims at identifying both model parameters and the
number of clusters. Yet, the parametric form enforced for clusters (henceforth,
in practise, Gaussianity) leads to poor and/or over-segmented clusters, should
their data strongly infringe on this assumption. In our case, groups of pic-
tures forming meaningful areas or time extents do not generally exhibit very
Gaussian distributions, as their physical generative process is not so.

To improve this point, we resort to the Integrated Classification Likelihood
(ICL), proposed in [25]. Overall, this criterion penalizes the BIC criterion with
the entropy of the data-to-model assignment in the mixture, i.e. a mixture
which separates well the data has lower entropy and is explicitely favoured.
This criterion may be summarized as follows:

ICL = BIC — ®(K), (4)

where ®(K) is an entropy-based criterion, defined by:

k=11i=1

where K is the number of components in the mixture, n the size of the data
set, and t;; is the posterior probability for an observation 7 of originating from
cluster k. These t;, values are supplied at convergence of the optimization
phase, which is described in the next section.

We provide hereunder a few experimental examples illustrating the benefit
of the proposed technique. Fig. 1 depicts a situation where artificial data
is generated from a mixture of Gaussians (fig. 1a) (the numbers of samples
per component differ). The clustering corresponding to the true underlying
mixture is indicated on fig. 1b. It differs slightly from the optimal clustering
recovered with the ICL criterion (fig. 1d), as in the latter case, the grouping of
two clusters ’5’ and ’6’ is preferred. The various model complexities between
1 and 10 clusters are scanned systematically and it is seen that 5 clusters is
found to be optimal (fig. 1c). From a clustering perspective of our application,
this conclusion seems to lead to more meaningful groups in the data, showing
some degree of robustness to non-Gaussianity of the (’5+6’) cluster. The next
two experiments, reported on fig. 2, illustrate the same idea, but on real data,
in the context of our application.

3.2.1 Addressing the small sample problem

The number of data elements in a cluster may be small, leading to inaccuracy
in the estimation of the covariance matrices describing the intra-cluster spread,
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Fig. 1. (a) Artificial data from a mixture of 6 Gaussians (the digits identify each
component) and (b) the corresponding clusters (convex hulls) identified by EM,
given that there are 6 components. (c,d) respectively describe the optimal value
of the ICL criterion obtained for each tentative number of clusters and the overall
solution retained using the ICL criterion.

let alone ill-definition if the number of data elements is small than, or equal to,
the dimension of the space at hand. We focus here on the geolocation-based
clustering, as time-based clustering may be tackled in a similar (yet simpler)
way.

Several techniques for regularization of covariance matrix estimation are pre-
sented in e.g. [27], which defines the regularized matrix as a linear combination
of the sample (full-form) matrix estimate and some other, more constrained,
form of estimate. Alternatively, one may select one among several competing
covariance matrix forms (such as full, diagonal and spherical), and trade-off
model complexity for data fitting.

The solution we introduce consists in estimating a full covariance matrix, yet
imposing two constraints :

e a “minimum area” to each cluster is imposed, by setting minimum covari-
ance eigenvalues. This enables effective handling of single-data clusters in
the classification, through the limitation of the likelihood increase such zero-
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Fig. 2. Illustrating the comparison of BIC vs. ICL : cases (a) and (c) describe
optimal solutions found using the BIC criterion, while cases (b) and (d) indicate
the corresponding conclusions for the ICL criterion. In the case (a,b), where the
number of clusters is forced to 4, BIC leads to interwoven clusters, which ICL
avoids (we deem this latter solution better). In the case (c,d), where the number of
clusters is free, BIC leads to undesirable splitting of an excessively non-Gaussian
cluster (on (c), the cluster on the right is in fact composed of two clusters o and ©) .
The actual likelihood values are similar in both cases, it is the entropic term ®(K)
that makes the difference.

variance critical situations imply. Besides, this feature may integrate mea-
surement noise on geolocation data.

e o mazimum ratio between the two covariance matriz eigenvalues. A full
covariance matrix is more flexible and desirable than a diagonal matrix, as
the main inertia axis orientation is free. Still, with only two data elements
(or more, if data elements are almost aligned), the two eigenvalues have
very different magnitudes, and these data having excessive likelihood. The
critical issue due to lack of regularization is illustrated by the example result
provided in fig.3.

Let the sample covariance matrix S for a cluster be diagonalized as

B A 0
S=UAU" A= (6)

0 Ao

where A\; > Ay and U is the matrix composed of the eigenvectors of S.



The principles indicated above result in the following definition for the regu-
larized covariance matrix :

maz (5, A1) 0
0 maxr (ﬁla)‘%ﬂ)‘l)

Y =U. Ul (7)

where 3, 8 are two parameters. 8’ depends on the measurement noise, while
B may be set to 0.3.

L L L L L L L )
0 10 20 30 40 50 60 70 80

Fig. 3. Typical poor result obtained when applying full-covariance model-based
clustering on small samples, without any regularization. Local configurations with
strongly unequal eigenvalues are generally obtained, allowing excessive intra-cluster
Euclidian distance.

Another issue related to the small sample case is that the BIC approximation
theoretically sees its validity reducted. We conducted experiments with an
alternative dedicated to small samples (AICc [28]), but did not conclude to
significant improvement.

In the next section, we present the technique for attempting optimization of
this criterion.

3.3 Search for the optimal classification

3.3.1 The EM algorithm

The Expectation-Maximization (EM) algorithm [29,30] is employed here for
(locally) optimizing the criterion described above. This algorithm is widely
used in association with mixture modelling. It iterates between two steps.
In the E-step, the unknown data-to-model assignements are replaced by their
expectation, given the current model parameter estimates; this strategy breaks
the combinatorial expense of the general clustering problem. Then, the M-step

10



updates the model parameters, given the current data-to-model assignement,
estimates.

We describe hereunder several problems the EM algorithm has to cope with,
and some solutions proposed in our case.

As the EM technique assumes the number of components is known, we con-
duct the search for each hypotheses subspace associated to a given number
of components. Among all the solutions found, one retains the solution which
maximizes the ICL criterion. An improvement on this rather exhaustive search
strategy is proposed in [31]. However, our technique is also motivated by the
interest, in future work, in providing partitions at multiple granularities, i.e.
finding several plausible partitions with various complexities, to enable multi-
scale browsing.

The second issue is due to the local character of the optima found with the
EM algorithm. Two complementary techniques are used to improve this point:

e an “em-EM strategy” [32] which is processed during the initialization step.
This procedure seems more effective than of the commonly used k-means-
based initialization and is described in the “Algorithm 1”7 below,

e a Split-Merge EM (SMEM) algorithm, inspired from [33], which is applied
after local optimization by the em-EM algorithm. This technique consists
in evaluating and (possibly) applying joint split & merges among current
clusters, to attempt pertinent semi-local jumps in the search space, while
keeping constant the number of clusters. Throughout, ICL remains the de-
termining criterion. This SMEM algorithm is described in detail below.

Algorithm 1 “em-EM” strategy

for i=1 to NB_INITTALIZATIONS do
1. Make random data-to-model assignments. The set of random CEM ini-
tializations is constrained to form connected temporal components, thus
generally starting closer from desirable solutions.
2. Run Classification EM (CEM is a hard-assignement version of EM,
which convergence is fast)
3. Run a “short EM” (max. 20 iterations, weak convergence test)

end for

Run a “full EM” (up to 500 iterations, strict convergence test), initialized

from the one among the above solutions that optimizes the ICL criterion.

3.3.2  Split and merge EM algorithm
The SMEM algorithm [33] aims at improving the result of a locally optimized

model. By attempting several successions of division/fusion of components, it
can help escape a local optimum. This algorithm is applied after the optimiza-

11



tion of the model with the em-EM searches. At each iteration of the SMEM
algorithm, three components ¢, j and k are chosen, based on criteria described
below. A tentative semi-local jump in search space is attempted by merging
components ¢ and j and splitting k&, should the ICL criterion be improved.
The overall model complexity remains unchanged.

Split and merge criteria

Because of the high number of split and merge possibilities, some criteria are
used to rank the candidates. Both criteria proposed here differ with those
described in [33].

The merge criterion proposed in [33] is based on the posterior probability of
components: the idea is to compare the inter-component posterior probabilities
and to merge the components accordingly. This technique is not pertinent
with components associated with few observations: for example, if we compare
several components that only have a single observation each, they are not
deemed good candidates for a merge. In our context, this configuration is
frequently encountered. Alternatively, we propose the use of the Mahalanobis
distance to compare components:

Jmerge(ia ja 6) = min{diStMaha. (,U'i; Ez’a Nj)a diStMah,a. (,U'ja Eja ,U'z)}a (8)

where distyrana (15, Sy i) = (e = i3 Y - 25 - (ps — 1)

Our split criterion is based on the entropy of each component. As a component
with a high entropy suggests that the component does not fit well its associated
data, or that another model also somewhat fits this data, we consider splitting
the components according to this principle.

splzt k @ thk log zk (9)

Finally, the Jyerge and Jgp; are sorted as follows: first, the merge candidates
are sorted based on Jyerge. Then, for each merge candidates {7, j}, the split
candidates excluding {7, j} are sorted as {k}. The result is then combined to
obtain the list of candidates.

Initialization of the new parameters

Parameter initialization for the new models after a split and merge, given the
current parameter ©*, are defined as follows. The initial parameters for the

12



merged components %, j are expressed by:

ait; +ajt; w0

ar = +a; and Oy =

For the division of a component & in two components j' and &':

*

a * *
%"=0uc'=7k, pjr = pp+ e, = pp+e and (11)

5y = Sy = det(Sh) Y D)1, (12)

where € and € are some small pertubation vectors, det(X) denotes the deter-
minant of ¥ and I ; the d-dimensional identity matrix.

After initialization, the SMEM algorithm uses a partial EM phase to update
the parameters of the new models. This consists in re-estimating the param-
eters of modified components without affecting the others. Thus posterior
probabilities of the new model m’ are modified according to (13) during the
expectation step of the EM algorithm:

a’m’p(x|®m’)

P ! @ =
(m'|z, ©) Y= jr e cup(]on)

- P(k|z; ©%), (13)

where m' = 4',j',k'. The usual EM algorithm is then iterated until conver-
gence.

SMEM algorithm

The SMEM algorithm consists in computing the list of candidates for the
division and fusion of components and then, for the first candidate, to initialize
the parameter and optimize the new model with the partial EM and classic
EM algorithm. If ICL criterion is improved, the new model is retained. In
the case it is rejected, a new candidate is tested. The SMEM algorithm is
summarized by Algorithm 2 below, and is applied systematically after each
em-EM run.

3.4 Comparison of spatial and temporal partitions

Let us recall that the classifications are carried out independently in space and
time. Due to the lack of natural clusters in the data, to insufficiency of the
optimality criterion or poor local minima, one or both of the partitions ob-
tained would occasionnally poorly capture the data structure. We propose to

13



Algorithm 2 Split and merge algorithm

1. Perform the usual EM updates from some initial parameter value © until

convergence. We note ©* and (* respectively the estimated parameters and

the function value after the EM algorithm has converged.

2. Sort the split and merge candidates by computing split and merge criteria

based on ©*. We note {i, j, k}. the cth candidate.

for ¢c=1,...,Cp4 do
After making the initial parameters settings based on ©* perform the
partial EM algorithm for {4, j, k}. and then the usual EM algorithm until
convergence. Let ©** be the obtained parameters and Q** the new func-
tion value after convergence. If Q** > Q* then Q* <+ Q**, ©* + ©* and
return to 2.

end for

compare the values of entropy ®(K') found for each of the two optimal classifi-
cations, and select the one with the smallest value, i.e better-defined clusters.
This generally leads to selecting the most relevant and reliable partition for
viewing and browsing the picture collection.

4 Experimental results

4.1 Trips in Loire-Atlantique

To illustrate the variety of situations that the proposed scheme can handle,
the results of two first experiments are provided on fig.4. Only results on the
geolocation data are reported here. Both scenarios are trips in Loire-Atlantique
(Nantes district), corresponding to real touristic sights.

In the first case (fig.4a), there exist numerous clusters (in most locations, sev-
eral pictures have been taken at the same or at nearby spots). Eleven clusters
are obtained (including a strongly non-Gaussian one on the coast). In the sec-
ond scenario, pictures are taken in a sparse manner, at two scales : on the
whole district and more locally, around Nantes. The clustering result reveals
this hierarchical structure, that is quite sensible with a browsing perspective.

4.2 Two holiday trips

These experiments correspond to two tourist trips, A and B, during which
photos are taken at interesting sights. Figures 5 and 6 indicate the location of
pictures.

14
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Fig. 4. Two experimental results showing extreme cases of geolocation picture dis-
tribution. In (a), the distribution is formed of numerous dense clusters, while in (b),
a hierarchy of two sparse clusters is found. Ellipses represent the 20 equiprobabil-
ity line, and lines join data points to their cluster center. The optimal ICL value
obtained for each candidate model complexity is resp. shown on a; and b;.

During trip A, the user takes 300 pictures during ten days at different lo-
cations. Figure 7 and 8 represent the picture classification obtained, respec-
tively for the time and the location. We test models between 1 and 15 compo-
nents. The temporal classification retained is composed of 14 components and
presents a acceptable result. Our constraint on the size on matrix covariance
is effective, as single-data clusters are well handled. There remain the prob-
lem of data over-segmentation in the interval [9000,11000], which presents
a bad separability: finding three components would be better. Still, all rele-
vant time episodes are identified. The spatial classification has 12 components
and the structure is overall identified, although north-western clusters are not
well separated. Separabilities of the data in time and space are assessed as
Diime = 12.46 and Pyyeurion = 7.45, and consequently the spatial classification
is selected.

During trip B, the user takes 500 pictures within ten days. We test models
between 1 and 15 components. 14 and 8 components are respectively found
for the temporal classification (fig. 9) and the spatial one (fig. 10). The tem-
poral classification obtained is satisfactory, as all relevant time episodes are
recovered. The partition is formed of many little clusters, with good separabil-
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Fig. 6. Scenario B: each cross represents the location of a picture. This scenario

involves trips along the river and around lakes.

ity. In the spatial classification, most pertinent locations are well determined,
while the 3-cluster structure obtained for the trip around the lake (latitude
[0,4000]) is debatable, although it remains an exploitable result. This split is
certainly due to the excessive non-Gaussianity of the cluster, as hinted by the
'likelihood elbow’ for the 5-cluster hypothesis on fig 10. Yet, the separability of
the data in time and space is assessed as ®ne = 31.45 and Dypution = 34.12,
i.e. the relatively high value of ®;,.4ti0n captures the abovementioned ambigu-
ous situation and makes the scheme dismiss this partition, in favour of the

temporal one. This suggests two extensions for the current scheme :

sequential feature of geographical data should be taken into account further
than it is currently, (ii) a time-space switching strategy could improve the
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current binary time-or-space decision.

Although experiments were so far conducted on data sets corresponding to
the scale of days rather then globally to weeks and months, they provide a
first validation of the proposed scheme.

For the sake of comparison, experiments were repeated without the SMEM
phase. The resulting classifications were generally visually similar to the pre-
vious ones, but the ICL criterion was most of the time improved when the
SMEM algorithm was used. Overall, this suggest that, to obtain a clustering
of similar quality, SMEM helps reduce significantly the number of random
initializations needed of the em-EM scheme.

As a final remark, let us point out that we did not examine experimentally
the drawbacks of using the BIC approximation of the evidence, over more
refined options such as Laplace’s approximation, and hence cannot yet identify
precisely this share of the responsability in occasionnal classification mistakes.

5 Application to image collection browsing

In this section, we illustrate the practical interest of the proposed scheme, from
an image collection browsing perspective, as applied to a mobile phone/PDA.

We consider here time-oriented views, such as would be found on familiar
calendar managers available on PDAs. The proposed divisions of time for
browsing may be either the temporal or spatial partition, depending on the
abovementioned criterion. In the case space is selected, temporally discon-
nected components are separated. Restriction to one of the partitions ensures
a small number of episodes and consistency of the division criterion along the
view. The choice of suitable representative images for image groups is out of
the scope of this paper, and some solutions are proposed in works referred to
in section 2.

Alternatively, one may exploit both partitions simultaneously. Fig. 11 illus-

trates a possible calendar-type view. Different background colors or separation

marks between episodes indicate from what perspective the cluster is homo-

geneous. Input keys can be associated to the following functions “ jump to
” N

next temporal episode”,” jump to the next occurrence of photos in this spatial
zone” .
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6 Conclusion

In this paper, the problem of organizing personal digital image collections
has been addressed. The interest towards temporal and spatial meta-data was
stressed, especially for camera phone applications. To focus on purely data-
driven structuring, we formulated the problem as an unsupervised classifica-
tion issue. The ICL criterion was proposed, as it fulfills several requirements of
the application (unknown number of clusters, poor Gaussianity). The scheme
is further improved by a technique for estimating covariance matrices in the
case of clusters containing only a few pictures. The ICL criterion is optimized
with an efficient version of the EM technique and a split/merge procedure
SMEM for semi-local optimisation. Finally, we proposed a criterion for assess-
ing the two partitions obtained and selecting the most reliable one. Among
the qualities of the chosen formalism are the lack of delicate parameter tuning,
and perspectives for multi-scale structuring. Overall, we believe it provides an
effective and realistic direction towards organizing an image collection, pro-
viding a structure that may be mapped onto a variety of navigation schemes.

In current work, we are examining lowering the cost of the optimization
strategy, by reducing redundant optimization work when exploring various
model complexity hypotheses. Among other perspectives, better joint spatio-
temporal structuring on one side, and turning to an incremental system on
the other side, are essential. Although the EM algorithm adapts quite well to
this case [34], more global reorganization of the collection sometimes has to
be carried out.
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Fig. 7. Temporal classification of trip A: on the top, optimal ICL criterion obtained
for each tentative model complexity. On the bottom, the obtained classification
in the best configuration among all model complexities. Black lines represent the
classes and each component is numbered.
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are numbered and their convex hulls are drawn.
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are numbered and their convex hulls are drawn.
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Fig. 11. Example of electronic calendar: dashed lines represent a change of geoloca-
tion, and continuous lines a time change or both. Assignement of names to clusters
is carried out manually and does not relate to the proposed technique.
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