
Statistical Properties of Factor Oracles

Jérémie Bourdon1,2 and Irena Rusu1

1 LINA, CNRS UMR 6421 and University of Nantes, France
2 IRISA INRIA Rennes-Bretagne Atlantique

(Jeremie.Bourdon,Irena.Rusu)@univ-nantes.fr

Abstract. Factor and suffix oracles have been introduced in [1] in order
to provide an economic and efficient solution for storing all the factors
and suffixes respectively of a given text. Whereas good estimations exist
for the size of the factor/suffix oracle in the worst case, no average-case
analysis has been done until now. In this paper, we give an estimation
of the average size for the factor/suffix oracle of an n-length text when
the alphabet size is 2 and under a Bernoulli distribution model with
parameter 1/2. To reach this goal, a new oracle is defined, which shares
many of the properties of a factor/suffix oracle but is easier to study and
provides an upper bound of the average size we are interested in. Our
study introduces tools that could be further used in other average-case
analysis on factor/suffix oracles, for instance when the alphabet size is
arbitrary.
Keywords: indexing structure, average-case analysis, factor recognition,
suffix recognition

1 Introduction

Finding a given pattern inside a given text is a classical problem (the
pattern matching problem) for which many solutions have been proposed
until now. A very important class of solutions relies on the use of indexing
structures, i.e. data structures that allow to store the text, to have a fast
access to it and to quickly execute certain operations on data. Suffix
arrays, suffix automata, suffix trees are classical structures which can be
implemented in linear time with respect to the text size.

Still, these structures require a too important (although linear) a-
mount of space. Several techniques for reducing the memory space needed
by index implementation were developed (see [4] for a survey). Language
approximation is one of these techniques, and factor/suffix oracles (intro-
duced in [1]) are one way to illustrate it. Whereas suffix arrays, suffix
automata and suffix trees owe their efficacity to their perfect accuracy
when answering to the question “Is the word w a suffix (or a factor) of
the stored text?”, the factor/suffix oracles are only accurate when they
provide the negative answer. The language each of them recognizes is

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

Author manuscript, published in "COMBINATORIAL PATTERN MATCHING, Lille : France (2009)"
 DOI : 10.1007/978-3-642-02441-2

http://dx.doi.org/10.1007/978-3-642-02441-2
http://hal.archives-ouvertes.fr/hal-00415952/fr/
http://hal.archives-ouvertes.fr

larger or equal to the set of factors/suffixes (respectively) of the text, but
their size is very small. The words accepted by a factor/suffix oracle which
are not factors/suffixes of the stored text will be termed by-products.

A simple, space economical and linear on-line algorithm to build ora-
cles is given in [1], together with some applications to pattern matching.
Other applications to pattern matching, finding maximal repeats and text
compression can be found in [8], [9], [10] and [11]. A linear compression
algorithm, improving the previous quadratic algorithms proposed in [2]
and [3], to transform a suffix tree into an oracle can be found in [16].
Another algorithm, based on Ukkonen’s algorithm to build a suffix tree,
is given in [5].

Two ideas come easily out from these applications. On the one hand,
oracles should be reasonably envisaged when one has to deal with a text
mining problem. On the other hand, evaluating precisely the performances
of an application that uses oracles is a hard task, especially in the average
case. Although theoretical studies have been performed for the maximum
number of transitions [1] and the maximum number of by-products [12]
for the oracles of an n-length text, no theoretical study exists in the
average case (An experimental study was realized in [12] for the number
of by-products). As a consequence, no theoretical average-case running-
time or memory space analysis exists for any algorithm based on oracles.
Moreover, experimentally supported conjectures are still open. This is
the case, for instance, for the conjecture claiming that the BOM pattern
matching algorithm presented in [1] is optimal in the average.

In this paper, we estimate the average number of transitions (i.e. the
average space occupancy) of the factor/suffix oracle of an n-length text,
when the alphabet size is 2 and under a Bernoulli distribution model
with parameter 1/2. In this way, we answer another one of the questions
raised in the seminal paper [1] (and raised again in [5]). The first of these
questions, concerning the characterization of the language recognized by
the factor/suffix oracle, was answered in [13].

The paper is organized as follows. In Section 2 we define the fac-
tor/suffix min-oracle (which is the classical factor/suffix oracle) and pre-
sent its main properties. In Section 3, the factor/suffix short-oracle is
introduced and is briefly compared to the factor/suffix min-oracle. In sec-
tion 4, we investigate local properties of the min- and short-oracles and
deduce probabilistic results, that we use in Section 5 to estimate the av-
erage space occupancy of a short-oracle, and thus of a min-oracle. Section
6 is the conclusion.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

0 1 2 3 4 5 6 7 8 9 10
b

b

b

b

b b b ba

a

a a

a

a

Fig. 1. The suffix min-oracle Omin(w) for w = baabbababb. The final states are grey.

2 Factor and Suffix (min-)Oracles

Let w = w1w2 . . . wn be a sequence of length |w| = n on a finite alphabet
Σ. Given integers i, j, 1 ≤ i, j ≤ n, we denote w[i . . . j] = wiwi+1 . . . wj
and we call this word a factor of w (notice that when j < i the resulting
factor is by convention the empty word ε). A suffix of w is a factor of w
one of whose occurrences ends in position n. The i-th suffix of w, denoted
Suffw(i), is the suffix w[i . . . n] and has length n + 1 − i. A prefix of w
is a factor of w one of whose occurrences starts in position 1. The i-th
prefix of w, denoted Prefw(i), is the prefix w[1 . . . i]. By convention, the
empty word ε is both a suffix and a prefix of w. Say that a suffix of w is
maximal if it is not identical to w and it is not the prefix of another suffix
of w. Say that a suffix of w is repeated if it is a factor of w[1 . . . n − 1],
and non-repeated in the contrary case. It is easy to see that a maximal
suffix is always a non-repeated suffix, whereas the viceversa is true only
for non-repeated proper suffixes, i.e. distinct from w.

The factor/suffix oracle of w is a deterministic automaton which has
n + 1 states denoted 0, 1, 2, . . . , n, one internal transition (i, wi+1, i + 1)
for each state i except n, and at most n− 1 external transitions denoted
(i, wj , j), for some pairs i, j with i+1 < j. Consequently, the factor/suffix
oracle of w is homogeneous, that is, all the transitions incoming to a given
state have the same label. Each state is final in the factor oracle, while
only the states ending the spelling of a suffix of w (including the empty
one) are final in the suffix oracle (see Figure 1 for the suffix oracle of
w = baabbababb).

The factor/suffix oracle was introduced in [1] and can be built using
an on-line linear algorithm. The algorithm Build Oracle we give here
(also proposed in [1]) is quadratic, but more intuitive. In the algorithm,
Omin(w) denotes indifferently the factor or suffix oracle.

Figure 1 shows that the factor/suffix oracle can accept words that are
not factors/suffixes, e.g. baabb which is not a suffix of w = baabbababb but
is accepted in the final state 4 of its suffix oracle. These words are called
by-products.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

Algorithm Build Oracle [1]
Input: Sequence w.
Output: Omin(w).

1. for i from 0 to n do
2. create a new state i;
3. for i from 0 to n− 1 do
4. build a new transition from i to i+ 1 by wi+1;
5. for i from 0 to n− 1 do
6. let x be a minimum length word whose reading ends in state i;
7. for all γ ∈ Σ, γ 6= wi+1 do
8. if xγ is a factor of w′ = w[i− |x|+ 1 . . . n] then
9. let j be the end position of the first occurrence of xγ in w′;

10. build a transition from i to j by γ
11. endif
12. endfor
13. endfor

Several important results on oracles have been proved in [1]. Here
are the ones which will be needed in the rest of the paper. We denote
poccur(v, w) the ending position of the first occurrence of v in w, for each
factor v of w.

Lemma 1. [1] Let w be a word of length n on the alphabet Σ. Then we
have:

(i) For each state i of Omin(w), there is a unique minimum length word
accepted in i, that we note minw(i).

(ii) For each state i of Omin(w), we have i = poccur(minw(i), w). In
addition, minw(i) is a suffix of every other word accepted in state i.

(iii) If i < j are two states of Omin(w) and γ ∈ Σ, then there ex-
ists a transition (i, γ, j) in Omin(w) if and only if we have j =
poccur(minw(i)γ,w).

(iv) Each factor v of w is recognized by Omin(w) in a state j such that
j ≤ poccur(v, w).

For a word u on Σ, let min(u) = minu(|u|) and notice that if we
denote u =Prefi(w), then min(u) = minw(i) and all the properties in
Lemma 1 may be formulated using min(u) instead of minw(i).

Remark 1. The algorithm Build Oracle may be seen as a generic algo-
rithm where the function used to define the word x in step 6 acts as a
generator of external transitions. From this perspective, the factor/suffix

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

0 1 2 3 4 5 6 7 8 9 10
b

b

b

b

b b b ba

a

a a

a

b

a

Fig. 2. The suffix short-oracle Oshort(w) for w = baabbababb. The final states are grey.
The supplementary transition with respect to Omin(w) is dotted.

oracle is the automaton defined by this generic algorithm using the pre-
cise function min() as a generator. This is why, in the rest of the paper,
the factor/suffix oracle will be called the factor/suffix min-oracle (or
simply the min-oracle) and will be denoted (as we already did) Omin(w).

The best (to the date) estimation of the maximum number of external
transitions in a min-oracle was proved in [16].

Lemma 2. [16] The number of external transitions ETmin(w) of the
oracle Omin(w) is upper bounded by the number of maximal suffixes of
w.

3 Factor and suffix short-Oracles

Provided a word u on Σ, denote short(u) the shortest non-repeated suf-
fix of u (by convention, short(ε) = ε). Then, consider the generic algo-
rithm Build Oracle in which the generator is now the fonction short().
Or, equivalently, step 6 now reads x = short(Prefi(w)), instead of the
affectation x = min(Prefi(w)) performed to obtain Omin(w). The re-
sulting homogeneous automaton is denoted Oshort(w) and is called the
short-oracle of w. Its factor and suffix versions are obtained as for the
min-oracle.

Remark 2. For some sequences w, Omin(w) and Oshort(w) are identi-
cal, but this is not always the case, since short(u) and min(u) may be dif-
ferent, as is the case for u = baabbab: short(u) = bab and min(u) = bbab.
Then Oshort(baabbababb) has one external transition labeled b leaving
state 7 (see Figure 3) because of the occurrence of babb ending in state
10. In opposition, Omin(baabbababb) has no such transition since bbabb
has no occurrence ending in a state j > 7.

Although possibly different, the min- and short-oracles share many
good properties, as shown by the following claim, very close to Lemma 1.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

Claim 1. Let w be a word of length n on the alphabet Σ. Then we have:

(i) For each word u, there is a unique shortest non-repeated suffix of u.
Consequently short(u) is well-defined.

(ii) For each state i of Oshort(w), we have i = poccur(short(u), w) where
u =Prefi(w). In addition, short(u) is a suffix of every other word
accepted in state i.

(iii) If i < j are two states of Oshort(w) and γ ∈ Σ, then there ex-
ists a transition (i, γ, j) in Oshort(w) if and only if we have j =
poccur(short(u)γ,w), where u =Prefi(w).

(iv) Each factor v of w is recognized by Oshort(w) in a state j such that
j ≤ poccur(v, w).

It is worth noticing here that, although the external transitions of
the min- and short-oracles are built according to similar rules and satisfy
similar properties (items (iii) in Lemma 1 and Claim 1), it is however
much easier to find short(u) than min(u). Indeed, short(u) is simply
obtained by considering every suffix of u and testing whether it occurs
elsewhere in u, whereas finding min(u) needs to build the min-oracle. As a
consequence, it is much easier as well to estimate the number of external
transitions in Oshort(w) than in Omin(w). This is why the following
result is essential.

Claim 2. Let w be a sequence and let ETmin(w), ETshort(w) be the
number of external transitions in Omin(w) and Oshort(w) respectively.
Then we have ETmin(w) ≤ ETshort(w).

4 Probabilities that an external transition exists for
binary alphabets

We now focus on random binary sequences issued from an unbiased
Bernoulli model B, in which a sequence w on Σ = {a, b} is produced
with probability pw = 1/2|w|. We denote by Bn the restriction of B to
sequences w of length n.

The two parameters below are of great relevance for our study:

• pmini→j , where 0 ≤ i < j ≤ n, is the probability that there exists a
transition from state i to state j in Omin(w).
• pmini, where 0 ≤ i < n, is the probability that an external transition

leaving state i exists in Omin(w). Obviously, the equality pmini =∑n
j=i+2 pmini→j holds.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

We first provide exact expressions for the probabilities pmini→j and
pmini when i = 0 or i = 1. In these simple cases, it is possible to char-
acterize precisely the language of sequences whose min-oracle possesses
a transition from state i to state j, when two states i and j are given.
An exact formula for the expected probability is then derived. In the
general case, such a characterization is no longer possible and we use a
method based on Guibas-Odlyzko’s equations together with a generating
functions methodology to obtain the desired probabilities, as well as their
equivalents in the short-oracle.

4.1 Languages viewpoint

Leaving state i = 0. First, we study the case of transitions that leave
state 0. Let w be a sequence of length n and let j (1 < j ≤ n) be an
integer. It is obvious that the min-oracle of w possesses a transition from
0 to j if and only if j is the position of first occurrence of a new letter. In
the binary case, this means that w is any sequence of one of the languages
aj−1b(a+ b)n−j or bj−1a(a+ b)n−j . It is easy to show the following:

Claim 3. Let j (1 < j ≤ n) be an integer. Under the Bernoulli model
Bn, we have pmin0→j = 1

2j−1 and pmin0 = 1− 1
2n−1 .

Leaving state i = 1. Let j (3 < j ≤ n) be an integer. Two cases must
be considered with respect to the two first letters of the sequence w.

If they are equal, say aa, then there is a transition from state i = 1
to state j if, and only if, j is the position of the first occurrence of b in
w. The probability of such an event is 1/2j−1.

If they are distinct, say ab, then there exists a transition from state
i = 1 to state j if, and only if, the first occurrence of aa ends at position
j. This implies that j > 4 and w must belong to one of the two languages
La = ab[(b+ ab)? ∩ (a+ b)j−4]aa(a+ b)n−j and Lb = ba[(a+ ba)? ∩ (a+
b)j−4]bb(a+ b)n−j . In order to deduce the probability for w to belong to
La or Lb, we first give the following result.

Claim 4. The number of sequences of size J ≥ 0 of the form (b + ab)?

equals the (J + 1)-th Fibonacci number FJ+1 defined recursively by F0 =
F1 = 1, and for all h > 1, Fh = Fh−1 + Fh−2.

Previous lemma together with Binet’s formula on Fibonacci numbers
(FJ = (φJ+1 − φJ+1)/

√
5, where φ = 1+

√
5

2 ≈ 1.618 is the Golden ratio
and φ = 1−

√
5

2 ≈ −0.618 its conjugate), allows us to prove the following
result.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

Claim 5. Let j, 3 < j ≤ n be an integer. Under the Bernoulli model Bn,
we have

pmin1→j =
Fj−3 + 1

2j−1
=

1
2j−1

[
1 +

1√
5

(φj−2 − φj−2)
]

(1)

pmin1 = 1− Fn−1 + 1
2n−1

.

We now focus on obtaining asymptotic expressions when i is arbitrary,
and need to apply a classical study involving generating functions.

4.2 Generating functions methodology

This section is devoted to a brief presentation of some essential tools from
the generating function theory. The reader can refer to [17] for details and
supplementary material. After a general approach using an alphabet with
an arbitrary number of symbols that is randomly generated by a Bernoulli
probabilistic process, we focus on the simpler case of a binary alphabet
whose symbols are produced uniformly at random. In this section, Σ is a
finite alphabet, Σ? is the set of all possible words of any length and Σ+

is the set of all possible words of any length except the empty word ε. For
two sequences x and u in Σ?, the function occ(x, u) counts the number
of occurrences of motif x in the text u.

Generating functions are very useful tools to study average-case prob-
lems on languages. Let L be a language. The generating function L(z)
associated to language L is defined by L(z) =

∑
u∈L puz

|u|, where pu
is the probability of word u to be produced. In the sequel, we denote
by [zk]L(z) =

∑
u∈L∩Σk pu the coefficient of zk in L(z), that equals the

probability for a word of length k to belong to L.
Consider the following three sets

Sx = {u ∈ Σ?, occ(x, u) = 0},
Tx = {u ∈ Σ?, u = v · x and occ(x, u) = 1},
Cx = {u ∈ Σ?, ∃v, v′ ∈ Σ+, v · u = v′ · v = x},

where v · u denotes the concatenation of the two words u and v in this
order. These sets are very classical in the so-called Guibas-Odlyzko [6]
methodology. The first one, Sx, is the set of words that do not contain x
as a factor. The second one, Tx, is the set of words that contain x only
as a suffix. Finally, Cx is the set of suffixes u of x such that x is a suffix
of x · u. Set Cx is commonly called the autocorrelation set of x.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

In the same vein, we define the correlation set Cx,y between two words
x and y by Cx,y = {u ∈ Σ?,∃v ∈ Σ?, v′ ∈ Σ+, x = v · v′ and y = v′ · u}.

Sets Sx, Tx and Cx are related by the following equalities

Sx ×Σ + ε = Sx + Tx and Sx × x = Tx × Cx.

By using decomposition properties of memoryless sources, such algebraic
decompositions on sets directly translate into equations involving gener-
ating functions. By solving the resulting system of equations, one obtains:

Lemma 3 (Guibas-Odlyzko [6]). The generating functions, denoted
respectively Sx(z), Tx(z) and Cx(z), of the sets Sx, Tx, Cx satisfy

Sx(z) =
Cx(z)/px
Dx(z)

and Tx(z) =
z|x|

Dx(z)
,

where px is the probability of word x to be produced and Dx(z) = z|x| +
(1− z)Cx(z)/px is a polynom of degree |x|.

Thus Sx(z) and Tx(z) are rational functions whose dominant singu-
larities (i.e., the dominant roots of Dx(z)) dictate the main order asymp-
totic term of [zk]Sx(z) and [zk]Tx(z). The following lemma may be found
in [15].

Lemma 4 (Szpankowski-Regnier [15]). The coefficients of [zk] (with
k > 0) in Sx(z) and Tx(z) satisfy

[zk]Sx(z) = Kxρ
−(k+1)
x +O(µ−kx) and [zk]Tx(z) = K ′xρ

−(k−|x|+1)
x +O(µ−kx),

where ρx is the root of Dx(z) of smallest modulus, Kx = −Cx(1)
pxD′x(ρx) , K ′x =

−1
D′x(ρx) and µx is the second modulus of roots of Dx(z).

As an example, it is easy to get the main order term of pmin1→j .
In this case, pmin1→j and the generating function of Taa are related by
pmin1→j = 1

2j−1 +2[zj]Taa(z). The denominator Daa(z) = z2+4(1−z)(1+
z/2) of Taa(z) possesses ρaa = 2/φ as dominant root and µaa = |2/φ| ≈
3.236. Applying Lemma 4 leads to the expected asymptotic expression of
pmin1→j given in equation (1).

In the case of binary Bernoulli unbiased sources, the root ρw can be
approximated by a quantity depending only on the word length |x|.

Claim 6. Let x be a binary word of length k > 1, sk = ρak and rk =
ρak−1b. We have:

(i) sk ≤ ρw ≤ rk;
(ii) rk+1 = sk;
(iii) if |x| = k > 2, ρx = 1 + 1

2k + o(1/2k).

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

4.3 Probabilities of an external transition : general case

Define the two parameters pshorti→j and pshorti similarly to pmini→j
and pmini, but for Oshort(w).

Now, coming back to the binary case we show how transition probabil-
ities (pmini→j , pmini, pshorti→j and pshorti) can be related to Guibas-
Odlyzko languages Sx and Tx defined in previous section.

Remark 3. For the sake of simplicity, we deduce in this subsection gen-
eral expressions only for pmini→j and pmini. However, the reader will
easily notice that the only property of Omin(w) used in this section is
Lemma 1 (iii), and that this property has an equivalent for Oshort(w),
namely Claim 1 (iii). Consequently, the reasoning and the results in this
part are easily transfered to Oshort(w) (just by replacing min(u) by
short(u) appropriately), so as to obtain similar expressions for pshorti→j
and pshorti.

For each letter m ∈ {a, b}, notation m designates the opposite letter
(e.g., a = b and b = a). We now prove the two following claims.

Claim 7. Let i < j − 1. The set Pi→j,n of all binary words of length n
whose oracle possesses an external transition from state i to state j is

Pi→j,n =
⋃

u∈Σi,m∈Σ

u·m·
((
Tmin(u)·m ∪ Cmin(u)·m,min(u)·m

)
∩Σj−i−1

)
·Σn−j .

In the same vein, it is possible to obtain a similar expression for the
transitions leaving a given state.

Claim 8. The set Pi,n of all binary words of length n whose factor oracle
possesses an external transition leaving state i equals

Pi,n =
⋃
u∈Σi,m∈Σ u ·m ·

(
(cSmin(u)·m ∪

(Smin(u)·m ∩ (Cmin(u)·m,min(u)·m ·Σ?))) ∩Σn−i−1
)
,

where cX = Σ? \X denotes the complementary set of X.

Formulas for pmini→j and pmini. It is now obvious to derive ex-
pressions for pmini→j and pmini by means of dominant roots of Guibas-
Odlyzko’s generating functions. Indeed, pmini→j =

∑
w∈Pi→j,n

pw and
pmini =

∑
w∈Pi,n

pw. Then, Claims 7 and 8 allow to express these prob-
abilities as particular coefficients of generating functions Tmin(u)·m(z),

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

Smin(u)·m(z) and Cmin(u)·m,min(u)·m(z). The following claim providing a-
symptotic approximations for the transition probabilities is a direct con-
sequence of Lemma 4.

Claim 9. Under Bn, the probabilities that an external transition exists
satisfy

pmini→j =
1

2i+1

∑
u·m∈Σi+1

K ′min(u)·mρ
−j+i+|min(u)|+1
min(u)·m +O(1/2j−i),

pmini =
1

2i+1

∑
u·m∈Σi+1

(
1−Kmin(u)·mρ

−n+i
min(u)·m

)
+O(1/2n−i−1),

where ρx, Kx and K ′x are quantities defined in Lemma 4.

Simpler approximations. The two previous expressions are quite in-
effective because they involve sums over all possible words of a given
length. Now, we show that it is possible to obtain computable approxi-
mation formulas for pmini→j and pmini. The approximation involves the
probability distribution of the minimum length words, which is defined
as follows. Let M(u) = |min(u)| be the function that associates with any
word u the length of its minimum length word. The restriction of M(u) to
Bi is itself a random variable denoted by Mi. Its probability distribution,
called in the sequel probability distribution of minimum length words is
defined by Prob {Mi = k} =

∑
u∈Σi,M(u)=k

1
2i .

Claim 10. Let Prob {Mi = k} be the probability distribution of minimum
length words, αk = 1

2k and λk = 1 + 1
2k . The transition probabilities

pmini→j and pmini satisfy

pmini→j =
i∑

k=1

Prob {Mi = k}αk+1λ
−j+i+k+1
k+1 +O(1/2j−i),

pmini = 1−
i∑

k=1

Prob {Mi = k}λ−n+i
k+1 +O(1/2n−i−1).

Remark 4. According to Remark 3, pshorti→j and pshorti satisfy the
same equalities as pmini→j and pmini in Claim 10, up to Prob {Mi = k}
which is replaced by Prob {Si = k}, where S(u) = |short(u)| is the size of
the minimum length non repeated suffix of u and Si its restriction to Bi.

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

5 Average space occupancy

The memory requirement for storing the min-oracle of w is the sum of
the number of states of Omin(w) (fixed and equal to n+ 1), the number
of internal transitions (fixed and equal to n) and the number of external
transitions. As an application of our results, we present now an estima-
tion of the average space occupancy (in terms of external transitions)
E [ETminn], where ETmin(w) is the function that counts the number
of external transitions of Omin(w) and ETminn is its restriction on Bn.
This estimation is computable in linear time.

Theorem 1. Under Bn (the set of random independently and identi-
cally distributed binary words of length n), the average space occupancy
E [ETminn] in terms of external transitions of a min-oracle for a word of
length n satisfies

E [ETminn] ≤ pmin0 + pmin1 + (n− 3)−
n−2∑
k=2

γk−1
k λk−nk+1 − γ

n−2
k λ−1

k+1

1− γkλk+1

−
n−2∑
k=2

γk−1
k−1λ

k−n
k+1 − γ

n−2
k−1λ

−1
k+1

1− γk−1λk+1

with γk = 1− 1
2k and λk = 1 + 1

2k .

Proof. First notice that the average space occupancy equals the sum of
all probabilities of leaving states,

E [ETminn] =
n−2∑
i=0

pmini.

It is thus of great interest to obtain a tractable formula for pmini and
consequently for Prob {Mi = k}, the distribution probability of minimum
length words. It is still a challenge to obtain such formulas for min-
oracles. Claim 2 proves that the average number E [ETshortn] of ex-
ternal transitions of short-oracles provides an upper bound for the expec-
tation E [ETminn]. Then we concentrate on computing E [ETshortn] =∑n−2

i=0 pshorti, where the expression of pshorti is obtained using Remark
4. We then study the probability distribution of Si. Then, considering
the prefix tree built using all the prefixes of the mirror wi · · ·w1 of word
w = w1 · · ·wi, |short(w)|−1 exactly equals the insertion depth of the i-th
prefix in the tree. In [14], Park et al. study the probability distribution

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

of insertion depth in the case of random words built by an i.i.d. binary
source. Applying their results to Si yields Prob {Si = k} = γn−1

k − γn−1
k+1 ,

with γk = 1− 2−k. Next, we use exact formulas for pshort0 = pmin0 and
pshort1 = pmin1 and approximations for other probabilities. Finally, it
is possible to invert the double sum

∑n−2
i=2

∑i
k=2 into

∑n−2
k=2

∑n−2
i=2 which

involves geometric sums leading to the expected result. ut

6 Conclusion

In this paper, we provide precise approximations for the probabilities that
an external transition exists in the min- and short-oracles. These approx-
imations allow us to study the average space occupancy of these oracles.
The main goal of such results is to allow comparing the factor/suffix oracle
with other indexing structures such as suffix trees, whose space occupancy
closely depends on the number of its internal edges, that is known to be
of order n/ log 2 (see [7]). Figure 6 compares our bound on the average
number of external transitions to the average number of edges of suffix
trees. This latter figure suggests a conjecture of n/3 + 1 for the average
number of external transitions of short-oracles.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

short-Oracles
Conjecture 1/3*n+1

Suffix trees

Fig. 3. A comparison of the space occupancy of short-oracles and suffix trees

Notice that one of the main open questions arising when studying
oracles concerns the number of words, recognized by an oracle, that are
not factor or suffixes. Our results should certainly be helpful since the
total number of words recognized by a factor oracle expresses as a sum

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

∑n
k=0Nk, where Ni is the expected number of words recognized in state

i. They satisfy N0 = 1 and for all 0 < j ≤ n, Nj =
∑j

i=0 pmini→jNi. It is
still a challenge to solve this latter recurrence. Nevertheless, it is quite easy
to design a dynamical programming algorithm yielding an upper bound
for the expected number of words recognized by a min-oracle, in the same
vein of our bound for the expected number of external transitions.

References

1. C. Allauzen, M. Crochemore, M. Raffinot - Factor Oracle: A New Structure for
Pattern Matching, In Proceedings of SOFSEM ’99, Theory and Practice of Infor-
matics, LNCS 1725, 295–310 (1999).

2. G. Assayag, S. Dubnov - Using Factor Oracles for Machine Improvisation, Soft
Computing 8, 1–7 (2004).

3. L. Cleophas, G. Zwaan, B. W. Watson - Constructing Factor Oracles, In Proceed-
ings of the Prague Stringology Conference 2003 (PSC ’03), 37–50 (2003).

4. M. Crochemore - Reducing space for index implementation, Theoretical Computer
Science, 292, 185–197 (2003).

5. M. Crochemore, Lucian Ilie, Emine Seid-Hilmi - The Structure of Factor Oracles,
Int. J. Found. Comput. Sci. 18(4), 781–797 (2007).

6. L. J. Guibas, A. M. Odlyzko - String Overlaps, Pattern Matching, and Nontransi-
tive Games, J. Combin. Theory Ser. A, 30(2), 183–208 (1981).

7. P. Jacquet, W. Szpankowski - Autocorrelation on words and its applications: analy-
sis of suffix trees by string-ruler approach. J. Combin Theory Ser. A 66(2), 237–269
(1994).

8. R. Kato - A new full-text search algorithm using factor oracle as index, TR-C185,
Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Japan (2003).

9. R. Kato - Finding maximal repeats with factor oracles, TR-C190, Dept. of Math-
ematical and Computing Sciences, Tokyo Institute of Technology, Japan (2004).

10. T. Lecroq, A. Lefebvre - Computing repeated factors with a factor oracle, In
Proceedings of the 11th Australasian Workshop On Combinatorial Algorithms, L.
Brankovic and J. Ryan eds., 145–158 (2000).

11. T. Lecroq, A. Lefebvre - Compror: on-line lossless data compression with a factor
oracle, Information Processing Letters 83, 1–6 (2002).

12. A. Mancheron - Extraction de motifs communs dans un ensemble de séquences,
Ph. D. thesis, University of Nantes, France (2006).

13. A. Mancheron, C. Moan - Combinatorial characterization of the language recog-
nized by factor and suffix oracles, International Journal of Foundations of Com-
puter Science 16(6), 1179–1191 (2005).

14. G. Park, H-K Hwang, P. Nicodème, W. Szpankowski - Profile of Tries, in Proceed-
ings of LATIN 2008, LNCS 4957, 1–11 (2008).

15. M. Régnier, W. Szpankowski - On Pattern Frequency Occurrences in a Markovian
Sequence. Algorithmica, 22(4), 631–649 (1998).

16. I. Rusu - Converting Suffix Trees into Factor/Suffix Oracles, Journal of Discrete
Algorithms 6(2), 324-340 (2008).

17. Wojciech Szpankowski - Average case analysis of algorithms on sequences, Wiley-
Interscience Series in Discrete Mathematics and Optimization (2001).

18. D. Wells - The Penguin Book of Curious and Interesting Mathematics (1997).

ha
l-0

04
15

95
2,

 v
er

si
on

 1
 -

11
 S

ep
 2

00
9

