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We follow two of the many paths leading from Newton’s to Euler’s scientific productions, and give an 

account of Euler’s role in the reception of some of Newton’s ideas, as regards two major topics: mechan- 

ics and algebraic analysis. Euler contributed to a re-appropriation of Newtonian science, though trans- 

forming it in many relevant aspects. We study this re-appropriation with respect to the mentioned topics 

and show that it is grounded on the development of Newton’s conceptions within a new conceptual frame 

also influenced by Descartes’s views sand Leibniz’s formalism. 
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Introduction 

The purpose of the present paper is to follow two of the 

many paths leading from Newton’s to Euler’s scientific produc- 

tions1 and to give, at least partly, an account of Euler’s role in 

the reception of Newton as regards two major topics: mechan- 

ics and algebraic analysis2. Euler contributed to a re-appropria- 

tion of Newtonian science. We will study this re-appropriation 

with respect to the mentioned topics and show that it is ground- 

ed on the development of Newton’s ideas within a new con- 

ceptual frame also influenced by Cartesian ideas and Leibnizian 

formalism. 

From Newtonian Geometric Mechanics to 
Analytic Mechanics 

Euler’s works on mechanics concern different domains, some 

of which are not considered in Newton’s Principia (Newton, 

1687). Beside his Mechanica (Euler, 1736)—a two-volume 

treatise on the motion of free or constrained punctual bodies— 

and a large number of papers on the same subject, Euler also 

much contributed to the mechanics of rigid and elastic bodies 

(Truesdell, 1960), the mechanics of fluids, the theory of ma- 

chines and naval science. We shall limit ourselves to some of 

his contributions to the foundation of the mechanics of discrete 

systems of punctual bodies. We shall namely consider his 

views on the physical explanation of forces, his reformulation 

of the basic notions of Newtonian mechanics, and his works on 

the principle of least action. 

The Explanation of Forces 

The third book of Newton’s Principia offers an explanation 

of the motion of planets around the sun and of the satellites 

around them. It is based on the assumption that the celestial 

bodies act upon each other according to an attractive force act- 

ing at a distance, the intensity of which depends on the mass of 

the attracting body and on its distance from the attracted one, 

and the effects of which are not influenced by a resistant me- 

dium. This is a special central force—a force attracting bodies 

along a straight line directed towards a fixed or moving cen- 

tre—characterised by the following well-known equality  

, 2C c

M
F mG

r
=  

where 
  
F

C ,c

 is the force by which the body C  attracts the 

body c , m  and M  are, respectively, the masses of  c  and 

C , r  is the distance between (the centres of) them, and G  

is an universal constant. 

In the first book of the Principia Newton provides a purely 

mathematical theory of central forces acting in absence of a 

resistance of the medium. In the third book, he is thus able to 

1
The quasi-totality of Euler’s works is available online at the (Euler Arc-

hive), where one may also find many notices and references. Among other 

recent books devoted to Euler, cf. (Bradley & Sandifer, 2007) and (Backer, 

2007). 
2
For reasons of space, we will not address in this paper some related topics 

like Euler’s views on Newton’s gravitation theory and his own celestial me- 

chanics, particularly his lunar theory; Euler’s reflections about (absolute and 

relative) space and time; and Euler’s critical exposition of Newtonian sci- 

ence in his Lettres à une princesse d’Allemagne (Euler, 1768-1772). On 

Euler’s celestial mechanics, cf., for instance, (Schroeder, 2007). On this 

matter, it is relevant to note that Euler had doubts in the 1740s about the 

validity of Newton’s law of gravitation because of errors he observed in cal- 

culations of planetary perturbations: cf. (Euler, 1743), Kleinert’s discussion 

of this memoir, in (Euler, OO, ser. II, vol. 31, appendix), and (Schroeder, 

2007, pp. 348-379). On Euler’s views on space and time, cf. also (Cassirer, 

1907, Book VII, Chapter II, section II) and (Maltese, 2000). Finally, on 

Euler’s Lettres à une princesse d’Allemagne, cf. (Calinger, 1976). 
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give a mathematical theory of the world system by basing it 

only on the above assumption, that, according to him, is proved 

by empirical observations. Insofar as it allows the determina- 

tion of the trajectories of the relevant bodies according to the 

mathematical theory of the first book, no supplementary hy- 

pothesis about the nature of the relevant force is necessary. In 

Newton’s view, an hypothesis about forces is a conjecture con- 

cerning their qualitative nature and causes. His “Hypotheses 

non fingo”—famously claimed in the General Scholium of the 

second edition of the Principia—is just intended to declare that 

he does not venture any such conjecture, since this is not nec- 

essary to provide a satisfactory scientific explanation3. 

Apparently, this view is not shared by Euler. He seems to 

maintain that the notion of force cannot be primitive, and that a 

mathematical theory about forces cannot be separated from an 

account of their causes, even if this account depends more on 

“the province of metaphysics than of mathematics” and thus 

one cannot claim to undertake it with “absolute success”4. 

Euler’s account—on which, cf. (Gaukroger, 1982)—is based 

on a Cartesian representation of the world as a plenum of mat- 

ter. Here is what he writes in his 55th letter to a German Prin- 

cess5:  

As you see nothing that impels [small bits of iron and 

steel] toward the loadstone, we say that the loadstone at-

tracts them; and this phenomenon we call attraction. It 

cannot be doubted, however, that there is very subtle, 

though invisible, matter, which produces this effect by 

actually impelling the iron towards the lodestone [...]. 

Though this phenomenon be peculiar to the loadstone and 

iron, it is perfectly adapted to convey an idea of the signi-

fication of the word attraction, which philosophers so 

frequently employ. They allege then, that all bodies, in 

general, are endowed with a property similar to that of the 

loadstone, and that they mutually attract [...]. 

And then, in the 68th letter6:  

[...] as we know that the whole space which separates the 

heavenly bodies is filled with a subtle matter, called ether, 

it seems more reasonable to ascribe the mutual attraction 

of bodies to an action which the ether exercises upon them, 

though its manner of acting may be unknown to us, rather 

than to have recourse to an unintelligible property. 

The Cartesian vein of Euler’s account is even clearer in the 

Mechanica (Euler, 1736). It is very significant that in such a 

purely mathematical treatise, Euler devotes a scholium to dis- 

cuss the causes and origins of forces. This is the scholium 2 of 

definition 10: the definition of forces, according to which, “a 

force [potentia] is the power [vis] that either makes a body pass 

from rest to motion or changes its motion.”7 This definition 

does not explain where the forces come from; Scholium 2 dis- 

cusses the question. Euler begins by declaring that, among the 

real forces acting in the world, he only considers gravity. Then 

he argues that similar forces “are observed to exist in the mag- 

netic and electric bodies” and adds:  

Some people think that all these [forces] arise from the 

motion of a somehow subtle matter; others attribute [them] 

to the power of attraction and repulsion of the bodies 

themselves. But, whatever it may be, we certainly see that 

forces of this kind can arise from elastic bodies and from 

vortices, and we shall inquire, at the appropriate occasion, 

whether these forces can be explained through these phe-

nomena8.  

One could hope that Euler’s Cartesian view be made more 

precise in a memoir presented in 1750 the title of which is 

quite promising: “Recherches sur l’origine des forces” (Eu-

ler, 1750)9. But the content of this memoir is somewhat sur-

prising. 

Euler begins by arguing that impenetrability is an essential 

property of bodies, and that it “comes with a force sufficient to 

prevent penetration”10. It follows—he says—that, when two 

3
Of course, we do not mean here that Newton had no views about the nature 

of forces, or never expressed them. In the same Principia, namely in the 

third of his Regulæ Philosophandi, opening the third book (only added in the 

second and third edition), he argues, for example, that inertia universally 

belongs to all bodies. And in his third letter to Bentley, he explicitly writes 

the following (we quote from (Newton, LB, pp. 25-26); a transcription of the 

original, kept at Trinity College Library, in Cambridge, is available online at 

the Newton Project website: www.newtonproject.sussex.ac.uk): 

“That gravity should be innate, inherent and essential to Matter, so that 

one Body may act upon another at a Distance thro’ a Vacuum, without the 

Mediation of any thing else, by and through which their Action or Force 

may be conveyed from one to another is to me so great an Absurdity, that I 

beleive no Man who has in philosophical Matters a competent Faculty of 

thinking can ever fall into it. Gravity must be caused by an Agent acting 

constantly according to certain Laws; but whether this Agent be material or 

immaterial I have left to the Consideration of my Readers.” 

The point is that Newton does consider that the explanation of the nature of 

forces is neither essential to his theory of gravitation, nor a fortiori to his 

mathematical theory of motion. The last lines in the quoted passage of the 

third letter to Bentley is, among many others, an explicit expression of this 

attitude. 
4
cf. (Euler, LPAH, vol. I, p. 201). Here is Euler’s original (Euler, 1768-1772  

vol. I, lett. 68th, p. 265): “Il s’agit à présent d’approfondir la véritable source 

de ces forces attractives, ce qui appartient plutôt à la Metaphysique qu’aux 

Mathematiques; & je ne saurois me flatter d’y reussir aussi heureuse- 

ment.” 
5
cf. (Euler, LPAH, vol. I, p. 165). Here is Euler’s original (Euler, 1768-1772  

vol. I, lett. 55th, pp. 219-220): “Comme on ne voit rien, qui les [de petits 

morceaux de fer ou d’acier] pousse vers l’aimant, on dit que l’aimant les 

attire, & l’action même, se nomme attraction. On ne sauroit douter cepen-

dant qu’il n’y ait quelque matiere très subtile, quoiqu’invisible, qui produise 

cet effet, en poussant effectivement le fer vers l’aiman; [...] Quoique ce 

phénomene soit particulier à l’aimant, & au fer, il est très propre à éclaircir 

le terme d’attraction, dont les Philosophes modernes se servent si frequem-

ment. Ils disent donc, qu’une propriété semblable à celle de l’aimant, con-

vient à tous les corps, en general, & que tous les corps au monde s’attirent 

mutuellement”. 

6
cf. (Euler, LPAH, vol. I, p. 203). Here is Euler’s original (Euler, 1768-1772  

vol. I, lett. 68th, p. 268): “Puisque nous savons donc que tout l’espace entre 

les corps célestes est rempli d’une manière subtile qu’on nomme l’éther, il 

semble plus raisonnable d’attribuer l’attraction mutuelle des corps, â une 

action que l’éther y exerce, quoique la maniere nous soit inconnue, que de 

recourir a une qualité inintelligible.” On this same matter, cf. also the 75th 

letter: (Euler, 1768-1772, vol. I, pp. 297-298). 
7
cf. (Euler, 1736, p. 39): “Potentia est vis corpus vel ex quiete in motum 

perducens vel motum eius alterans.” Here and later, we slightly modify I. 

Bruce’s translation available online at http://www.17centurymaths.com. 
8
cf. (Euler, 1736, p. 40): “Similes etiam potentiae deprehenduntur in cor- 

poribus magneticis et electricis inesse, quae certa tantum corpora attrahunt. 

Quas omnes a motu materiæ cuiusdam subtilis oriri alii putant, alii ipsis 

corporibus vim attrahendi et repellendi tribuunt. Quicquid autem sit, vide- 

mus certe ex corporibus elasticis et vorticibus huiusmodi potentias originem 

ducere posse, suoque loco inquiremus, num ex inde phaenomena haec po- 

tentiarum explicari possint.” 
9
cf. also (Euler, 1746) and (Euler, 1765, Introduction). The chapter 2 of 

(Romero, 2007) presents a detailed study of (Euler, 1746) and (Euler, 1750). 

In (Gaukroger, 1982, pp. 134-138), an overview of the relevant parts of 

(Euler, 1765) is offered. 
10

cf. (Euler, 1750, art. XIX, p. 428): “Aussi-tot [...] qu’on reconnoit 

l’impénétrabilité des corps, on est obligé d’avoüer que l’impénétrabilité est 

accompagnée d’une force suffisante, pour empêcher la pénétration.” 
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bodies meet in such a way that they could not persist in their 

state of motion without penetrating each other, “from the im- 

penetrability of both of them a force arises that, by acting on 

them, changes [...] [this] state11.” This being admitted, Euler 

shows how to derive from this only supposition the well-known 

mathematical laws of the shock of bodies. This he considers 

enough to conclude that the changes in the state of motion due 

to a shock of two bodies “are produced only by the forces of 

impenetrability”12, so that, in this case, the origins (and cause) 

of forces are just the impenetrability of bodies. 

One would expect Euler to go on by describing a plausible 

mechanical model allowing him to argue that this is also the 

case of any other force, namely of central forces acting at a 

distance. But this is not so. He limits himself to considering the 

case of centrifugal forces which, not basing himself on any 

argument, he takes to being all reducible to the case where a 

body is deviated from its rectilinear motion because it meets a 

vaulted surface (Euler, 1750, art. LI, p. 443). Finally he 

writes13: 

If it were true, as Descartes and many other philosophers 

have maintained, that all the changes that bodies can suf- 

fer come either from the shock of bodies or from the 

forces named “entrifugal”, we would now have clear ideas 

about the origins of forces producing all these changes 

[...]. I even believe that Descartes’ view would not be a 

little reinforced by those reflections, since, after having 

eliminated many imaginary forces with which philoso- 

phers have jumbled the first principles of physics, it is 

very likely that the other forces of attractions, adherence, 

etc. are not better established. 

[...] For, though nobody has been able to establish mani- 

festly the cause of gravity and forces acting upon heav- 

enly bodies through the shock or some centrifugal forces, 

we should confess that neither has anybody proved the 

impossibility of it. [...] Now it seems as strange to reason 

since it is not proved by experience that two bodies sepa- 

rated by a completely empty space mutually attract one 

another through some forces14. Hence, I conclude that, 

with the exception of forces whose spirits are perhaps able 

to act upon bodies, which are probably of a quite different 

nature, there is no other force in the world beside those 

originated in the impenetrability of bodies.  

Though advancing a non-Newtonian demand of explanation 

of the nature and causes of forces15 and sharing both the Carte- 

sian requirement of deriving “basic concepts of mechanics from 

the essence of body” (Gaukroger, 1982, p. 139), and a Cartesian 

conception of the world as a plenum of matter allowing a re-

duction of all forces to contact ones, Euler reaches thus a quite 

Newtonian (and non-Cartesian) attitude only disguised by rhe-

toric. His main point is finally clear, indeed: a mathematical 

science of motion is perfectly possible even in the ignorance of 

the actual causes of the forces of attraction, and the only way to 

ensure that there are reasons causing the forces are to show that 

the consideration of these reasons leads to the well-known ma-

thematical laws of motion. These laws—rather than any possi-

ble mechanical model—are thus finally understood as the only 

sure expression of the reality of the universe. 

The Reformulation of Newton’s Mechanics Using 
Leibniz’s Differential Calculus of and the 

Introduction of External Frames of Reference 

As is well known, Newton’s mechanics is essentially geo- 

metric. Curves are used to represent trajectories of punctual 

bodies and a theorem is proved ensuring that non-punctual 

bodies behave with respect to attractive forces as if their mass 

were concentrated in their centre of gravity. Instantaneous 

speeds are indirectly represented and measured by segments 

taken on the tangents of the curves-trajectories. They are taken 

to represent primarily the rectilinear space that a relevant point 

would cover in a given time, finite or infinitesimally small, if 

any force acting upon it ceased and the motion of this point 

were thus due only to its inertia. An analogous form of indirect 

representation and measure holds for any sort of force, or better 

for their accelerative punctual component. This provides a very 

simple way of composing forces and inertia, essentially based 

on the parallelogram law that is primarily conceived as holding 

for rectilinear uniform motions. When the consideration of time 

is relevant, this is typically represented and measured by ap- 

propriate geometric entities, like appropriate areas: for example 

the areas that are supposed to be swept in that time by a vector 

radius, in the case of a trajectory complying with Kepler’s sec- 

ond law. 

To solve mechanical problems, this fundamental geometric 

apparatus is of course not sufficient. Newton’s mechanics also 

includes two other fundamental ingredients. 

The first is a geometric method which allows to deal with 

punctual and/or instantaneous phenomena and to determine 

their macroscopic effects (like equilibrium configurations, ef- 

fective trajectories, and continuously acting forces). It is pro- 

vided by the method of prime and last ratios, together with a 

number of appropriate devices. 

The second ingredient is given by a number of fundamental 

laws expressing some basic relation between bodies (or better 

their masses), their motions, and the forces acting on them and 

because of them. It is provided by Newton’s well known laws 

of motion, occasionally supplemented by some principles—like 

the principle of maximal descent of the centre of gravity— 

11
cf. (Euler, 1750, art. XXV, p. 431): “[...] à la rencontre de deux corps, qui 

se pénétreroient s’ils continuoient à demeurer dans leur état, il nait de l’im- 

pénetrabilité de l’un et de l’autre à la fois une force qui en agissant sur les 

corps, change leur état.” 
12

cf. (Euler, 1750, art. XLVI, p. 441): “[...] dans le choc des corps [...], il est 

clair que les changements, que les corps y souffrent, ne sont produits que 

leurs forces d’impénetrabilité.” cf. also ibid. art. XLIV, p. 440. 
13

cf. (Euler, 1750, arts. LVIII and LIX, pp. 446-447): “[...] s’il étoit vrai, 

comme Descartes et quantité d’autres Philosophes l’ont soutenu, que tous les 

changements, qui arrivent aux corps, proviennent ou du choc des corps, ou 

des forces nommées centrifuges; nous serions à present tout à fait éclaircis 

sur l’origine des forces, qui opérent tous ces changemens [...]. Je crois même 

que le sentiment de Descartes ne sera pas médiocrement fortifié par ces 

réflexions; car ayant retranché tant de forces imaginaires, dont les Philoso- 

phes ont brouillé les premiers principes de la Physique, il est très probable 

que les autres forces d’attraction, d’adhésion etc. ne sont pas mieux fondées. 

LIX. Car quoique personne n’ait encore été en état de démontrer évidem-

ment la cause de la gravité et des forces dont les corps celestes sont sollicités  

par le choc ou quelque force centrifugue; il faut pourtant avouer que per-

sonne n’en a non plus démontré l’impossibilité. [...] Or que deux corps 

éloignés entr’eux par un espace entiérement vuide s’attirent mutuellement 

par quelque force, semble aussi étrange à la raison, qu’il n’est prouvé par 

aucune expérience. A l’exception donc des forces, dont les esprits sont 

peut-être capables d’agir sur les corps, lesquelles sont sans doute d’une 

nature tout à fait différente, je conclus qu’il n’y a point d’autres forces au 

monde que celles, qui tirent leur origine de l’impénétrabilité des corps.” 
14

About Euler’s opposition to action at distance, cf. (Wilson, 1992). 

15
But we must keep in mind that Newton’s rejection of any hypotheses about 

the nature and the causes of the gravitational force only concerns the limited 

domain of the mathematical principles of natural philosophy. 
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which are taken to follow from them. 

Though these laws are still considered as the more funda- 

mental ingredients of classical mechanics, what we call today 

“Newtonian mechanics” is a quite different theory, reached 

through a deep transformation and reformulation of Newton’s 

original presentation. This transformation and reformulation 

mainly occurred during the 18th century and they were very 

much of Euler’s doing16. Giulio Maltese thus sums up the situa-

tion (Maltese, 2000, pp. 319-320): 

In fact, it was Euler who built what we now call the 

“Newtonian tradition” in mechanics, grounded on the 

laws of linear and angular momentum (which Euler was 

the first to consider as principles general and applicable to 

each part of every macroscopic system), on the concept 

that forces are vectors, on the idea of reference frame and 

of rectangular Cartesian co-ordinates, and finally, on the 

notion of relativity of motion.  

This quotation emphasizes some basic ingredients of the 

Newtonian mechanics of today. We shall come back in a mo- 

ment on some of them. We will then observe that the gradual 

emergence of these elements depends on a more basic trans- 

formation (though perhaps, not so fundamental in itself). We 

refer to the replacement of Newton’s purely geometric forms of 

representation of motions, speeds and forces and of the con- 

nected method of prime and last ratios by other forms of repre- 

sentation and expression employing appropriate algebraic tech- 

niques enriched by the formalism of Leibnitian differential 

calculus. 

This transformation is often described as a passage from a 

geometric to an analytic (understood as non-geometric) way of 

presenting Newton’s mechanics. This is only partially true, 

however. Though the use of algebraic and differential formal- 

ism indeed allows the expression of the relation between the 

relevant mechanical quantities through equations involving the 

two inverse operators d  and ∫  submitted to a number of 

easily applicable rules of transformation, these equations are 

part of mechanics only if the symbols that occur in them take 

on a mechanical meaning. It is just the way in which this 

meaning is explained—and not the mere use of this formal- 

ism—that decides whether the adopted presentation is geomet- 

ric or not. 

For example, it is not enough to identify the punctual speed  

of a certain motion with the differential ratio 
ds

dt
 to get a non-  

geometric definition of speed: whether this definition is geo- 

metric or not depends on the way in which this ratio, and 

namely the differential ds , are understood. If this differential 

is taken to be an infinitesimal difference in the length of a cer- 

tain variable segment represented by an appropriate geometric 

diagram and indicating the direction of the speed in respect to 

another component of this diagram, the definition is still geo- 

metric. 

This is exactly what happens in the first attempts to apply 

differential formalism to Newtonian mechanics, like those of 

Varignon, Johann Bernoulli, and Hermann17: the language of 

differential calculus is used to speak of mechanical configura- 

tions represented by appropriate geometric diagrams and its 

rules are applied in order to get the relevant quantitative rela- 

tions between the elements depicted in these diagrams (Panza, 

2002). Like in Newton’s Principia, mechanical problems are 

thus, in these essays, distinguished from each other according 

to specific features manifested by the corresponding diagrams. 

Hence, differences in the problems depend on differences in the 

diagrams. 

This fragmentation of mechanics into several problems geo- 

metrically different is still particularly evident in Hermann’s 

Phoronomia (Hermann, 1716), which Euler considers as the 

main treatise on dynamical matters written after the Principia. 

This is just what Euler wants to avoid in his Mechanica. Here is 

what he writes in the preface18:  

[...] what distracts the reader the most [in Hermann’s 

Phoronomia] is that everything is carried out [...] with 

old-fashioned geometrical demonstrations [...]. Newton’s 

Principia Mathematica Philosophiae are composed in a 

scarcely different way [...]. But what happens with all the 

works composed without analysis is particularly true with 

those which pertain to mechanics. In fact, the reader, even 

when he is persuaded of the truth of the things that are 

demonstrated, nonetheless cannot reach a sufficiently 

clear and distinct knowledge of them. So he is hardly able 

to solve the same problems with his own strengths, when 

they are changed just a little, if he does not research into 

the analysis and if he does not develop the same proposi- 

tions with the analytical method. This is exactly what of- 

ten happened to me, when I began to examine Newton’s 

Principia and Hermann’s Phoronomia. In fact, even 

though I thought that I could understand the solutions to 

numerous problems well enough, I could not solve prob- 

lems that were slightly different. Therefore, in those years, 

I strove, as much as I could, to arrive at the analysis be- 

hind those synthetic methods, and to deal with those 

propositions in terms of analysis for my own purposes. 

Thanks to this procedure I perceived a remarkable im- 

provement of my knowledge. 

A major purpose of Euler’s Mechanica is to use Leibnitian 

differential formalism (which is what he calls “analytic me- 

thod”) in order to generalise some of Newton’s results. Euler 

aims to arrive at some general procedures which allow him to 

solve large families of problems. He also looks for some rules 

for use in appropriate circumstances to determine, in a some- 

what automatic way, appropriate expressions for relevant me- 

16
As N. Guicciardini has remarked (Guicciardini, 1999, p. 6), “after Euler 

the Principia’s mathematical methods belong definitely to what is past and 

obsolete.” 
17

On these essays, cf. (Aiton, 1989), (Blay, 1992), (Guicciardini, 1995), 

(Guicciardini, 1996), (Mazzone & Roero, 1997). 

18
A large part of this passage is quoted and translated by N. Guicciardini in 

(Guicciardini, 2004, p. 245). We quote his translation by adding a transla- 

tion of the part he does not quote that slightly differs from Bruce’s [cf. 

footnote 7]. Here is Euler’s original (Euler, 1736, Præfatio): “[...] quod 

lectorem maxime distinet, omnia more veterum [...] geometricis demonstra- 

tionibus est persecutus [...]. Non multum dissimili quoque modo conscripta 

sunt Neutoni Principia Mathematica Philosophiae [...]. Sed quod omnibus 

scriptis, quæ sine analysi sunt composita, id potissimum Mechanicis obtingit  

ut Lector, etiamsi de veritate eorum, quæ proferuntur, convincatur, tamen 

non satis claram et distinctam eorum cognitionem assequatur, ita ut easdem 

quaestiones, si tantillum immutentur, proprio marte vix resolvere valeat, nisi 

ipse in analysin inquirat easdemque propositiones analytica methodo evolvat  

Idem omnino mihi, cum Neutoni Principia et Hermanni Phoronomiam per- 

lustrare cœoepissem, usu venit, ut, quamvis plurium problematum solutiones 

satis percepisse mihi viderer, tamen parum tantum discrepantia problemata 

resolvere non potuerim. Illo igitur iam tempore, quantum potui, conatus sum 

analysin ex synthetica illa methodo elicere easdemque propositiones ad 

meam utilitatem analytice pertractare, quo negotio insigne cognitionis meae 

augmentum percepi”. 
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chanical quantities. 

In order to reach this aim, Euler identifies punctual speeds 

and accelerations with first and second differential ratios, re- 

spectively, and introduces an universal measure of a punctual 

speed given by the altitude from which a free falling body has 

to fall in order to reach such a speed. 

The basic elements of Newton’s mechanics appear in Euler’s 

treatise under a new form, quite different from the original. 

Nevertheless, in this treatise, mechanical problems are still 

tackled by relying on intrinsic coordinates systems: speeds and 

forces are composed and decomposed according to directions 

that are dictated by the intrinsic nature of the problem, for ex- 

ample so as to calculate the total tangential and normal forces 

with respect to a given trajectory. This approach is quite natural, 

but limits the generality of possible common rules and prin-

ciples. 

A new fundamental change occurs when extrinsic reference 

frames, typically constituted by triplets of orthogonal fixed 

Cartesian coordinates, are introduced and when the relativity of 

motion is conceived to be the invariance of its laws with respect 

to different frames submitted to uniform retailer motions. 

Though this change was in fact a collective and gradual trans- 

formation (Meli, 1993) and (Maltese, 2000, p. 6), Euler played 

a crucial role in it. Among other important contributions con- 

nected with this change—described and discussed in (Maltese, 

2000)—, it is important to consider his introduction of today’s 

usual form of Newton’s second law of motion. This is the ob- 

ject of a memoir presented in 1750: “Découverte d’un nou- 

veau principe de mécanique” (Euler, 1750). 

The argument that Euler offers in this memoir in order to jus- 

tify the introduction of his “new principle” is so clear and apt to 

elucidate the crucial importance of this new achievement that it 

deserves to be mentioned. The starting point of this argument is 

the insufficiency of the tools provided both by Newton’s Prin- 

cipia and by Euler’s own Mechanica for studying the rotation 

of a solid body around an axis continuously changing its posi- 

tion with respect to the elements of the body itself. To study 

this motion, Euler argues, new principles are needed and they 

have to be deduced from the “first principle or axioms” of me- 

chanics, which, he says, cannot but concern the rectilinear mo- 

tion of punctual bodies (Euler, 1750, art. XVIII, p. 194). The 

problem is precisely that of formulating these axioms in the 

most appropriate way to allow an easy deduction of all the oth-

er principles that are needed to study the different kinds of mo-

tion of the different kinds of bodies. According to Euler, these 

axioms are reduced to an unique principle, and his new one is 

just that. 

This principle is expressed by a triplet of equations that ex- 

press Newton’s second law with respect to the three orthogonal 

directions of a reference frame independent of the motions to be 

studied (Euler, 1750, art. XXII, p. 196): 

  2Md 2 x = Pdt2 ; 2Md 2 y = Qdt2 ; 2Md 2 z = Rdt2 ,  

where M  is the mass of the relevant punctual body, P , Q , 

and R  are the total forces acting along the directions of the 

threes axes and 2 is a factor of normalization. 

To understand the fundamental role that Euler assigns to 

this principle, a simple example is sufficient (Euler, 1750, 

art. XXIII, p. 196): from = = = 0P Q R , one gets, by inte- 

grating,  

  Mdx = Adt; Mdy = Bdt; Mdz = Cdt,  

where A , B , C  are integration constants. It is thus proved 

that, in this case, the speed is constant in any direction so that 

the motion of any body on which no force acts is rectilinear and 

uniform, as Newton’s first law asserts19. 

A New Sort of Principles: Euler’s Program for 
Founding Newton’s Mechanics on 

Variational Principles 

Though fairly powerful, Euler’s new principle only directly 

deals with single punctual bodies. Let’s consider a system of 

several punctual bodies mutually attracting each other and pos- 

sibly submitted to some external forces and internal constraints. 

In order to get the conditions of equilibrium or the equations of 

motions of such a system by relying on Euler’s principle, a 

detailed and geometric analysis of all the forces operating in 

this system is necessary. A fortiori, this is also the case of any 

other principle dealing with single punctual bodies set in New- 

ton’s Principia and in Euler’s Mechanica. Hence, the study of 

any particular system of several punctual bodies through these 

principles requires a geometrical analysis of forces that differs 

from system to system. Consequently, only fairly simple sys- 

tems can be studied in such a way. 

This is the reason why the need of a new sort of mechanical 

principles—directly concerned with whatever system of several 

punctual bodies—arose quite early. A similar principle, that 

would be later known as the principle of virtual velocities, was 

suggested by Johann Bernoulli in a letter to Varignon of Janu- 

ary, 26th 1711 (Varignon, 1725, vol. II, pp. 174-176). But a 

clear statement of the difference between these two kinds of 

principles only appears in a memoir presented by Maupertuis in 

174020: 

If Sciences are grounded in certain immediately easy and 

clear principles, from which all their truths depend, they 

also include other principles, less simple indeed, and often 

difficult to discover, but that, once discovered, are very 

useful. They are to some extent the Laws that Nature fol-

lows in certain combinations of circumstances, and they 

teach us what it will do in similar occasions. The former 

principles need no proof, because they become obvious as 

soon as the mind examines them; the latter could not have, 

19
To appreciate the crucial difference between Euler’s new principle and 

Newton’s second law of motion, asserting that “A change in motion is pro- 
portional to the motive force impressed and takes place along the straight 

line in which the force is expressed [Mutationem motus proportionalem esse 
vi motrici impressæ, et fieri secundum lineam rectam qua vis illa imprimi- 

tur]” (Newton, PMCW, p. 12); (Newton, 1687, p. 416), remark that, by 
supposing the motive force to be null, one can only deduce from this last law 

that the relevant motion is not changed, that is, it is inertial, but not that it is 
rectilinear uniform. To reach this conclusion, one has also to rely on New- 

ton’s first law, which just fixes the nature of inertial motion: “Every body 

preserves in its state of being at rest or of moving uniformly straight forward  
except insofar as it is compelled to change its state by forces impressed 

[Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter 
in directum, nisi quatenus a viribus impressis cogitur statum illum mutare]” 

(ibid.). 
20

cf. (Maupertuis, 1740, p. 170): “Si les Sciences sont fondées sur certains 

principes simples et clairs dès le premier aspect, d’où dépendent toutes les 
vérités qui en sont l’objet, elles ont encore d’autres principes, moins simples 

à la vérité, etsouvent difficiles à découvrir, mais qui étant une fois décou- 
verts, sont d’une très-grande utilité. Ceux-ci sont en quelque façon les Loix 

que la Nature suit dans certaines combinaisons de circonstances, et nous 

apprennent ce qu’elle fera dans de semblables occasions. Les premiers 
principes n’ont guére besoin de Démonstration, par l’évidence dont ils sont 

dès que l’esprit les examine; les derniers ne sçauroient avoir de Démonstra-
tion physique à la rigueur, parce qu’il est impossible de parcourir générale-

ment tous les cas où ils ont lieu.” 
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strictly speaking, a physical proof, since it is impossible to 

consider in general all cases to which they apply.  

The aim of Maupertuis’s memoir is to suggest a new princi- 

ple of the second kind, asserting that the equilibrium of any 

system of n  punctual bodies is obtained if an appropriate sum 

is maximal or minimal. This sum is  

  
M

i
i=1

n∑ P
i
dp

i∫ +L + W
i
dw

i∫   

where 
i

M  is the mass of the i -th body, 
i

P , ... , 
i

W  are the 

forces acting upon it, and 
i

p , ..., 
i

w  are the distances of this 

body from the centres of these forces, respectively. This is the 

first, static, version of the principle of least action. 

Maupertuis’s memoir originated quite an important program 

concerned with the foundation of mechanics, leading—through 

d’Alembert, Euler, and Lagrange, among others—to Hamil- 

ton’s well-known version of Newton’s mechanics (Fraser, 

1983), (Fraser, 1985), (Szabó, 1987), (Pulte, 1989), (Panza, 

1995), (Panza, 2003). 

Euler’s contributions to this program were essential and con- 

cerned three major aspects:  

 the elaboration of an appropriate mathematical tool for 

dealing with extremality conditions relative to integral forms 

including unknown functions;  

 the generalisation of Maupertuis’s principle so as to get a 

general principle apt to provide the equations of motion of 

any system of several punctual bodies and also applicable, 

mutatis mutandis, to the solution of other mechanical prob- 

lems;  

 the justification of such a principle. 

In Euler’s view, these three aspects are intimately connected. 

His first contribution to this matter comes from his Methodus 

inveniendi (Euler, 1744): a treatise providing the first systema- 

tisation of what is known, after Lagrange, as the calculus of 

variations
21. The two appendixes to this treatise are solely de- 

voted to enquiring the possibility of studying, respectively, the 

behaviour of an elastic band and the motion of an isolated body 

when they are submitted to forces, by relying on a general prin- 

ciple asserting that “absolutely nothing happens in the world, in 

which a condition of maximum or minimum does not reveal 

itself”22. Euler’s main aim is not to find new results concerned 

with these problems, but to show how some already known 

results can be derived from a condition of maximum or mini- 

mum for an integral form. The particular nature of this condi- 

tion in the cases considered is taken to clarify the way in which 

a principle, which is analogous to Maupertuis’s one, can be 

stated in these cases and then, if possible, generalised. This 

same approach also governs Euler’s other works on the prince- 

ple of least action: cf. in particular (Euler, 1748), (Euler, 1748), 

(Euler, 1751), (Euler, 1751), and (Euler, 1751). 

Euler’s and Maupertuis’s approaches are contrastive. Mau- 

pertuis is mainly interested in looking for metaphysical and 

theological arguments (Maupertuis, 1744), (Maupertuis, 1746), 

(Maupertuis, 1750), (Maupertuis, 1756). Indeed, he aims to 

support his claim to have found the very quantity in which Na- 

ture is thrifty, and thus the real final cause acting in it. Euler is 

looking for mathematical invariances of the form 

  
Z dz∫ = Max Min  

emerging in different conditions and from which already known 

results regarding different mechanical problems can be drawn. 

Euler’s main idea is thus that of looking for an appropriate 

mathematical way to state a new principle that, being in agree- 

ment with several results obtained through Newton’s original 

method of analysis of forces, could be generalised so as to get a 

principle of a new sort, namely a general variational principle. 

This research constituted a major event in the history of me- 

chanics for it allowed to pass from a geometrical-based study of 

a particular concrete system to an analytical treatment of any 

sort of system based on an unique and general equation. In our 

view, these are the most fundamental origins of analytical me- 

chanics (Panza, 2002). Lagrange’s first general formulation of 

the principle of least action (Lagrange, 1761) essentially de- 

pends on the results obtained by Euler in this way. 

Algebraic Analysis 

Among the many well-known differences between Newton’s 

and Leibniz’s approaches to calculus, a fairly relevant one deals 

with their opposite conceptions about its relation with the 

whole corpus of mathematics. Whereas Leibniz often stressed 

the novelty of his differential calculus, notably because of its 

special concern with infinity. Newton always conceived his 

results on tangents, quadratures, punctual speeds and connected 

topics as natural extensions of previous mathematics. 

Newton’s first research on these matters was explicitly based 

on the framework of Descartes’ geometry and geometrical al- 

gebra provided in La Géométrie (Descartes, 1637). It mainly 

dates back to the years 1664-1666 (Panza, 2005), but culmi- 

nates with the composition of the De analysis in 1669 (Newton, 

MWP, vol. II, pp. 206-247) and of the De methodis in 1671 

(Newton, MWP, vol. III, pp. 32-353), where the new theory of 

fluxions is exposed. 

Later, Newton famously changed his mind about the respec- 

tive merits of Descartes’ new way of making geometry and the 

classical (usually considered as synthetic) approach, especially 

identified with the style of Apollonius’ Conics (Galuzzi, 1990; 

Guicciardini, 2004), and based the Principia on the method of 

first and ultimate ratios, which he took to be perfectly compati- 

ble with this last approach23. Finally, in the more mature pres- 

entation of the theory of fluxions, the De quadratura curvarum 

(Newton, 1704)24, Newton stresses explicitely25: 

[...] To institute analysis in this way and to investigate the 

first or last ratios of nascent or vanishing finites is in 

harmony with the geometry of the ancients, and I wanted 

to show that in the method of fluxions there should be no 

need to introduce infinitely small figures into geometry.  

The De methodis begins as follows26:  

21
On Euler’s version of the calculus of variations, cf. (Fraser, 1994). C. 

Fraser has also devoted many works to the history of the calculus of varia-

tion. A general survey of his result is offered in (Fraser, 2003). 
22

cf. (Euler, 1744, p. 245): “nihil omnino in mundo contingint, in quo non 

maximi minimive ratio quæ piam eluceat.” 

23
In the concluding lemma of the section I of book I of the Principia, New-

ton claims that he proved the lemmas to which his method pertains “in order 

to avoid the tedium of working out lengthy proofs by reductio ad absurdum 

in the manner of the Ancient geometers” (Newton, PMCW, p. 441). 
24

See also (Newton, MWP, Vol. VIII, pp. 92-168). 
25

cf. (Newton, MWP, VIII, p. 129): “[...] Analysin sic instituere, & finite- 

rum nascentium vel evanescentium rationes primas vel ultimas investigare, 

consonum est Geometriæ Veterum: & volui ostendere quo in Methodo 

Fluxionum non opus sit figuras infinite parvas in Geometriam introducere.” 
26

cf. (Newton, 1670-1671, pp. 32-33): “Animadvertenti plerosque Geo- 

metras [...] Analyticæ excolendæ plurimum incumbere, et ejus ope tot tan- 

tasque difficultates superasse [...]: placuit sequentia quibus campi analytici 

terminos expandere juxta ac curvarum doctrinam promovere possem 

[...].” 
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Observing that the majority of geometers [...] now for the 

most part apply themselves to the cultivation of analysis 

and with its aid have overcome so many formidable diffi- 

culties [...] I found it not amiss [...] to draw up the fol- 

lowing short tract in which I might at once widen the 

boundaries of the field of analysis and advance the doc- 

trine of curves.  

In the early-modern age, the term “analysis” and its cognates 

were used in mathematics in different, though strictly con- 

nected, senses. Two of them were dominant in the middle of 

17th century. Analysis, in the first sense, refers to the first part 

of a twofold method—the method of analysis and synthesis— 

paradigmatically expounded in the 7th book of Pappus Mathe- 

matical Collection (Pappus, CMH). In the second sense, it re-

fers to a new domain of mathematics the introduction of which 

was typically ascribed to Viète, who had explicitly identified it 

with a “new algebra” (Viete, 1591). 

In our view, this discipline should be considered more as a 

family of techniques for making both arithmetic and geometry 

(Panza, 2007a), than as a separate theory somehow opposed to 

arithmetic and geometry. In the previous passage, Newton is 

undoubtedly referring to this discipline and he is claiming that 

his treatise aims to extend it so as to make it appropriate for 

studying curves. 

However, this extension crucially depends not only on the 

addition of new techniques, based on Descartes’ algebraic for- 

malism, but also on a new conception about quantities, accord- 

ing to which mathematics should deal not only with particular 

sorts of quantities, such as numbers, segments, etc., but also 

with quantities purely conceived, that is, with fluents (Panza, 

2012). 

Hence, in the De methodis, the extended “field of analysis” 

no longer presents itself as a family of powerful techniques, but 

it rather takes the form of a new theory dealing with quantities 

purely conceived. These quantities are supposed to belong to a 

net of operational relations expressed through Descartes’ alge- 

braic formalism appropriately extended so as to include infini- 

tary expressions like series. 

Euler’s Theory of Functions 

Newton’s later opposition to Descartes’ way of doing ge- 

ometry and the independence of the mathematical method of 

first and ultimate ratios from the analytic formalism of the the- 

ory of fluxions—in the presence of the well-known Newton- 

Leibniz priority quarrel and its consequences—lead, in the 18th 

century, to a polarisation between two ways of understanding 

calculus. A Newtonian way, based on a classic conception of 

geometry, conceives fluxions as ratios of vanishing quantities. 

A Leibnitian way, based on the introduction of an appropriate 

new formalism, deals with infinitesimals. 

Maclaurin’s Treatise of fluxions (Maclaurin, 1742) is usually 

pointed out as the major example of the Newtonian view. “Flu- 

xional ‘computations’ are not presented as a blind manipulation 

of symbols, but rather as meaningful language that could al- 

ways be translated into the terminology of [...] [a] kinematic- 

geometric model” (Guicciardini, 2004, pp. 239-240). 

In contrast, Euler’s trilogy composed by the Introductio in 

analysin infinitorum, the Institutiones calculi differentialis, and 

the Institutionum calculi integralis (Euler, 1748), (Euler, 1755), 

(Euler, 1768) is indicated as the major example of the Leibni- 

tian view. 

Nonetheless the two traditions were not as opposed, and the 

respective scientific communities were not as separated as it 

has been too often claimed. A clear example of this—which is 

mainly relevant here—is provided by Euler’s approach. 

Though there is no doubt that the theory expounded by Euler in 

the Institutiones and in the Institutionum uses Leibniz’s differ- 

ential and integral formalism, some of the basic conceptions it 

is founded on derive from Newton’s views. 

Some of these conceptions are strictly internal to the organi- 

sation of the theory. An example is provided by Euler’s idea 

that the main objects of differential calculus are not differen- 

tials of variables quantities but differential ratios of functions 

conceived as ratios of vanishing differences (Ferraro, 2004). As 

he writes in the preface of the Institutiones27: 

Differential calculus [...] is a method for determining the 

ratio of the vanishing increments that any functions take 

on when the variable, of which they are functions, is given 

a vanishing increment [...] Therefore, differential calculus 

is concerned not so much with vanishing increments, 

which indeed are nothing, but with their mutual ratio and 

proportion. Since these ratios are expressed as finite quan- 

tities, we must think of calculus as being concerned with 

finite quantities. 

In this way, Euler unclothes Newton’s notion of prime or ul- 

timate ratio of its classically geometric apparel and transfers it 

to a purely formal domain using the language of Leibniz’s dif- 

ferential calculus. 

Another strictly connected example comes from Euler’s defi- 

nition of integrals as anti-differentials and of the integral calcu- 

lus as the “method” to be applied for passing “from a certain 

relation among differentials to the relation of their quantities”, 

that is, in the simplest case (Euler, 1768), definitions 2 and 1, 

respectively, from  

=
dy

z
dx

 

to ( )= = .y f x zdx∫  

These definitions—which contrast with Leibniz’s conception 

of the integral as a sum of differentials—are instead clearly in 

agreement with the second problem of Newton’s De methodis: 

“when an equation involving the fluxions of quantities is exhib- 

ited, to determine the relation of the quantities one to an- oth-

er”28. 

The closeness of Euler’s and Newton’s views in both those 

examples depends on a more fundamental concern: the idea that 

both differential and integral calculus are part of a more general 

theory of functions (Fraser, 1989). 

This theory is exposed by Euler in the first volume of the In- 
27

We slightly modify Blanton’s translation (Euler, ICDB , p. vii). Here is 
Euler’s original (Euler, 1755, p. VIII): “[...] calculi Differentialis [...] est 
methodus determinandi rationem incrementorum evanescentium, quæ func- 
tiones qæ cunque accipiunt, dum quantitati variabili, cuius sunt functiones, 
incrementum evanescens tribuitur [...]. Calculus igitur differentialis non tam 
in his ipsis incrementis evanescentibus, quippe quæ sunt nulla, exquirendis, 
quam in eorum ratione ac proportione mutua scrutanda occupatur: et cun hæ 
rationes finitis quantitabus exprimantur, etiam hic calculus circa quantitates 
finitas versari est censendus.” 
28

cf. (Newton, 1670-1671, pp. 82-83): “Exposita Æquatione fluxiones 

quantitatum involvente, invenire relationem quantitatum inter se”. On 

Newton’s notion of primitive, cf. (Panza, 2005, pp. 284-293, 323-325 

and 439-460). 
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troductio (Euler, 1748). According to him, it is not merely a 

mathematical theory among others. It is rather the fundamental 

framework of the whole of mathematics. Differential calculus is 

thus not conceived by Euler as a separated theory characterised 

by its special concern with infinity, as in Leibniz’s conception, 

but rather as a crucial part of an unitary building the founda- 

tions of which consist of a theory of functions (Panza, 1992). 

As a matter of fact, this theory comes in turn from a large 

and ordered development of the results that Newton had pre- 

sented in his De methodis before attaching the two main prob- 

lems of the theory of fluxions, and that provided for him the 

base on which its extended “field of analysis” was grounded. A 

function is identified with an expression indicating the opera- 

tional relations about two or more quantities and expressing a 

quantity purely conceived (Panza, 2007b). And the fundamental 

part of the theory concerns the power series expansions of 

functions. 

Though the language and the formalism that are used in Eu-

ler’s trilogy openly come back to the Leibnitian tradition, such 

a trilogy should thus be viewed, for many and fundamen- tal 

reasons, as a realisation of the unification program that Newton 

had foreseen in the De methodis, a realisation that re- lies, 

moreover, on the basic idea underlying Newton’s method of 

prime and last ratios. 

The Classification of Cubics and Algebraic Curves 

The second volume of the Introductio (Euler, 1748) is de- 

voted to algebraic curves: the curves expressed by a polynomial 

equation in two variables when referred to a system of rectilin- 

ear coordinates. Euler relies on some results obtained in the 

first volume to show that algebraic curves can be studied and 

classified without making use of calculus: as a matter of fact, 

this marks the birth of algebraic geometry. 

The problem of the classification of curves is quite ancient 

(Rashed, 2005). However, in his Géométrie (Descartes, 1637), 

Descartes returns to it in a new form: he concentrates only on 

algebraic curves (that he calls “geometric”, whereas he recom- 

mends to reject from geometry other curves, termed “mechani- 

cal”) and bases his classification on the degree of the corre- 

sponding equation (Bos, 2001, pp. 356-357), (Rashed, 2005, pp. 

32-50). This is, in fact, quite a broad classification, since equa- 

tions of the same degree can express curves which look very 

different from each other. The classification of (non-degenerate) 

conics (the algebraic curves whose equations are the irre- 

ducible ones of degree 2) is well known: they split up into 

ellipses (including circles), parabolas and hyperbolas. But 

what about curves expressed by equations of higher de- 

grees? 

Newton answers the question for cubics (the algebraic curves 

whose equations are the non-reducible ones of degree 3), in a 

tract appeared in 1704 as an appendix to the Opticks (Newton, 

1704), but the different stages of composition of which pre- 

sumably date back to 1667-1695 (Newton, MWP, vol. VII, p. 

565-655): the Enumeratio Linearum Tertii Ordinis (Newton, 

1704). 

In the second volume of the Introductio, Euler tackles the 

same problem using a quite different method, and shows that 

Newton’s classification is incomplete (Euler, 1748, vol. II, Ch. 

9). He also provides an analogous classification of quartics (the 

algebraic curves whose equations are the non-reducible ones of 

degree 4), and explains how the method used for classifying 

cubics and quartics can, in principle, be applied to algebraic 

curves of any order (Euler, 1748, Vol. II, ch. 11 and 12-14, 

respectively). 

Whereas Newton’s classification of cubics is based on their 

figure in a limited (i.e. finite) region of the plane and depends 

on the occurrences of points or line singularities as for instance 

nodes, cusps, double tangents, Euler suggests classifying alge- 

braic curves of any order by relying on the number and on the 

nature of their infinite branches. Here is what he writes29:  

Hence, we reduced all third order lines to sixteen species, 

in which, therefore, all those of the seventy-two species in 

which Newton divided the third order lines are con- 

tained30. It is not odd, in fact, that there is such a differ- 

ence between our classification and Newton’s, since we 

obtained the difference of species only from the nature of 

branches going to infinity, while Newton considered also 

the shape of curves within a bounded region, and estab- 

lished the different species on the basis of their diversity. 

Although this criterion may seem arbitrary, however, by 

following his criteria Newton could have derived many 

more species, whereas using my method I am able to draw 

neither more nor less species. 

Euler’s last remark alludes to much more than what it says. 

He rejects Newton’s criterion because of the impossibility of 

applying it as the order of curves increases, since so great a 

variety of shapes arise, as witnessed by the mere case of cubics. 

Indeed, a potentially general criterion has to deal with some 

properties of curves that can be systematically and as exhaus- 

tively as possible explored in any order, like those of infinite 

branches, according to Euler. 

This task could be difficult, however, if these curves were 

studied through their equations taken as such, since the com- 

plexity of a polynomial equation in two variables increases very 

quickly with its order. Insofar as a polynomial equation in two 

variables cannot be transformed by changing its global degree 

so that it continues to express the same curve, Euler shows how 

to determine the number and nature of infinite branches of a 

curve by considering its equation for some appropriate trans- 

formations that lower its degree in one variable, namely “both 

by choosing the most convenient axis and the most apt inclina- 

tion of the coordinates”, and attributing to a variable a conven- 

ient value31. 
29

We slightly modify Blanton’s translation (Euler, IAIB, Vol. II, p. 147). 

Here is Euler’s original (cf. Euler, 1748, Vol. II, 236, p. 123): “Omnes ergo 

Lineas tertii ordinis reduximus ad Sedeciem Species, in quibus propterea 

omnes illæ Species Septuaginta dua, in quas Newtonus Lineas tertii ordinis 

divisit, continentur. Quod vero inter hanc nostram divisionem ac Newtonia-

nam tantum intercedat discrimen mirum non est; hic enim tantum ex ramo-

rum in infinitum excurrentium indole Specierum diversitatem desumsimus, 

cum Newtonus quoque ad statum Curvarum in spatio finito spec- tasset, 

atque ex hujus varietate diversas Species constituisset. Quanquam autem hæ 

c divisionis ratio arbitraria videtur, tamen Newtonus suam tandem rationem 

sequens multo plures Species producere potuisset, cum equidem mea me-

thodo utens neque plures neque pauciores Species eruere queam.” 
30

This is the reason why Euler prefers to use the term “genre” instead of 

“species” in order to indicate his classes of curves. The latter terms is re- 

served to distinguish curves of a given genre according to their shape in a 

limited region of the plane (Euler, 1748, vol. II, §  238, p. 126). 
31

Once again, we slightly modify Blanton’s translation (Euler, IAIB, Vol. II, 

p. 176). Here is Euler’s original (Euler, 1748, Vol. II, 272, p. 150): “Nego-

tium autem hoc per reductionem æ quationis ad formam simpliciorem, dum 

et Axis commodissimus, et inclinatio Coordinatarum aptissima assumitur, 

valde sublevari potest: tum etiam, quia perinde est, utra Coordinatarum pro 

Abscissa accipiatur, labor maxime diminuetur, si ea Coordinatarum, cujus 

paucissimæ dimensiones in æ quatione occurrunt, pro Applicata assu-

matur.” 
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Conclusion 

Euler’s results of which we have given an account, both in 

the case of foundation of mechanics and in that of algebraic 

analysis, depend on the effort to carry out or to extend a New- 

tonian program. But in both cases, this is done by relying on 

Cartesian and Leibnitian conceptions and tools. C. A. Truesdell 

has summed up the situation about mechanics by saying that 

Euler inaugurated the tradition of Newtonian mechanics be- 

cause he “put most of mechanics in their modern form”32. Mu- 

tatis mutandis, the same also holds for Euler’s theory of func- 

tions. In both cases the following question naturally arises: 

what does remain, then, of Newton’s conceptions in Euler’s 

theories? This is too difficult a question to hope to offer a com- 

plete answer in a single paper. We merely hope to have pro- 

vided some elements for such an answer. 
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