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Abstract In this paper, we study a new model for dislocation dynamics with a mean
curvature term. The model is a non-local Hamilton-Jacobi equation. We prove a short time
existence and uniqueness result for this equation. We also prove a Lipschitz estimate in
space and an estimate of the the modulus of continuity in time for the solution.
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1 Introduction

Plastic deformation is mainly due to the movement of linear defects called dislocations, whose typical
length in metallic alloys is of the order of 10~%m and thickness of the order of 10~?m. Since the
beginning of the 90’s, the research field of dislocation is enjoying a new boom, in particular thanks to
the power of computers which now makes possible to simulate dislocations in a 3D domain. The concept
of dislocations in crystals was put forward in the XXth century as the main microscopic explanation of
the macroscopic behaviour of metallic crystals (see the physical monograph Hirth and Lothe [28]).
More recently, a new approach has been introduced: phase field model of dislocations (see for example
Rodney, Le Bouar, Finel [31]). One of the advantage of this method is that the possible topological
changes during the dislocation movement are automatically taken into account. In the face centered
cubic structure, the dislocation line in the crystal moves in it slip plane with a normal velocity which
is proportional to the Peach-Koeller force acting on the line. This force is the self force created by the
elastic field generated by the dislocation itself. In [4] and [5], using a level set formulation, Alvarez,
Hoch, Le Bouar and Monneau propose a non-local Hamilton Jacobi equation to model this approach.
Having such an equation allows in particular to study mathematically and numerically dislocations
dynamics. Since the equation is nonlinear, a natural framework to study this kind of equation is the
theory of viscosity solutions (see for instance the monographs of Barles [8] and Bardi and Capuzzo-
Dolcetta [7] for a presentation of first order equations and the article of Crandall, Ishii and Lions [19]

for the second order case). The theory of viscosity solutions has been first introduced by Crandall and



Lions [20]. The main difficulty of this equations is that the comparison principle, which is a crucial
argument in this theory, does not hold. Nevertheless, using the geometric property of the equation (we
refer to Barles, Soner, Souganidis [11] for a detailed presentation of this theory) Alvarez et al. prove
short time existence and uniqueness for this equation. Then Alvarez, Cardaliaguet and Monneau [1]
and Barles and Ley [10] prove a long time existence and uniqueness result under certain assumptions on
the monotony of the velocity. This model was also numerically studied by Alvarez, Carlini, Monneau
and Rouy [2], [3].

Here, we consider a new model in which the energy also contains a line tension term which approxi-
mates better what happen near the dislocation. That amounts to adding a mean curvature term in the
equation. This line tension term appears in a lot of physical models (see for instance Gavazza, Barnett
[13] and Brown [14]). We also refer to Garroni, Miiller [27] for a mathematical reference. Non-local
equation with mean curvature term have also been studied by Chen, Hilhorst and Logak [17].

For this model we show a short time existence and uniqueness result. Since the comparison principle
does not hold, the strategy of the proof is the same as the one used by Alvarez et al. in [4], i.e. is to use
a fix point method by freezing the nonlocal term. Here, the main difficulties come from the fact that
the equation is a second order one and so the regularity estimates are really more difficult to obtain.
Indeed, for the fix point to work, we need fines estimates on the Lipschitz constant in space and on the
modulus of continuity in time of the solution. To get round these difficulties, we use a regularisation
of the initial condition to obtain an estimate of the modulus of continuity in time of the solution for a
class of operator. Using the geometric property of the equation, we also prove that the estimate we get
is like v/t. We also prove a Lipschitz estimate in space for the solution. The estimate we obtain is the
same as in the first order case (é.e., without the mean curvature term).

The long time existence and uniqueness result for this non-local equation is really more difficult to
obtain. Indeed, due to the non validity of the comparison principle, defining a large time solution is
rather difficult and this problem is still open. Moreover, even in the the first order case, the problem is
still open for general velocity. We refer to Alvarez, Cardaliaguet and Monneau [1] and Barles and Ley

[10] for such results with monotony assumptions on the velocity.

Let us now explain how this paper is organised: in section 2, we present the model. The main
result is state in Section 3. In Section 4, we give some preliminary results on a local problem. Finally,
we prove existence, uniqueness and regularity results for the non-local problem (see Theorem 3.1) in

section 5.

2 Presentation of the model

We describe the model in an heuristic way. Let us consider an orthonormal basis (e1, 2, e3) of R® and
denote by & = (x1, z2,x3) the coordinates. The energy of the dislocation along the line is singular. To
solve this problem, Brown [14], [15] then Barnett [12] and Gavazza, Barnett [13] propose to surround
the dislocation I' by a tube T, of size € and to consider the energy of the form:
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where A represents the elastic coefficients, 7 is an energy of tension line, 7 is the outward normal to

class

the curve and e is a deformation and is solution of:

div(Aectass) = 0,
inc(e***) = —inc(pdp(23)e’) where e = (b ® e5 + e3 @ b), (2)

el33(z) — 0 when |z| — oo.

Here, I' belongs to the plane (eq, e3), the vector es is the vector normal to the plane, b € R? is a constant
vector (called Burgers’ vector) associated with the dislocation line and the operator of incompatibility
"inc" is defined for a field e = (e;;) € S, the set of symmetric 3 x 3 matrix, by:

3
(1nc(e))ij = E siilizsjjljﬁilajleim, 1,] = 1, 2, 3

i1,J1=1
where we note as usual

if (ijk) is a positive permutation of (123),
gijk =< —1 if (ijk) is a negative permutation of (123),
if  two indices are the same.

The solution e'@ss of (2) satisfies e®'s ~ L for r small, where r is the distance to the dislocation (cf
T )

Alvarez et al. [4] for a description of the physical model). Finally, the cutoff tube is represented by

Figure 1. We consider an approximate model of this one where the field e is given by e = y x e/*5s,

Figure 1: The cutoff tube of radius e.

with y a regularising core function (connected to €) to be adjusted, and the energy (1) is replaced by

1
e= [ yaeetn [ o),
R3 2 T

where 7 is to be adjusted and connected to €. We set v(77) = 1y0(7). In order to model the movement

the following one:

of a dislocation T" in its crystallographic plane, we assume that T' is the edge of a smooth bounded
set @ C R? and we compute the first variation of the energy (see Alvarez et al. [4]). We define
T's(s) =T'(s) + 0h(s).fir(s). Then, the following holds

= / c.h,
5=0 r

with ¢ = ¢o x p + A(7)k, where A\(7)) = (y(77) +~+" (7)) the kernel ¢y = co(x1,x2) only depends on A and

_de(ly)
dd

X, * denotes the convolution in space and p is defined as follows:

1 in Q,
p—{o in R’/ ®)



Thus, the evolution is postulated to be % = ¢|Dp|. We can then reformulate the problem by a “level

set” equation on the set {u < 0} of a smooth function v which then satisfies:

us = (co * [u] + A(7)k)|Dul, (4)
with:
[ ] 1 if >0
= u|l =
p 0 if u<0 o)
= _ Du 5
"= TDul

Kk = div (%).

Remark 2.1 (Explicit example for ¢y and 7)

If b = |ble1, then, for the isotropic elasticity, one can give the value of cy:

Go(e) = ZHY Vg (ﬁiﬂLiizﬁ%)
? NGET:

and the form of ~:
i) =€ (n + 0.

1—v
where T = (n1,n2) is the normal vector to the curve, C is a prefactor (which depends on the Burgers
vector and elasticity coefficients), ¢ > 0 is a physical parameter (depending on the material), v is the
Poisson ratio and u is the Lamé coefficient. We refer to Alvarez et al. [{] section 6 for the expression
of ¢o and to Hirth, Lothe [28] chapter 6 and 7 for the form of .

& 9
— = —c <0.
7 /F c“ <0

Remark 2.2 Formally, we have:

3 Main result

The goal of the paper is to prove short time existence and uniqueness for the problem (4). Here
we consider more general second order term and we study the n-dimensional case (see 6). Since the
Hamiltonian intervening in the equation is not continuous and singular, a natural framework for the
study is the theory of viscosity solutions (for a good introduction to this theory, we refer to Barles
[8], [9], Crandall, Ishii, Lions [19], Crandall, Lions [21], [22], Ishii [29] and Ishii, Lions [30] and for an
introduction to viscosity solution for evolving fronts, we refer to Ambrosio [6], Barles, Soner, Souganidis
[11], Chen, Giga, Goto [16], Evans [25], Evans, Spruck [26] and Souganidis [33]). We consider the
following problem: find u(x,t) solution of

{ut = (co * [u])|Du| — F(Du, D*u) in R™ x (0,T), (©)

u(z,t =0) = up(z) in R,
where [u] is the characteristic function of the set {u > 0} (see (5)). Moreover, we assume that

co € L= (R™) N BV(R"), (7)

int



where BV (R™) is the space of bounded variations functions and

Lig(R") ={f :R" = R: || f][Lec (rn) < o0}

nt

with

I £l Les, (rmy = /Rn £l Lo (Qa))
and Q(x) is the unit square centered at z:
Q)= { e vl -l < 5.
The assumptions (HF') on the operator F are the following ones:
(i) The operator F is elliptic, i.e., VX, Y € S, Vp € R,
if X <Y then F(p,X) > F(p,Y), (8)
where S™ (the set of symmetric n x n matrices) is equipped with its natural partial order.
(ii) F is locally bounded on R™ x S™, continuous on R™\{0} x S™ and
F*(0,0) = F.(0,0) =0, (9)

where F* (resp. Fy) is the upper-semicontinous (usc) envelope (resp. lower semicontinuous (Isc)
envelope) of F', i.e. the smallest usc function greater than F' (resp. the greatest lsc function
smaller than F').

(iii) F' is geometric, i.e.
F(vp,vA+pup@p) =vF(p,A), Yv>0,pcR AecS" (10)
The main result is:

Theorem 3.1 (Short time existence and uniqueness)

Let ug : R™ — R be a Lipshitz continuous function on R™ such that

|DUQ| < By in R"™ (].].)
and 5
8—2 >by>0 inR" (12)

Let co satisfying (7). Then, under assumptions (HF), there exists a unique viscosity solution of the
problem (6) in R™ x [0,T*) with

1 b b 1 1 by € n
T  —=infd —— 1n (1_1__0)7 20 7 (142 ol gy () _
|CO|BV(Rn) 2By By 16||CO||L;°§t(Rn) |CO|BV(R”) By 8||CO||Li°:t

Moreover, the solution satisfies

|Du(z,t)] < 2By on R" x[0,T7), (13)
ou *
a—(x,t) >bp/2>0 on R"x[0,T7). (14)
T

and u is uniformly continuous in time and its modulus of continuity behaves like \/1.



Remark 3.2 This theorem gives, in particular, in the two dimensional case, and for

r=-o((1-252)5) (0 (3)

with A > 0 and smooth, short time existence and uniqueness for dislocation dynamics with a mean

curvature term.

Remark 3.3 Due to the non validity of the comparison principle, defining a large time solution is
rather difficult and this problem is still open. FEven in the one order case this problem is still open for

general velocity.

4 Preliminary results for a local problem
Given T > 0, we consider the following problem:

us + G(x,t, Du, D*>u) = 0 in (0,7T) x R™,
u(z,t =0) = up(x) in R,

with the following assumptions (Hp):
(i) G(z,t,p,X) = —c(z,t)|p| + F(p, X) and F satisfies the assumptions (HF),

(ii) ¢ : R™ x (0,T) — R is bounded, Lipschitz continuous in space (we note L. its Lipschitz con-
stant) and uniformly continuous in time (we note w. its modulus of continuity, defined by:
Vo e an VS) te [OaT)a |C(I7t) - C(.’,E,S)| < wc(|t - SD):

(iii) wo is Lipschitz continuous (we note By its Lipschitz constant).

1 Existence and uniqueness for the problem (16)
For the reader’s convenience, we recall the classical definition for viscosity solution of (16):
Definition 4.1 (Viscosity subsolution, supersolution and solution)

A locally bounded upper semi-continuous (usc)(resp. lower semi-continuous (Isc)) function u is a vis-

cosity subsolution (resp. supersolution) of (16) if it satisfies:
(i) u(z,t =0) <wug(z) (resp. u(z,t =0) > up(z)) in R,

(ii) for every (zo,to) € R™ x (0,T) and for every test function ® : (R™ x (0,T)) — R, C* in time and
C? in space, that is tangent from above (resp. below) to u at (xg,to), the following holds:

0P
E(xo,to) + Gy (20, t0, DO, D*®) < 0.

0P
(resp. E(:zro,to) +G* (Io,to,Dfl),D2<I>) >0.

A functionu € CO°(R"x[0,T)) is a viscosity solution of (16) if, and only if, it is a sub and a supersolution

of (16).



We recall that we have an equivalent definition using the sub and superdifferentials (see Crandall et
al. [19]).
We also recall the fundamental property of geometric equations:

Lemma 4.2 (Fundamental property of geometric equations)
Let 0 : R — R be a continuous, non decreasing scalar function and u be a subsolution (respectively a

supersolution) of (16), then 6(u) is also a subsolution (resp. a supersolution).

For the proof of this Lemma, we refer to Soner [32] (Theorem 1.11).

We have the following comparison principle:

Theorem 4.3 (Comparison principle)

Let u, a locally bounded usc function, be a subsolution and v, a locally bounded Isc function, be a su-
persolution of (16). Assume that uo(x) = u(0,2) < v(0,z) = vo(z) in R™, then, under the assumptions
(Hp), u <vin R™ x [0,T).

Proof of theorem 4.3

The proof of this theorem is rather classical when the functions v and v are bounded (see for instance
Chen, Giga, Goto [16]). When the functions are not bounded, it suffices to use the fundamental property
of geometric equations. We then consider the truncature functions Ty = max(min(z, k), —k). For every

k, we then have Ty (u) < Ti(v) and by letting k go to infinity, we obtain the result. O

Theorem 4.4 (Existence and uniqueness for the local problem)
Let T > 0. Then, under the assumptions (Hp), there exists a unique viscosity solution of the problem
(16) in R™ x [0,T). Moreover, the solution satisfies, for every (x,t) € R™ x (0,T):

ug(2) — wr(t) — |lel| Lo @nxjo,7)) Bot < u(x,t) < uo(z) +wr(t) + [|ef| Lo ®n x[0,7)) Bot.
where wr is the modulus of continuity of the solution of (17) and behaves like /t.

Proof of theorem 4.4
To prove this theorem, by Perron’s method (see Crandall, Ishii, Lions [19]), it suffices to construct a
subsolution U~ (resp. a supersolution U™) which satisfy U~ (z,0) < ug(z) < UT(z,0). Since ug is not

bounded, constant cannot be sub or supersolution. We begin with studying the problem

(17)

{ut + F(Du, D*u) = 0,
u(z,0) = up(z).

We assume, in a first time, that ug € CZ = {u C2?,3 C, ||Dul|p~, ||D?ul[r~ < C}. We set u™ = ug+Cyt
with C; = inf,egn{—F*(Dug, D*ug), F\(Dug, D*ug)} (C; depends only on the bounds of Dugy and
D?ug). It then easy to check that u* is a supersolution and v~ is a subsolution. Then, there exists a

unique solution of (17) and, by the comparison principle, the following holds:

vVt €[0,T), Vo € R", |u(z,t) —uo(x)| < Cit. (18)



Moreover, u(x,t + h) is solution of (17) so, by the comparison principle, we obtain:
|u(z,t + h) —u(z,t)] < sup(u(x,h) —ug) < Crh.

We now assume that ug is only Lipschitz continuous. We set u? = ug * p. where p. is a regularising
sequence, i.e. pe = —p(<) where p € C°(R", R) and satisfies:

p >0, supp(p) C B(0,1), / p(z)dx = 1.

Then, it is easy to check that u? € CZ and ||Dul| g ®n), [|D*ulpomn) < 222

. Moreover, ||ug —

u|| Lo (rny < Boe. Indeed, since [p, pe(x)de =1

o — u0(2)] < / o () — wo(z — 4)|e(y)dy

n

SBO/ [yl pe(y)dy

B(0,¢)
SGBo/ pe(y)dy = €By.
B(0,¢)
We note u. the solution with initial condition u?. Then, by the comparison principle, ||uc(-,t) —

0
€

which is, by stability (see for instance Theorem 2.3 of Barles [8]), the solution of (17) with initial
condition ug. We then have, by the comparison principle, [|ue(-,t) — u(-, )| poo@n) < [|u — ol Loo (mr)-
We then deduce:

Ue(-,t)|| oo (mry < [Jud — ul|| Lo (rny, and so u converge uniformly (since u? converge uniformly) to u

[u(-st+h) = ul, )| Le@ny <2[luo = udllLoe@ny + [[ue(- t + h) = uc(, )| Lo n)
ByC
<2Bge + C4 <Bo, 0 2> h.

€

By taking the minimum on €, we obtain the modulus of continuity of u, wr, which depends only on

By. Moreover, using the geometric property of the equation, one deduces that Cy (By, 262) ~ 1

s0 wr(h) behaves like v/h.

and

Remark 4.5 In the case of dislocation dynamics, i.e. with the function F given by (15), an alternative
proof can be found in Chen, Giga, Goto [16], based on self-similar solutions (Wulff Shape) of the mean

curvature motion.

We also remark that the solution of (17) is Lipschitz continuous in space with Lipschitz constant

| Duo|| o= mny = Bo (because the equation is independent in space).

We now construct sub and supersolution for the general case.
We set U+(I,t) = ’U,(I,t) + ||C||L°°(R"><[O,T))B0t' Then, ||DU+||L°°(]R"><(O,T)) < HDU||L°°(R"><(O,T)) <
By and U™ is solution of:

vy — [lell Lo (n x [0,1)) Bo + F(Dv, D*v) = 0,
’U(LL', 0) = Uo,



and so U™ is supersolution of (16) and satisfies:

Ut (x,t) =u(z,t) + ||cl| Lo rnx [0,7) Bot

<ug(x) +wr(t) + el Lo mn x[o, 1) Bot-

Similarly, we construct a subsolution U~ such that U~ (z,t) > ug(x) — wr(t) — ||cl| Lo x[0,7)) Bot by
setting U~ (z,t) = u(x,t) —||c[| oo mn x [0,7)) Bot. To achieve the proof, it suffices to apply the comparison
principle to U~ and U™. O

2 Regularity results for the local problem

Lemma 4.6 (Regularity results for the local problem)
Assume that || Duol|p®ny < Bo and 27“2 > bo, with By > 0 and by > 0. Then, the solution of (16)
given by Theorem 4.4 satisfies

ou

| Du(-, )| poemny < B(t) and T > b(t),

with B(t) = Boel<! and b(t) = by — Bo(eX<t — 1). Moreover, u is uniformly continuous in time and its
modulus of continuity in time w,, defined by:

Ve e R", Vs, t € [0,T), |u(x,t) — u(z, s)| < w,(|t —s)),

satisfies:
T
wu(6) S wp(0) + ||ef| Lo Bod + wc(é)/ B(s)ds,
0

where w, is the modulus of continuity in time of c, and wr is the modulus of continuity in time of the
solution of (17) and behaves like /t.

Proof of Lemma 4.6 For the proof of the Lipschitz estimate in space, we assume in a first time
that u is bounded. We set ¢(z,y,t) = B(t) (Jo — y|* + 62)1/2. We prove that u(z,t) —u(y,t) < ¢¢. We
set:

M = sup {ulz,t) —u(y,t) — ¢°(z,y,t)},
(z,y,t)ER*XR" x[0,T)

Assume that M > 0. Then we set:

) e X )
= s dun) -l - G0 - S+ - 72 )
(z,y,t)ER™ XR™ x [0,T") —

For a > 0, v > 0 small enough, we have M > 0. Moreover u is bounded, so the supremum is reached
in (z,y,t) (with T # y) and

a _

S+ <C

and so ax — 0 and ajj — 0. We prove that £ > 0. Indeed, assume the contrary. Then, we have
UQ(:E) - ’U/Q(g) - ¢6(j7g7 0) > 07

i.e.
1
uo(Z) — uo(y) > Bo (|12 — yI* + €°)* > Bolz — 9,



what is absurd since || Dug|| o ®n) < Bo. We set
_ ¢ I —1/2,_ . -
p=Dp* = (2 —g> +&) > ( — §)B(t) = —Dyo # 0 (because & # 7),

Z=02 = ((lo -9 +&) 1= (le g2+ &)™ @-p o @-9) Bt) = Do,

e ( Z -Z
A_D2¢_<_Z Z).

Then, by parabolic version of Ishii’s Lemma (see Crandall, Ishii and Lions [19]), applied to @ = u(z,t)—
Slz?, o(y,t) = v(y,t) + Syl and é(z,y,t) = ¢(x,y,t) + 725, for every ( such that SA < I, there
exists 71, 2 € R and X, Y € S™ such that:

1
Ty = ﬁ +LB(t) (17— 5 +€%)?

(11,p+ o, X + ol) € PTu(z,1),
(72719 - ag,Y - OéI) € 757’1)(@757

F(ED)(3 3o

71 —c(Z,8)|p+ az| + Fu(p+ az, X +al) <0,

So, the following holds

T2 —c(@,t)p—ayl+ F*(p—ay,Y —al) > 0.

The matrix inequality implies in particular that X <Y, so by using the ellipticity of F', we deduce:
T2 —c(§,1)[p— oyl + F*(p— ay, X —al) > 0.

From that, by subtracting:

Y - 3 — _ — _ _ _
T + LeB(t) (| — 9> + €)* — (7, 0)|p + aZ| + (5, 8)[p — o7

+F.(p+az, X +al) — F*(p — ag, X —al) <0.

We let a go to 0 (p and X are bounded so we can extract a converging subsequence and we still note p

and X their limit):

[(=DE - e lim (LCB(t) (17 = 912+ ) + (—c(@, 1) + (7, D) |;-)|) L F.(p, X) — F*(p,X) <0.

Now, p # 0, therefore F, (p, X) = F*(p, X). Moreover,

1/2 _ _
LeB(t) (Jz —y> + ) = e, t)[p| + c(y, )|p]

— (e —yf? + &)V (LCB(t) _ % (clz,t) — cly, t)))
z—yl? c

> (Je — y? + &) ? (LB(t) - L.B(1))

>0

3

10



SO

I

(T—1)?~
what is absurd. So u(zx,t) — u(y,t) < ¢°. By letting € go to 0, we obtain:

u(z,t) — uly,t) < B(t)|z — y|.
Exchanging = and y, yields
lu(z,t) —u(y,t)] < B(t)lx —yl,

what gives the first result in the case where u is bounded. If u is not bounded, we consider the truncature
functions Ty, = max(min(x, k), —k). Then Ty (u) is bounded and solution of the problem, and so:

Tk (u(, 1)) = Ti(u(y, )| < B{t)|lz —yl.
Letting k go to infinity, yields:
lu(z, t) — uy,t)] < B(t)|lz —yl,

and we obtain the first estimate.

For the second estimate, we set, for x = (2, x,,), u*(z,t) = u(2’, z,, + \,t) — Ab(t). We have

M, xz,,0) =u(z, 2, + N) — Abg

>u(x, 2y, 0).
Moreover,

u} + G* (2, 2, t, Du?, D2u’\)
=uy — AV (t) — ¢(2', T, t)| Du| + F* (Du, D*u)
=uy + ABo L — c(2', 2, t)|Du| + F* (Du, D*u)
>uy + ABoLee" — (c(2', z, + A, t) + ALc) | Du| + F* (Du, D?u)
>AByLce"" — AByLce"' +u, + G* (2, 2, + A, t, Du, D*u)
>0

)

where u;, Du, D?u are taken at the point (2’,x,,t). This is written in a formal way and it can be
justified by using a test function. So, we obtain that u” is a supersolution. By the comparison principle,
we deduce u* > u, and so

w(@', o + A t) —u(@ 2, t) > Ab(2).

what proves the second estimate.
It thus remains to be shown that u is uniformly continuous in time. We set § > 0. For every
(x,t) € R™ x (0,T) such that t + ¢ < T, we set v(z,t) = u(z,t + J). Then, v is a subsolution of

wy — we(8)B(t + 6) — c(z, t)|Dw| + F (Dw, D*w) =0
on R™ x (0,T — ¢) in the sense of definition 4.1 (i7). Indeed, we have

vy — ¢ (z,t +6) |[Dv| + F (Dv, D*v) = 0,
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and
—c(z,t+0) |Dv| > —w.(6)B(t + 6) — c(z, t)| D],
what gives in a formal way:
vy — we(8)B(t + 6) — c(x, t)|Dv| + F (Dv, D*v) < 0.
45 p

0
we(9) 0t+6 B(s)ds is a supersolution and v(x,0) < @(x,0). By Theorem 4.4 and the comparison princi-

Moreover, u+w.(J) (s)ds is solution of the same problem. So @ = u-+sup, cgn (u(x,8) — ug(x)) "+

ple, we then have:

t+6
w(z,t+ 0) — u(z,t) < sup (u(z,8) —uo(x))* + wc(é)/ B(s)ds
rER™ 0

T
<wp(6) + ||¢||LeBod + wc(d)/ B(s)ds.
0
Similarly, v is a supersolution of
wy + we(8)B(t + 6) — c(z, t)|Dw| + F (Dw, D*w) =0

and @ = u — sup,epn (u(z,0) —uo(z))” — we(9) JMB(s)ds is subsolution. So, by the comparison

principle, we have
t+5
u(z,t) — u(z,t +9) <wp(d) + ||¢||L=Bd + wc(é)/ B(s)ds
0

T
<wp(9) + |||l neBod + wc(é)/ B(s)ds,
0

i.e.
T
lu(z,t) — u(z,t +9)| < wp(d) + ||c]|LeBod + wc(é)/ B(s)ds,
0

what achieves the proof of the lemma. O

5 The non local problem: proof of Theorem 3.1

For the proof of Theorem 3.1, we will need the three following lemmata:

Lemma 5.1 (Estimate on the characteristic functions)

Let u' € C(R™) satisfying
Out > b
ox, —

in the distributions sense for some b > 0 and u? € L{S.(R™) satisfying the same condition. Then, we
have the following estimate:

2] = ] <2 flu? —u (19)

unif

1
Lo

For the proof of this Lemma, we refer to the proof of Alvarez et al. [2] in the case n = 2, which

adapts without difficulty to the case of any dimension.

12



Lemma 5.2 (Convolution inequality)
For every f € LL_..(R™) and g € LS(R™), the convolution product f x g is bounded and satisfies

unif int

If*gllzee@ny < fller . @eylglloe @n)-

int

Lt

unif

For the proof, we refer to Alvarez et al. [4].

Lemma 5.3 (Stability of the solution with respect to the velocity)
Let T > 0. We consider for i =1,2 two different equations:

{ug — ¢i(x,t)|Dui| — F (Dui, D2uf) in R™ x (0,T), 20)

u'(z,0) = up(z).
where ¢' satisfy the assumption (Ho)(ii), uo satisfies (Hg)(iii) and F satisfies the assumptions (HF).

Then, for every t € [0,T), we have

t
b (-, t) = u?(,8) || oo gny < [t — C2||L°°(R"><(O,T))/O B(s)ds,

where u' are the solutions of (20) (see Theorem 4.4), B(t) = Boel<! with L. = sup,; L: (L is the
Lipcshitz constant of c').

Proof of Lemma 5.3

We set K = ¢! — || Lo (rn x(0,))- We remark that u' is subsolution of
uy — ¢*(z,t)|Du| + F (Du, D*u) — KB(t) = 0.
Indeed, we have:

ui — *(z,t)|Du'| + F (Du', D*u') <c'(z,t)|Du'| — F (Du', D*u") — ¢*(z,t)|Du'| + F (Du', D*u")
<|le! = || e ®n x (0,7)) B(t)
<KB(t).

It is a routine exercise to check that the differential inequality actually holds in the viscosity sense.

Moreover, u? + Kf(f B(s)ds is solution of the same problem. By the comparison principle (Theorem
4.3), we deduce

t
u? §u2+K/ B(s)ds.
0

From what .
Ju'(-,t) — u2('7t)||L°°(]R”) < |t - 02||L°°(Rnx(o,:r))/0 B(s)ds.

We now prove Theorem 3.1.

Proof of Theorem 3.1
We set w(8) = wr(8) + ||col| 11 Bod, where wr is the modulus of continuity of (17) and behaves like v/%.

13



We define the space

|Du(z,t)] < 2By,

u bo

E={uc LR x [0,T9),st. | 2 (z,t)> 2
u loc( [ )) s (%cn (.I ) =9

u is uniformly continuous in time and w,(0) < 2w(9)

where w,, is the modulus of continuity in time of u.
For u € E, we set c¢(x,t) = (co* [u(-,t)]) (x). We see that ¢ is bounded, Lipschitz continuous in

space (with L. = |co| sy as Lipschitz constant) and uniformly continuous in time. Indeed,
[l oo @ x[0,7)) <sup |[col| o [[[u(-, O)]] oo @rr)
teR
<lleoll L1 (®n)-
Moreover, for every t
[ De(:, )| oo (rmy =[1Deo * [l )| oo (rn)

<leol v [[[ul, )]l Lo @m)

<leo|Bv-
Finally, for 0 < t,s < T* :

le(2,t) = e(z, )] = [(co % [u(-,1)]) (z) = (co % [ul:, 5)]) ()]
=leo ([u(-, )] = [u(:, 9)]) ()]

<lleoll ez Mul- )] = [ul, )]l Ly rn)
4 col| g,
Sy MG ) —u )l e
4|eoll es,
S = wullt = s))
0
8 oo
<Bleolega e -,
bo

S . N 8llcollLes
so ¢ is uniformly continuous in time and w¢(0) < ——"*w(J).

For u € E, we then define v = ®(u) as the unique viscosity solution (see Theorem 4.4) of

{vt = (co * [u])|Dv| — F(Dv, D?>v) in R™ x (0,T*), (21)

v(z,t =0) = ug(x) in R™.

We show that & : F — FE is a contraction. First, we show that ® is well defined. We have
| Du(-,t)|| < B(t) < Boe*T" < 2By, by definition of T* (see Lemma 4.6). Moreover, % > b(t) =
by — Bo(el<t — 1) (see Lemma 4.6), and we want 887” > %", so it suffices to ensure that

bo

Bo(eLct — 1) S 5

b
Lct<_0 1
e _2Bo+
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In (% +1)
t<—"2 7
< L.
which is true according to the choice of 7. It thus remains to be shown that v is uniformly continuous
with w,(0) < 2w(d). Now, by the estimate of Lemma 4.6 on the modulus of continuity in time of the

solution, we have:

.
wo(6) Swp(5)+||c||LooBo5+wc(5)/0 B(s)ds.

Since |[c[| Loo (rn x[0,7+)) < llcol| L1, it suffices to show that w.(0) fOT* B(s)ds < w(9), i.e.

8 C oo T
Mw@) / B(s)ds < w(d)
bO 0
/ " Blas <
Ss)as T r—
0 = 8lcoll ez,
1 (eLcT* — 1) < 71)0
Lec - SBOHCOHLﬁ%
L.b
o (smfilig +1)
L. ’

which is true according to the choice of T* and so v € E.

T <

It thus remains to be shown that ® is a contraction. For v' = ®(u'), according to the Lemmata 5.3,
5.2 and 5.1, we have

[[v* — 0| oo e x (0,7+)) <2BoT™*|lco * [u?] = co * [u']|| oo (rn x (0,7+))

[w?(, )] = fu' (- O] e

<2B T* ||Co||Lgft(R”) sup unie(R™)
te(0,T*

I
)

8ByT™

< b llcoll pos, (mmy 1u? — || Loo (rm x 0,7))
1

§§||U2 — || oo (rr x (0,7))-

And so @ is a contraction on E which is a closed set for the L topology. So, there exists a unique
viscosity solution of (6) in F on (0,7*). O

Remark 5.4 To be rigourous, we should consider the intersection of E with a ball of center ug and
write the elements of E as u = u + ug with @ bounded. Then we could make the same computations on

u and we will obtain the same result.

Acknowledgements
The author would like to thank G. Barles, P. Cardaliaguet, B. Devincre, C. Imbert and O. Ley for
fruitful discussions in the preparation of this article. The author also would like to thank O. Alvarez
for introducing him to the theory of viscosity solutions and for many enlighting discussions and R.
Monneau for stimulating and enriching discussions. This work was supported by the contract JC 1025
called “ACI jeunes chercheuses et jeunes chercheurs” of the French Ministry of Research (2003-2005).

15



[1]

2]

3]

[4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Olivier Alvarez, Pierre Cardaliaguet, Régis Monneau, Ezistence and uniqueness for dislocation

dynamics with nonnegative velocity, Interfaces and Free Boundaries, vol. 7(4) (2005), pp 415-434.

Olivier Alvarez, Elisabetta Carlini, Régis Monneau, Elisabeth Rouy, A convergent scheme for
a nonlocal Hamilton-Jacobi equation modelling dislocation dynamics, Numerische Mathematik,
vol. 104(4) (2006), pp 413-572.

Olivier Alvarez, Elisabetta Carlini, Régis Monneau, Elisabeth Rouy, Convergence of a first order
scheme for a non local eikonal equation, IMACS Journal "Applied Numerical Mathematics", vol.
56 (2006), pp 1136-1146.

Olivier Alvarez, Philippe Hoch, Yann Le Bouar, Régis Monneau, Dislocation dynamics: short
time existence and uniqueness of the solution, Archive for Rational Mechanics and Analysis, vol.
85(3) (2006), pp 371-414.

Olivier Alvarez, Philippe Hoch, Yann Le Bouar, Régis Monneau, Résolution en temps court
d’une équation de Hamilton-Jacobi non locale décrivant la dynamique d’une dislocation, C. R.
Math. Acad. Sci. Paris, vol. 338(9) (2004), pp 679-684.

Luigi Ambrosio, Geometric evolution problems, distance function and viscosity solutions Calcu-

lus of variations and partial differential equations, Springer:Berlin, (2000), pp 5-93.

Martino Bardi, Italo Capuzzo-Dolcetta, Optimal control and wviscosity solutions of Hamilton-
Jacobi-Bellman Equations, Birkh&user: Boston, (1997).

Guy Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Appli-

cations, Springer-Verlag: Paris, vol. 17 (1994).

Guy Barles, Solutions de viscosité et équations elliptiques du deuziéme ordre, Cours de DEA,
1997.

Guy Barles, Olivier Ley, Nonlocal first-order Hamilton-Jacobi equations modelling dislocations
dynamics, Comm. Partial Differential Equations, vol. 31 (8) (2006), pp 1191-1208.

Guy Barles, Mete Soner, Takis Souganidis, Front propagation and phase field theory, STAM J.
Control Optim., vol. 31(2) (1993), pp 439-469.

D.M. Barnett, The singular nature of the self-stress field of a plane dislocation loop in anisotropic
elastic medium, Phy. stat. sol. (a), vol. 38 (1976), pp 637-646.

D.M. Barnett, S.D. Gavazza, The self-force on a planar dislocation loop in an anisotropic linear-
elastic medium, J. Mech. Phys. solids, vol. 24 (1976), pp 171-185.

L.M. Brown, The self-stress of dislocations and the shape of extended nodes, Phil. Mag., vol. 10
(1964), pp 441-466.

L.M. Brown, A proof of Lothe’s theorem, Phil. Mag., vol. 15 (1967), pp 363-370.

16



|16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

|26]

[27]

[28]

[29]

[30]

Yun Gang Chen, Yoshikazu Giga, Shun’ichi Goto, Uniqueness and ezistence of viscosity solutions
of generalized mean curvature flow equations, J. Differential Geom., vol. 33(3) (1991), pp 749-
786.

Xinfu Chen, Danielle Hilhorst, Elisabeth Logak, Asymptotic behavior of solutions of an Allen-
Cahn equation with a nonlocal term, Nonlinear Anal., vol. 28(7) (1997), pp 1283-1298.

Michael G. Crandall, Hitoshi Ishii, The mazimum principle for semicontinuous functions Dif-
ferential Integral Equations, 3(6) (1990), pp 1001-1014.

Michael G. Crandall, Hitoshi Ishii, Pierre-Louis Lions, User’s guide to viscosity solutions of
second order partial differential equations Bull. Amer. Math. Soc. (N.S.), vol. 27(1) (1992), pp
1-67.

Michael G. Crandall, Pierre-Louis Lions, Conditions d’unicité pour les solutions généralisées des
équations de Hamilton-Jacobi du premier ordre. C. R. Acad. Sci. Paris Sér. I Math., vol. 292
(1981), pp 183-186.

Michael G. Crandall, Pierre-Louis Lions, Two approximations of solutions of Hamilton-Jacobi
equations, Math. Comp., vol. 43(167) (1984), pp 1-190.

Michael G. Crandall, Pierre-Louis Lions, On ezistence and uniqueness of solutions of Hamilton-
Jacobi equations, Nonlinear Anal., vol. 10(4) (1986), pp 353-370.

B. Devincre, L.P. Kubin, Mesoscopic simulations of dislocations and plasticity, Materials science
and engineering A, vol. 234 (1997), pp 8-14.

Jérome Droniou, Cyril Imbert, Solutions de viscosité et solutions variationnelles pour EDP non-
linéaires, Cours de DEA, (2004), pp 50-83.

Lawrence C. Evans, Regularity for fully nonlinear elliptic equations and motion by mean curva-
ture, Viscosity solutions and applications (Montecatini Terme, 1995), Springer:Berlin, vol. 1660
(1997), pp 98-133.

Lawrence C. Evans, Joel Spruck, Motion of level sets by mean curvature. I, J. Differential Geom.,
vol. 33(3) (1991), pp 635-681.

Adriana Garroni, Stefan Miiller, I'-limit of a phase-field model of dislocations, STAM J. Math.
Anal., vol. 36(6) (2005), pp 1943-1964.

J.P. Hirth, J. Lothe, Theory of dislocations, Second Ed.; Krieger:Malabar, (1992).

Hitoshi Ishii, Existence and uniqueness of solutions of Hamilton-Jacobi equations, Funkcial.
Ekvac., vol. 29(2) (1986), pp 167-188.

Hitoshi Ishii, Pierre-Louis Lions, Viscosity solutions of fully nonlinear second-order elliptic par-
tial differential equations, J. Differential Equations, vol. 83(1) (1990), pp 26-78.

17



[31] David Rodney, Yann Le Bouar, Alphonse Finel, Phase field methods and dislocations Acta
materialia, vol. 51 (2003), pp 17-30.

[32] Mete Soner, Front propagation, Boundaries, interfaces, and transitions (Banff, AB, 1995), Amer.
Math. Soc.:Providence, vol. 13 (1998), pp 185-206.

[33] Takis Souganidis, Front propagation: theory and applications, Viscosity solutions and applica-
tions (Montecatini Terme, 1995) Springer:Berlin, vol. 1660 (1997), pp 186-242.

18



