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DISLOCATION DYNAMICS WITH A MEANCURVATURE TERM:SHORT TIME EXISTENCE AND UNIQUENESSN. ForadelCERMICS, Eole Nationale des Ponts et Chaussées,6 et 8 avenue Blaise Pasal, Cité Desartes, Champs-sur-Marne,77455 Marne-la-Vallée Cedex 2, Franeforadel�ermis.enp.frAbstrat In this paper, we study a new model for disloation dynamis with a meanurvature term. The model is a non-loal Hamilton-Jaobi equation. We prove a short timeexistene and uniqueness result for this equation. We also prove a Lipshitz estimate inspae and an estimate of the the modulus of ontinuity in time for the solution.AMS Classi�ation: 49L25, 35D05, 53C44, 35D10, 35G25, 35Q99.Keywords: Disloation dynamis, non-loal equations, mean urvature motion, visositysolutions.1 IntrodutionPlasti deformation is mainly due to the movement of linear defets alled disloations, whose typiallength in metalli alloys is of the order of 10−6m and thikness of the order of 10−9m. Sine thebeginning of the 90's, the researh �eld of disloation is enjoying a new boom, in partiular thanks tothe power of omputers whih now makes possible to simulate disloations in a 3D domain. The oneptof disloations in rystals was put forward in the XXth entury as the main mirosopi explanation ofthe marosopi behaviour of metalli rystals (see the physial monograph Hirth and Lothe [28℄).More reently, a new approah has been introdued: phase �eld model of disloations (see for exampleRodney, Le Bouar, Finel [31℄). One of the advantage of this method is that the possible topologialhanges during the disloation movement are automatially taken into aount. In the fae enteredubi struture, the disloation line in the rystal moves in it slip plane with a normal veloity whihis proportional to the Peah-Koeller fore ating on the line. This fore is the self fore reated by theelasti �eld generated by the disloation itself. In [4℄ and [5℄, using a level set formulation, Alvarez,Hoh, Le Bouar and Monneau propose a non-loal Hamilton Jaobi equation to model this approah.Having suh an equation allows in partiular to study mathematially and numerially disloationsdynamis. Sine the equation is nonlinear, a natural framework to study this kind of equation is thetheory of visosity solutions (see for instane the monographs of Barles [8℄ and Bardi and Capuzzo-Doletta [7℄ for a presentation of �rst order equations and the artile of Crandall, Ishii and Lions [19℄for the seond order ase). The theory of visosity solutions has been �rst introdued by Crandall and1



Lions [20℄. The main di�ulty of this equations is that the omparison priniple, whih is a ruialargument in this theory, does not hold. Nevertheless, using the geometri property of the equation (werefer to Barles, Soner, Souganidis [11℄ for a detailed presentation of this theory) Alvarez et al. proveshort time existene and uniqueness for this equation. Then Alvarez, Cardaliaguet and Monneau [1℄and Barles and Ley [10℄ prove a long time existene and uniqueness result under ertain assumptions onthe monotony of the veloity. This model was also numerially studied by Alvarez, Carlini, Monneauand Rouy [2℄, [3℄.Here, we onsider a new model in whih the energy also ontains a line tension term whih approxi-mates better what happen near the disloation. That amounts to adding a mean urvature term in theequation. This line tension term appears in a lot of physial models (see for instane Gavazza, Barnett[13℄ and Brown [14℄). We also refer to Garroni, Müller [27℄ for a mathematial referene. Non-loalequation with mean urvature term have also been studied by Chen, Hilhorst and Logak [17℄.For this model we show a short time existene and uniqueness result. Sine the omparison prinipledoes not hold, the strategy of the proof is the same as the one used by Alvarez et al. in [4℄, i.e. is to usea �x point method by freezing the nonloal term. Here, the main di�ulties ome from the fat thatthe equation is a seond order one and so the regularity estimates are really more di�ult to obtain.Indeed, for the �x point to work, we need �nes estimates on the Lipshitz onstant in spae and on themodulus of ontinuity in time of the solution. To get round these di�ulties, we use a regularisationof the initial ondition to obtain an estimate of the modulus of ontinuity in time of the solution for alass of operator. Using the geometri property of the equation, we also prove that the estimate we getis like √
t. We also prove a Lipshitz estimate in spae for the solution. The estimate we obtain is thesame as in the �rst order ase (i.e., without the mean urvature term).The long time existene and uniqueness result for this non-loal equation is really more di�ult toobtain. Indeed, due to the non validity of the omparison priniple, de�ning a large time solution israther di�ult and this problem is still open. Moreover, even in the the �rst order ase, the problem isstill open for general veloity. We refer to Alvarez, Cardaliaguet and Monneau [1℄ and Barles and Ley[10℄ for suh results with monotony assumptions on the veloity.Let us now explain how this paper is organised: in setion 2, we present the model. The mainresult is state in Setion 3. In Setion 4, we give some preliminary results on a loal problem. Finally,we prove existene, uniqueness and regularity results for the non-loal problem (see Theorem 3.1) insetion 5.2 Presentation of the modelWe desribe the model in an heuristi way. Let us onsider an orthonormal basis (e1, e2, e3) of R

3 anddenote by x = (x1, x2, x3) the oordinates. The energy of the disloation along the line is singular. Tosolve this problem, Brown [14℄, [15℄ then Barnett [12℄ and Gavazza, Barnett [13℄ propose to surroundthe disloation Γ by a tube Tǫ of size ǫ and to onsider the energy of the form:
E =

∫

R3\Tǫ

1

2
Λeclass.eclass +

∫

Tǫ

γ0(~n), (1)2



where Λ represents the elasti oe�ients, γ0 is an energy of tension line, ~n is the outward normal tothe urve and eclass is a deformation and is solution of:





div(Λeclass) = 0,in(eclass) = −in(ρδ0(x3)e
0) where e0 = 1

2 (b ⊗ e3 + e3 ⊗ b),

eclass(x) → 0 when |x| → ∞.

(2)Here, Γ belongs to the plane (e1, e2), the vetor e3 is the vetor normal to the plane, b ∈ R
3 is a onstantvetor (alled Burgers' vetor) assoiated with the disloation line and the operator of inompatibility"in" is de�ned for a �eld e = (eij) ∈ S3, the set of symmetri 3 × 3 matrix, by:

(in(e))ij =

3∑

i1,j1=1

εii1i2εjj1j2∂i1∂j1ei2j2 , i, j = 1, 2, 3where we note as usual
εijk =






1 if (ijk) is a positive permutation of (123),
−1 if (ijk) is a negative permutation of (123),

0 if two indies are the same.The solution eclass of (2) satis�es eclass ∼ 1
r , for r small, where r is the distane to the disloation (fAlvarez et al. [4℄ for a desription of the physial model). Finally, the uto� tube is represented byFigure 1. We onsider an approximate model of this one where the �eld e is given by e = χ ⋆ eclass,

ǫFigure 1: The uto� tube of radius ǫ.with χ a regularising ore funtion (onneted to ǫ) to be adjusted, and the energy (1) is replaed bythe following one:
E =

∫

R3

1

2
Λe.e + η

∫

Γ

γ0(~n),where η is to be adjusted and onneted to ǫ. We set γ(~n) = ηγ0(~n). In order to model the movementof a disloation Γ in its rystallographi plane, we assume that Γ is the edge of a smooth boundedset Ω ⊂ R
2 and we ompute the �rst variation of the energy (see Alvarez et al. [4℄). We de�ne

Γδ(s) = Γ(s) + δh(s).~nΓ(s). Then, the following holds
−dE(Γδ)

dδ

∣∣∣∣
δ=0

=

∫

Γ

c.h,with c = c0 ⋆ ρ + λ(~n)κ, where λ(~n) = (γ(~n) + γ′′(~n)) the kernel c0 = c0(x1, x2) only depends on Λ and
χ, ⋆ denotes the onvolution in spae and ρ is de�ned as follows:

ρ =

{
1 in Ω,
0 in R

2/Ω.
(3)3



Thus, the evolution is postulated to be ∂ρ
∂t = c|Dρ|. We an then reformulate the problem by a �levelset� equation on the set {u ≤ 0} of a smooth funtion u whih then satis�es:

ut = (c0 ⋆ [u] + λ(~n)κ)|Du|, (4)with: 




ρ = [u] =

{
1 if u > 0

0 if u ≤ 0
,

~n = Du
|Du| ,

κ = div( Du
|Du|

)
.

(5)Remark 2.1 (Expliit example for c0 and γ)If b = |b|e1, then, for the isotropi elastiity, one an give the value of c0:
ĉ0(ξ) =

−µb2

2
e−ζ

√
ξ2

1
+ξ2

2

(
ξ2
1 + 1

1−ν ξ2
2√

ξ2
1 + ξ2

2

)and the form of γ:
γ(~n) = C

(
n2

1 +
1

1 − ν
n2

2

)
,where ~n = (n1, n2) is the normal vetor to the urve, C is a prefator (whih depends on the Burgersvetor and elastiity oe�ients), ζ > 0 is a physial parameter (depending on the material), ν is thePoisson ratio and µ is the Lamé oe�ient. We refer to Alvarez et al. [4℄ setion 6 for the expressionof c0 and to Hirth, Lothe [28℄ hapter 6 and 7 for the form of γ.Remark 2.2 Formally, we have:

dE
dt

=

∫

Γ

−c2 ≤ 0.3 Main resultThe goal of the paper is to prove short time existene and uniqueness for the problem (4). Herewe onsider more general seond order term and we study the n-dimensional ase (see 6). Sine theHamiltonian intervening in the equation is not ontinuous and singular, a natural framework for thestudy is the theory of visosity solutions (for a good introdution to this theory, we refer to Barles[8℄, [9℄, Crandall, Ishii, Lions [19℄, Crandall, Lions [21℄, [22℄, Ishii [29℄ and Ishii, Lions [30℄ and for anintrodution to visosity solution for evolving fronts, we refer to Ambrosio [6℄, Barles, Soner, Souganidis[11℄, Chen, Giga, Goto [16℄, Evans [25℄, Evans, Spruk [26℄ and Souganidis [33℄). We onsider thefollowing problem: �nd u(x, t) solution of
{

ut = (c0 ⋆ [u])|Du| − F (Du, D2u) in R
n × (0, T ),

u(x, t = 0) = u0(x) in R
n,

(6)where [u] is the harateristi funtion of the set {u > 0} (see (5)). Moreover, we assume that
c0 ∈ L∞int(Rn) ∩ BV (Rn), (7)4



where BV (Rn) is the spae of bounded variations funtions and
L∞int(Rn) = {f : R

n → R : ‖f‖L∞int(Rn) < ∞}with
‖f‖L∞int(Rn) =

∫

Rn

‖f‖L∞(Q(x))and Q(x) is the unit square entered at x:
Q(x) =

{
x′ ∈ R

n : |xi − x′
i| ≤

1

2

}
.The assumptions (HF ) on the operator F are the following ones:(i) The operator F is ellipti, i.e., ∀X, Y ∈ Sn, ∀p ∈ R

n,if X ≤ Y then F (p, X) ≥ F (p, Y ), (8)where Sn (the set of symmetri n × n matries) is equipped with its natural partial order.(ii) F is loally bounded on R
n × Sn, ontinuous on R

n\{0} × Sn and
F ∗(0, 0) = F∗(0, 0) = 0, (9)where F ∗ (resp. F∗) is the upper-semiontinous (us) envelope (resp. lower semiontinuous (ls)envelope) of F , i.e. the smallest us funtion greater than F (resp. the greatest ls funtionsmaller than F ).(iii) F is geometri, i.e.

F (νp, νA + µp ⊗ p) = νF (p, A), ∀ν > 0, µ ∈ R, A ∈ Sn. (10)The main result is:Theorem 3.1 (Short time existene and uniqueness)Let u0 : R
n → R be a Lipshitz ontinuous funtion on R

n suh that
|Du0| < B0 in R

n (11)and
∂u0

∂xn
> b0 > 0 in R

n. (12)Let c0 satisfying (7). Then, under assumptions (HF ), there exists a unique visosity solution of theproblem (6) in R
n × [0, T ∗) with

T ∗ = inf

{
1

|c0|BV (Rn)

ln

(
1 +

b0

2B0

)
,

b0

B0

1

16‖c0‖L∞int(Rn)
,

1

|c0|BV (Rn)

ln

(
1 +

b0

B0

|c0|BV (Rn)

8‖c0‖L∞int )} .Moreover, the solution satis�es
|Du(x, t)| < 2B0 on R

n × [0, T ∗), (13)
∂u

∂xn
(x, t) > b0/2 > 0 on R

n × [0, T ∗). (14)and u is uniformly ontinuous in time and its modulus of ontinuity behaves like √
t.5



Remark 3.2 This theorem gives, in partiular, in the two dimensional ase, and for
F (p, X) = −tr((I − p ⊗ p

|p|2
)

X

)(
λ

(
p

|p|

))
, (15)with λ > 0 and smooth, short time existene and uniqueness for disloation dynamis with a meanurvature term.Remark 3.3 Due to the non validity of the omparison priniple, de�ning a large time solution israther di�ult and this problem is still open. Even in the one order ase this problem is still open forgeneral veloity.4 Preliminary results for a loal problemGiven T > 0, we onsider the following problem:

{
ut + G(x, t, Du, D2u) = 0 in (0, T )× R

n,

u(x, t = 0) = u0(x) in R
n,

(16)with the following assumptions (H0):(i) G(x, t, p, X) = −c(x, t)|p| + F (p, X) and F satis�es the assumptions (HF ),(ii) c : R
n × (0, T ) → R is bounded, Lipshitz ontinuous in spae (we note Lc its Lipshitz on-stant) and uniformly ontinuous in time (we note ωc its modulus of ontinuity, de�ned by:

∀x ∈ R
n, ∀s, t ∈ [0, T ), |c(x, t) − c(x, s)| ≤ ωc(|t − s|)),(iii) u0 is Lipshitz ontinuous (we note B0 its Lipshitz onstant).1 Existene and uniqueness for the problem (16)For the reader's onveniene, we reall the lassial de�nition for visosity solution of (16):De�nition 4.1 (Visosity subsolution, supersolution and solution)A loally bounded upper semi-ontinuous (us)(resp. lower semi-ontinuous (ls)) funtion u is a vis-osity subsolution (resp. supersolution) of (16) if it satis�es:(i) u(x, t = 0) ≤ u0(x) (resp. u(x, t = 0) ≥ u0(x)) in R

n,(ii) for every (x0, t0) ∈ R
n × (0, T ) and for every test funtion Φ : (Rn × (0, T )) → R, C1 in time and

C2 in spae, that is tangent from above (resp. below) to u at (x0, t0), the following holds:
∂Φ

∂t
(x0, t0) + G∗

(
x0, t0, DΦ, D2Φ

)
≤ 0.

(resp. ∂Φ

∂t
(x0, t0) + G∗

(
x0, t0, DΦ, D2Φ

)
≥ 0.A funtion u ∈ C0(Rn×[0, T )) is a visosity solution of (16) if, and only if, it is a sub and a supersolutionof (16). 6



We reall that we have an equivalent de�nition using the sub and superdi�erentials (see Crandall etal. [19℄).We also reall the fundamental property of geometri equations:Lemma 4.2 (Fundamental property of geometri equations)Let θ : R → R be a ontinuous, non dereasing salar funtion and u be a subsolution (respetively asupersolution) of (16), then θ(u) is also a subsolution (resp. a supersolution).For the proof of this Lemma, we refer to Soner [32℄ (Theorem 1.11).We have the following omparison priniple:Theorem 4.3 (Comparison priniple)Let u, a loally bounded us funtion, be a subsolution and v, a loally bounded ls funtion, be a su-persolution of (16). Assume that u0(x) = u(0, x) ≤ v(0, x) = v0(x) in R
n, then, under the assumptions

(H0), u ≤ v in R
n × [0, T ).Proof of theorem 4.3The proof of this theorem is rather lassial when the funtions u and v are bounded (see for instaneChen, Giga, Goto [16℄). When the funtions are not bounded, it su�es to use the fundamental propertyof geometri equations. We then onsider the trunature funtions Tk = max(min(x, k),−k). For every

k, we then have Tk(u) ≤ Tk(v) and by letting k go to in�nity, we obtain the result. 2Theorem 4.4 (Existene and uniqueness for the loal problem)Let T > 0. Then, under the assumptions (H0), there exists a unique visosity solution of the problem(16) in R
n × [0, T ). Moreover, the solution satis�es, for every (x, t) ∈ R

n × (0, T ):
u0(x) − ωF (t) − ‖c‖L∞(Rn×[0,T ))B0t ≤ u(x, t) ≤ u0(x) + ωF (t) + ‖c‖L∞(Rn×[0,T ))B0t.where ωF is the modulus of ontinuity of the solution of (17) and behaves like √

t.Proof of theorem 4.4To prove this theorem, by Perron's method (see Crandall, Ishii, Lions [19℄), it su�es to onstrut asubsolution U− (resp. a supersolution U+) whih satisfy U−(x, 0) ≤ u0(x) ≤ U+(x, 0). Sine u0 is notbounded, onstant annot be sub or supersolution. We begin with studying the problem
{

ut + F (Du, D2u) = 0,

u(x, 0) = u0(x).
(17)We assume, in a �rst time, that u0 ∈ C2

b = {u C2, ∃ C, ||Du||L∞ , ||D2u||L∞ ≤ C}. We set u± = u0±C1twith C1 = infx∈Rn{−F ∗(Du0, D
2u0), F∗(Du0, D

2u0)} (C1 depends only on the bounds of Du0 and
D2u0). It then easy to hek that u+ is a supersolution and u− is a subsolution. Then, there exists aunique solution of (17) and, by the omparison priniple, the following holds:

∀t ∈ [0, T ), ∀x ∈ R
n, |u(x, t) − u0(x)| ≤ C1t. (18)7



Moreover, u(x, t + h) is solution of (17) so, by the omparison priniple, we obtain:
|u(x, t + h) − u(x, t)| ≤ sup(u(x, h) − u0) ≤ C1h.We now assume that u0 is only Lipshitz ontinuous. We set u0

ǫ = u0 ⋆ ρǫ where ρǫ is a regularisingsequene, i.e. ρǫ = 1
ǫn ρ( ·

ǫ ) where ρ ∈ C∞
c (Rn, R) and satis�es:

ρ ≥ 0, supp(ρ) ⊂ B̄(0, 1),

∫

Rn

ρ(x)dx = 1.Then, it is easy to hek that u0
ǫ ∈ C2

b and ‖Du0
ǫ‖L∞(Rn), ‖D2u0

ǫ‖L∞(Rn) ≤ B0C2

ǫ . Moreover, ‖u0 −
u0

ǫ‖L∞(Rn) ≤ B0ǫ. Indeed, sine ∫Rn ρǫ(x)dx = 1

|u0 − u0
ǫ(x)| ≤

∫

Rn

|u0(x) − u0(x − y)|ρǫ(y)dy

≤B0

∫

B̄(0,ǫ)

|y|ρǫ(y)dy

≤ǫB0

∫

B̄(0,ǫ)

ρǫ(y)dy = ǫB0.We note uǫ the solution with initial ondition u0
ǫ . Then, by the omparison priniple, ‖uǫ′(·, t) −

uǫ(·, t)‖L∞(Rn) ≤ ‖u0
ǫ′ − u0

ǫ‖L∞(Rn), and so uǫ onverge uniformly (sine u0
ǫ onverge uniformly) to uwhih is, by stability (see for instane Theorem 2.3 of Barles [8℄), the solution of (17) with initialondition u0. We then have, by the omparison priniple, ‖uǫ(·, t) − u(·, t)‖L∞(Rn) ≤ ‖u0

ǫ − u0‖L∞(Rn).We then dedue:
‖u(·, t + h) − u(·, t)‖L∞(Rn) ≤2‖u0 − u0

ǫ‖L∞(Rn) + ‖uǫ(·, t + h) − uǫ(·, t)‖L∞(Rn)

≤2B0ǫ + C1

(
B0,

B0C2

ǫ

)
h.By taking the minimum on ǫ, we obtain the modulus of ontinuity of u, ωF , whih depends only on

B0. Moreover, using the geometri property of the equation, one dedues that C1

(
B0,

B0C2

ǫ

)
∼ 1

ǫ andso ωF (h) behaves like √
h.Remark 4.5 In the ase of disloation dynamis, i.e. with the funtion F given by (15), an alternativeproof an be found in Chen, Giga, Goto [16℄, based on self-similar solutions (Wul� Shape) of the meanurvature motion.We also remark that the solution of (17) is Lipshitz ontinuous in spae with Lipshitz onstant

‖Du0‖L∞(Rn) = B0 (beause the equation is independent in spae).We now onstrut sub and supersolution for the general ase.We set U+(x, t) = u(x, t) + ‖c‖L∞(Rn×[0,T ))B0t. Then, ‖DU+‖L∞(Rn×(0,T )) ≤ ‖Du‖L∞(Rn×(0,T )) ≤
B0 and U+ is solution of:

{
vt − ‖c‖L∞(Rn×[0,T ))B0 + F (Dv, D2v) = 0,

v(x, 0) = u0, 8



and so U+ is supersolution of (16) and satis�es:
U+(x, t) =u(x, t) + ‖c‖L∞(Rn×[0,T ))B0t

≤u0(x) + ωF (t) + ‖c‖L∞(Rn×[0,T ))B0t.Similarly, we onstrut a subsolution U− suh that U−(x, t) ≥ u0(x) − ωF (t) − ‖c‖L∞(Rn×[0,T ))B0t bysetting U−(x, t) = u(x, t)−‖c‖L∞(Rn×[0,T ))B0t. To ahieve the proof, it su�es to apply the omparisonpriniple to U− and U+. 22 Regularity results for the loal problemLemma 4.6 (Regularity results for the loal problem)Assume that ‖Du0‖L∞(Rn) ≤ B0 and ∂u0

∂xn

≥ b0, with B0 > 0 and b0 > 0. Then, the solution of (16)given by Theorem 4.4 satis�es
‖Du(·, t)‖L∞(Rn) ≤ B(t) and ∂u

∂xn
≥ b(t),with B(t) = B0e

Lct and b(t) = b0 − B0(e
Lct − 1). Moreover, u is uniformly ontinuous in time and itsmodulus of ontinuity in time ωu, de�ned by:

∀x ∈ R
n, ∀s, t ∈ [0, T ), |u(x, t) − u(x, s)| ≤ ωu(|t − s|),satis�es:

ωu(δ) ≤ ωF (δ) + ‖c‖L∞B0δ + ωc(δ)

∫ T

0

B(s)ds,where ωc is the modulus of ontinuity in time of c, and ωF is the modulus of ontinuity in time of thesolution of (17) and behaves like √
t.Proof of Lemma 4.6 For the proof of the Lipshitz estimate in spae, we assume in a �rst timethat u is bounded. We set φǫ(x, y, t) = B(t)

(
|x − y|2 + ǫ2

)1/2. We prove that u(x, t)−u(y, t) ≤ φǫ. Weset:
M = sup

(x,y,t)∈Rn×Rn×[0,T )

{u(x, t) − u(y, t) − φǫ(x, y, t)} ,Assume that M > 0. Then we set:
M̄ = sup

(x,y,t)∈Rn×Rn×[0,T )

{
u(x, t) − u(y, t) − φǫ(x, y, t) − α

2
(|x|2 + |y|2) − γ

T − t

}
.For α > 0, γ > 0 small enough, we have M̄ > 0. Moreover u is bounded, so the supremum is reahedin (x̄, ȳ, t̄) (with x̄ 6= ȳ) and

α

2
(|x̄|2 + |ȳ|2) ≤ Cand so αx̄ → 0 and αȳ → 0. We prove that t̄ > 0. Indeed, assume the ontrary. Then, we have

u0(x̄) − u0(ȳ) − φǫ(x̄, ȳ, 0) > 0,i.e.
u0(x̄) − u0(ȳ) > B0

(
|x̄ − ȳ|2 + ǫ2

) 1

2 > B0|x̄ − ȳ|,9



what is absurd sine ‖Du0‖L∞(Rn) ≤ B0. We set
p̄ = Dxφǫ =

(
|x̄ − ȳ|2 + ǫ2

)−1/2
(x̄ − ȳ)B(t) = −Dyφ

ǫ 6= 0 (beause x̄ 6= ȳ),
Z = D2

xφǫ =
((

|x̄ − ȳ|2 + ǫ2
)−1/2

I −
(
|x̄ − ȳ|2 + ǫ2

)−3/2
(x̄ − ȳ) ⊗ (x̄ − ȳ)

)
B(t) = D2

yφ
ǫ,

A = D2φǫ =

(
Z −Z
−Z Z

)
.Then, by paraboli version of Ishii's Lemma (see Crandall, Ishii and Lions [19℄), applied to ũ = u(x, t)−

α
2 |x|2, ṽ(y, t) = v(y, t) + α

2 |y|2 and φ(x, y, t) = φǫ(x, y, t) + γ
T−t , for every β suh that βA < I, thereexists τ1, τ2 ∈ R and X, Y ∈ Sn suh that:

τ1 − τ2 =
γ

(T − t̄)2
+ LcB(t)

(
|x̄ − ȳ|2 + ǫ2

) 1

2 ,

(τ1, p + αx̄, X + αI) ∈ P̄+u(x̄, t̄),

(τ2, p − αȳ, Y − αI) ∈ P̄−v(ȳ, t̄),

−1

β

(
I 0
0 I

)
≤
(

X 0
0 −Y

)
≤ (I − βA)−1A.So, the following holds

τ1 − c(x̄, t̄)|p̄ + αx̄| + F∗(p̄ + αx̄, X + αI) ≤ 0,

τ2 − c(ȳ, t̄)|p̄ − αȳ| + F ∗(p̄ − αȳ, Y − αI) ≥ 0.The matrix inequality implies in partiular that X ≤ Y , so by using the elliptiity of F , we dedue:
τ2 − c(ȳ, t̄)|p̄ − αȳ| + F ∗(p̄ − αȳ, X − αI) ≥ 0.From that, by subtrating:

γ

(T − t̄)2
+ LcB(t)

(
|x̄ − ȳ|2 + ǫ2

) 1

2 − c(x̄, t̄)|p̄ + αx̄| + c(ȳ, t̄)|p̄ − αȳ|

+F∗(p̄ + αx̄, X + αI) − F ∗(p̄ − αȳ, X − αI) ≤ 0.We let α go to 0 (p̄ and X are bounded so we an extrat a onverging subsequene and we still note p̄and X their limit):
γ

(T − t̄)2
+ lim

α→0

(
LcB(t)

(
|x̄ − ȳ|2 + ǫ2

) 1

2 + (−c(x̄, t̄) + c(ȳ, t̄)) |p̄|
)

+ F∗(p̄, X) − F ∗(p̄, X) ≤ 0.Now, p̄ 6= 0, therefore F∗(p̄, X) = F ∗(p̄, X). Moreover,
LcB(t)

(
|x − y|2 + ǫ2

)1/2 − c(x, t)|p̄| + c(y, t)|p̄|

=
(
|x − y|2 + ǫ2

)1/2
(

LcB(t) − |x − y|B(t)

|x − y|2 + ǫ2
(c(x, t) − c(y, t))

)

≥
(
|x − y|2 + ǫ2

)1/2
(

LcB(t) − |x − y|2LcB(t)

|x − y|2 + ǫ2

)

≥
(
|x − y|2 + ǫ2

)1/2
(LcB(t) − LcB(t))

≥0, 10



so
γ

(T − t̄)2
≤ 0,what is absurd. So u(x, t) − u(y, t) ≤ φǫ. By letting ǫ go to 0, we obtain:

u(x, t) − u(y, t) ≤ B(t)|x − y|.Exhanging x and y, yields
|u(x, t) − u(y, t)| ≤ B(t)|x − y|,what gives the �rst result in the ase where u is bounded. If u is not bounded, we onsider the trunaturefuntions Tk = max(min(x, k),−k). Then Tk(u) is bounded and solution of the problem, and so:

|Tk(u(x, t)) − Tk(u(y, t))| ≤ B(t)|x − y|.Letting k go to in�nity, yields:
|u(x, t) − u(y, t)| ≤ B(t)|x − y|,and we obtain the �rst estimate.For the seond estimate, we set, for x = (x′, xn), uλ(x, t) = u(x′, xn + λ, t) − λb(t). We have

uλ(x′, xn, 0) =u(x′, xn + λ) − λb0

≥u(x′, xn, 0).Moreover,
uλ

t + G∗
(
x′, xn, t, Duλ, D2uλ

)

=ut − λb′(t) − c(x′, xn, t)|Du| + F ∗
(
Du, D2u

)

=ut + λB0Lce
Lct − c(x′, xn, t)|Du| + F ∗

(
Du, D2u

)

≥ut + λB0Lce
Lct − (c(x′, xn + λ, t) + λLc) |Du| + F ∗

(
Du, D2u

)

≥λB0Lce
Lct − λB0Lce

Lct + ut + G∗
(
x′, xn + λ, t, Du, D2u

)

≥0,where ut, Du, D2u are taken at the point (x′, xn, t). This is written in a formal way and it an bejusti�ed by using a test funtion. So, we obtain that uλ is a supersolution. By the omparison priniple,we dedue uλ ≥ u, and so
u(x′, xn + λ, t) − u(x′, xn, t) ≥ λb(t).what proves the seond estimate.It thus remains to be shown that u is uniformly ontinuous in time. We set δ > 0. For every

(x, t) ∈ R
n × (0, T ) suh that t + δ ≤ T , we set v(x, t) = u(x, t + δ). Then, v is a subsolution of

wt − ωc(δ)B(t + δ) − c(x, t)|Dw| + F
(
Dw, D2w

)
= 0on R

n × (0, T − δ) in the sense of de�nition 4.1 (ii). Indeed, we have
vt − c (x, t + δ) |Dv| + F

(
Dv, D2v

)
= 0,11



and
−c (x, t + δ) |Dv| ≥ −ωc(δ)B(t + δ) − c(x, t)|Dv|,what gives in a formal way:

vt − ωc(δ)B(t + δ) − c(x, t)|Dv| + F
(
Dv, D2v

)
≤ 0.Moreover, u+ωc(δ)

∫ t+δ

0
B(s)ds is solution of the same problem. So ũ = u+supx∈Rn (u(x, δ) − u0(x))

+
+

ωc(δ)
∫ t+δ

0 B(s)ds is a supersolution and v(x, 0) ≤ ũ(x, 0). By Theorem 4.4 and the omparison prini-ple, we then have:
u(x, t + δ) − u(x, t) ≤ sup

x∈Rn

(u(x, δ) − u0(x))
+

+ ωc(δ)

∫ t+δ

0

B(s)ds

≤ωF (δ) + ‖c‖L∞B0δ + ωc(δ)

∫ T

0

B(s)ds.Similarly, v is a supersolution of
wt + ωc(δ)B(t + δ) − c(x, t)|Dw| + F

(
Dw, D2w

)
= 0and ũ = u − supx∈Rn (u(x, δ) − u0(x))

− − ωc(δ)
∫ t+δ

0 B(s)ds is subsolution. So, by the omparisonpriniple, we have
u(x, t) − u(x, t + δ) ≤ωF (δ) + ‖c‖L∞Bδ + ωc(δ)

∫ t+δ

0

B(s)ds

≤ωF (δ) + ‖c‖L∞B0δ + ωc(δ)

∫ T

0

B(s)ds,i.e.
|u(x, t) − u(x, t + δ)| ≤ ωF (δ) + ‖c‖L∞B0δ + ωc(δ)

∫ T

0

B(s)ds,what ahieves the proof of the lemma. 25 The non loal problem: proof of Theorem 3.1For the proof of Theorem 3.1, we will need the three following lemmata:Lemma 5.1 (Estimate on the harateristi funtions)Let u1 ∈ C(Rn) satisfying
∂u1

∂xn
≥ bin the distributions sense for some b > 0 and u2 ∈ L∞lo(Rn) satisfying the same ondition. Then, wehave the following estimate:

∥∥[u2] − [u1]
∥∥

L1unif ≤ 2

b

∥∥u2 − u1
∥∥

L∞
. (19)For the proof of this Lemma, we refer to the proof of Alvarez et al. [2℄ in the ase n = 2, whihadapts without di�ulty to the ase of any dimension.12



Lemma 5.2 (Convolution inequality)For every f ∈ L1unif(Rn) and g ∈ L∞int(Rn), the onvolution produt f ⋆ g is bounded and satis�es
‖f ⋆ g‖L∞(Rn) ≤ ‖f‖L1unif(Rn)‖g‖L∞int(Rn).For the proof, we refer to Alvarez et al. [4℄.Lemma 5.3 (Stability of the solution with respet to the veloity)Let T > 0. We onsider for i = 1, 2 two di�erent equations:

{
ui

t = ci(x, t)|Dui| − F
(
Dui, D2ui

) in R
n × (0, T ),

ui(x, 0) = u0(x).
(20)where ci satisfy the assumption (H0)(ii), u0 satis�es (H0)(iii) and F satis�es the assumptions (HF ).Then, for every t ∈ [0, T ), we have

‖u1(·, t) − u2(·, t)‖L∞(Rn) ≤ ‖c1 − c2‖L∞(Rn×(0,T ))

∫ t

0

B(s)ds,where ui are the solutions of (20) (see Theorem 4.4), B(t) = B0e
Lct with Lc = supi Lci (Lci is theLipshitz onstant of ci).Proof of Lemma 5.3We set K = ‖c1 − c2‖L∞(Rn×(0,T )). We remark that u1 is subsolution of

ut − c2(x, t)|Du| + F
(
Du, D2u

)
− KB(t) = 0.Indeed, we have:

u1
t − c2(x, t)|Du1| + F

(
Du1, D2u1

)
≤c1(x, t)|Du1| − F

(
Du1, D2u1

)
− c2(x, t)|Du1| + F

(
Du1, D2u1

)

≤‖c1 − c2‖L∞(Rn×(0,T ))B(t)

≤KB(t).It is a routine exerise to hek that the di�erential inequality atually holds in the visosity sense.Moreover, u2 + K
∫ t

0
B(s)ds is solution of the same problem. By the omparison priniple (Theorem4.3), we dedue

u1 ≤ u2 + K

∫ t

0

B(s)ds.From what
‖u1(·, t) − u2(·, t)‖L∞(Rn) ≤ ‖c1 − c2‖L∞(Rn×(0,T ))

∫ t

0

B(s)ds.

2We now prove Theorem 3.1.Proof of Theorem 3.1We set ω(δ) = ωF (δ) + ‖c0‖L1B0δ, where ωF is the modulus of ontinuity of (17) and behaves like √
t.13



We de�ne the spae
E =





u ∈ L∞

loc(R
n × [0, T ∗)), s.t.

∣∣∣∣∣∣∣

|Du(x, t)| ≤ 2B0,
∂u

∂xn
(x, t) ≥ b0

2
u is uniformly ontinuous in time and ωu(δ) ≤ 2ω(δ)




where ωu is the modulus of ontinuity in time of u.For u ∈ E, we set c(x, t) = (c0 ⋆ [u(·, t)]) (x). We see that c is bounded, Lipshitz ontinuous inspae (with Lc = |c0|BV as Lipshitz onstant) and uniformly ontinuous in time. Indeed,
‖c‖L∞(Rn×[0,T∗)) ≤ sup

t∈R

‖c0‖L1‖[u(·, t)]‖L∞(Rn)

≤‖c0‖L1(Rn).Moreover, for every t

‖Dc(·, t)‖L∞(Rn) =‖Dc0 ⋆ [u(·, t)‖L∞(Rn)

≤|c0|BV ‖[u(·, t)]‖L∞(Rn)

≤|c0|BV .Finally, for 0 < t, s < T ∗ :
|c(x, t) − c(x, s)| = |(c0 ⋆ [u(·, t)]) (x) − (c0 ⋆ [u(·, s)]) (x)|

= |c0 ⋆ ([u(·, t)] − [u(·, s)]) (x)|
≤‖c0‖L∞int‖[u(·, t)] − [u(·, s)]‖L1unif(Rn)

≤
4‖c0‖L∞int

b0
‖u(·, t) − u(·, s)‖L∞(Rn)

≤
4‖c0‖L∞int

b0
ωu(|t − s|)

≤
8‖c0‖L∞int

b0
ω(|t − s|),so c is uniformly ontinuous in time and ωc(δ) ≤

8‖c0‖L∞int
b0

ω(δ).For u ∈ E, we then de�ne v = Φ(u) as the unique visosity solution (see Theorem 4.4) of
{

vt = (c0 ⋆ [u])|Dv| − F (Dv, D2v) in R
n × (0, T ∗),

v(x, t = 0) = u0(x) in R
n.

(21)We show that Φ : E → E is a ontration. First, we show that Φ is well de�ned. We have
‖Dv(·, t)‖ ≤ B(t) ≤ B0e

LcT∗ ≤ 2B0, by de�nition of T ∗ (see Lemma 4.6). Moreover, ∂v
∂xn

≥ b(t) =

b0 − B0(e
Lct − 1) (see Lemma 4.6), and we want ∂v

∂xn

≥ b0
2 , so it su�es to ensure that

B0(e
Lct − 1) ≤ b0

2

eLct ≤ b0

2B0
+ 114



t ≤
ln
(

b0
2B0

+ 1
)

Lc
,whih is true aording to the hoie of T ∗. It thus remains to be shown that v is uniformly ontinuouswith ωv(δ) ≤ 2ω(δ). Now, by the estimate of Lemma 4.6 on the modulus of ontinuity in time of thesolution, we have:

ωv(δ) ≤ ωF (δ) + ‖c‖L∞B0δ + ωc(δ)

∫ T∗

0

B(s)ds.Sine ‖c‖L∞(Rn×[0,T∗)) ≤ ‖c0‖L1 , it su�es to show that ωc(δ)
∫ T∗

0 B(s)ds ≤ ω(δ), i.e.
8‖c0‖L∞int

b0
ω(δ)

∫ T∗

0

B(s)ds ≤ ω(δ)

∫ T∗

0

B(s)ds ≤ b0

8‖c0‖L∞int
1

L c

(
eLcT∗ − 1

)
≤ b0

8B0‖c0‖L∞int
T ∗ ≤

ln

(
Lcb0

8B0‖c0‖L∞int + 1

)

Lc
,whih is true aording to the hoie of T ∗ and so v ∈ E.It thus remains to be shown that Φ is a ontration. For vi = Φ(ui), aording to the Lemmata 5.3,5.2 and 5.1, we have

‖v2 − v1‖L∞(Rn×(0,T∗)) ≤2B0T
∗‖c0 ⋆ [u2] − c0 ⋆ [u1]‖L∞(Rn×(0,T∗))

≤2B0T
∗‖c0‖L∞int(Rn) sup

t∈(0,T∗)

‖[u2(·, t)] − [u1(·, t)]‖L1unif(Rn)

≤8B0T
∗

b0
‖c0‖L∞int(Rn)‖u2 − u1‖L∞(Rn×(0,T∗))

≤1

2
‖u2 − u1‖L∞(Rn×(0,T∗)).And so Φ is a ontration on E whih is a losed set for the L∞ topology. So, there exists a uniquevisosity solution of (6) in E on (0, T ∗). 2Remark 5.4 To be rigourous, we should onsider the intersetion of E with a ball of enter u0 andwrite the elements of E as u = ũ + u0 with ũ bounded. Then we ould make the same omputations on
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