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LARGE TIME EXISTENCE FOR 1D GREEN-NAGHDI

EQUATIONS

SAMER ISRAWI

Abstract. We consider here the 1D Green-Naghdi equations that are com-
monly used in coastal oceanography to describe the propagation of large ampli-
tude surface waves. We show that the solution of the Green-Naghdi equations
can be constructed by a standard Picard iterative scheme so that there is no
loss of regularity of the solution with respect to the initial condition.

1. Introduction

1.1. Presentation of the problem. The water-waves problem for an ideal liquid
consists of describing the motion of the free surface and the evolution of the velocity
field of a layer of perfect, incompressible, irrotational fluid under the influence of
gravity. This motion is described by the free surface Euler equations that are
known to be well-posed after the works of Nalimov [16], Yasihara [21], Craig [6],
Wu [19, 20] and Lannes [11]. But, because of the complexity of these equations,
they are often replaced for pratical purposes by approximate asymptotic systems.
The most prominent examples are the Green-Naghdi equations (GN) – which is a
widely used model in coastal oceanography ([8, 4, 7] and, for instance, [18, 10])–,
the Shallow-Water equations, and the Boussinesq systems; their range of validity
depends on the physical characteristics of the flow under consideration. In other
words, they depend on certain assumptions made on the dimensionless parameters
ε, µ defined as:

ε =
a

h0
, µ =

h2
0

λ2
;

where a is the order of amplitude of the waves and the bottom variations; λ is
the wave-length of the waves and the bottom variations; h0 is the reference depth.
The parameter ε is often called nonlinearity parameter; while µ is the shallowness
parameter. In the shallow-water scaling (µ ≪ 1), and without smallness assumption
on ε one can derive the so-called Green-Naghdi equations (see [8, 13] for a derivation
and [2] for a rigorous justification) also called Serre or fully nonlinear Boussinesq
equations [15].

In nondimensionalized variables, denoting by ζ(t, x) and u(t, x) the parameteriza-
tion of the surface and the vertically averaged horizontal component of the velocity
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at time t, and by b(x) the parameterization of the bottom, the equations read

(1)















∂tζ + ∇ · (hu) = 0,

(h + µhT [h, εb])∂tu + h∇ζ + εh(u · ∇)u

+ µε
{

− 1

3
∇[(h3((u · ∇)(∇ · u) − (∇ · u)2)] + hℜ[h, εb]u

}

= 0,

where h = 1 + ε(ζ − b) and

T [h, εb]W = − 1

3h
∇(h3∇ · W ) +

ε

2h
[∇(h2∇b · W ) − h2∇b∇ · W ] + ε2∇b∇b · W,

while the purely topographical term ℜ[h, εb]u is defined as:

ℜ[h, εb]u =
ε

2h
[∇(h2(u · ∇)2b) − h2((u · ∇)(∇ · u) − (∇ · u)2)∇b]

+ε2((u · ∇)2b)∇b.

This model is often used in coastal oceanography because it takes into account the
dispersive effects neglected by the shallow-water and it is more nonlinear than the
Boussinesq equations. A recent rigorous justification of the GN model was given by
Li [14] in 1D and for flat bottoms, and by B. Alvarez-Samaniego and D. Lannes [2]
in 2008 in the general case. This latter reference relies on well-posedness results for
these equations given in [3] and based on general well-posedness results for evolution
equations using a Nash-Moser scheme. The result of [3] covers both the case of 1D
and 2D surfaces, and allows for non flat bottoms. The reason why a Nash-Moser
scheme is used there is because the estimates on the linearized equations exhibit
losses of derivatives. However, in the 1D case with flat bottoms, such losses do
not occur and it is possible to construct a solution with a standard Picard iterative
scheme as in [14]. Our goal here is to show that it is also possible to use such a
simple scheme in the 1D case with non flat bottoms, thanks to a careful analysis
of the linearized equations.

1.2. Organization of the paper. We start by giving some preliminary results in
Section 2.1; the main theorem is then stated in Section 2.2 and proved in Section
2.3. Finally, in Appendix A, we give the existence and uniqueness of a solution to
the linear Cauchy problem associated to the Green-Naghdi equations. The proof
of the energy conservation, stated in the main theorem, is given in Appendix B.

1.3. Notation. We denote by C(λ1, λ2, ...) a constant depending on the parameters
λ1, λ2, ... and whose dependence on the λj is always assumed to be nondecreasing.
The notation a . b means that a ≤ Cb, for some nonegative constant C whose
exact expression is of no importance (in particular, it is independent of the small
parameters involved).
Let p be any constant with 1 ≤ p < ∞ and denote Lp = Lp(R) the space of all
Lebesgue-measurable functions f with the standard norm

|f |Lp =
(

∫

R

|f(x)|dx
)1/p

< ∞.

When p = 2, we denote the norm | · |L2 simply by | · |2. The inner product of any
functions f1 and f2 in the Hilbert space L2(R) is denoted by

(f1, f2) =

∫

R

f1(x)f2(x)dx.
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The space L∞ = L∞(R) consists of all essentially bounded, Lebesgue-measurable
functions f with the norm

|f |L∞ = ess sup |f(x)| < ∞.

We denote by W 1,∞ = W 1,∞(R) = {f ∈ L∞, ∂xf ∈ L∞} endowed with its canoni-
cal norm.
For any real constant s, Hs = Hs(R) denotes the Sobolev space of all tempered dis-
tributions f with the norm |f |Hs = |Λsf |2 < ∞, where Λ is the pseudo-differential
operator Λ = (1 − ∂2

x)1/2.
For any functions u = u(x, t) and v(x, t) defined on R × [0, T ) with T > 0, we
denote the inner product, the Lp-norm and especially the L2-norm, as well as the
Sobolev norm, with respect to the spatial variable x, by (u, v) = (u(·, t), v(·, t)),
|u|Lp = |u(·, t)|Lp , |u|L2 = |u(·, t)|L2 , and |u|Hs = |u(·, t)|Hs , respectively.
Let Ck(R) denote the space of k-times continuously differentiable functions and
C∞

0 (R) denote the space of infinitely differentiable functions, with compact sup-
port in R; we also denote by C∞

b (R) the space of infinitely differentiable functions
that are bounded together with all their derivatives.
Let f be a function of the independent variables x1, x2,...,xm; its partial derivative
with respect to xk is denoted by ∂xk

f = fxk
for 1 ≤ k ≤ m.

For any closed operator T defined on a Banach space X of functions, the commu-
tator [T, f ] is defined by [T, f ]g = T (fg)− fT (g) with f , g and fg belonging to the
domain of T .

2. Well-posedness of the Green-Naghdi equations in 1D

For one dimensional surfaces, the Green-Naghdi equations (1) can be simplified,
after some computations, into

(2)

{

∂tζ + ∂x(hu) = 0,

(h + µhT [h, εb])[∂tu + εu∂xu] + h∂xζ + εµhQ[h, εb](u) = 0

where h = 1 + ε(ζ − b) and

T [h, εb]w = − 1

3h
∂x(h3wx) +

ε

2h
[∂x(h2bxw) − h2bxwx] + ε2b2

xw,

Q[h, εb](w) =
2

3h
∂x(h3w2

x) + εhw2
xbx + ε

1

2h
∂x(h2w2bxx) + ε2w2bxxbx.

Remark 1. The interest of the formulation (2) of the Green-Naghdi equation is
that all the third order derivatives of u have been factorized by (h + µhT [h, εb]).
Indeed, Q[h, εb] is a second order differential operator. This was used in [14] in the
case of flat bottoms (b = 0).

2.1. Preliminary results. For the sake of simplicity, we write

T = h + µhT [h, εb].

We always assume that the nonzero depth condition

(3) ∃ h0 > 0, inf
x∈R

h ≥ h0, h = 1 + ε(ζ − b)

is valid initially, which is a necessary condition for the GN system (2) to be phys-
ically valid. We shall demonstrate that the operator T plays an important role in
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the energy estimate and the local well-posedness of the GN system (2). Therefore,
we give here some of its properties.

The following lemma gives an important invertibility result on T.

Lemma 1. Let b ∈ C∞
b (R) and ζ ∈ W 1,∞(R) be such that (3) is satisfied. Then

the operator

T : H2(R) −→ L2(R)

is well defined, one-to-one and onto.

Remark 2. Here and throughout the rest of this paper, and for the sake of sim-
plicity, we do not try to give some optimal regularity assumption on the bottom
parameterization b. This could easily be done, but is of no interest for our present
purpose. Consequently, we ommit to write the dependance on b of the different
quantities that appear in the proof.

Proof. In order to prove the invertibility of T, let us first remark that the quantity
|v|2∗ defined as

|v|2∗ = |v|22 + µ|∂xv|22,
is equivalent to the H1(R)-norm but not uniformly with respect to µ ∈ (0, 1). We
define by H1

∗ (R) the space H1(R) endowed with this norm. The bilinear form:

a(u, v) = (hu, v) + µ
(

h
( h√

3
ux −

√
3

2
εbxu

)

,
h√
3
vx −

√
3

2
εbxv

)

+
µε2

4
(hbxu, bxv).

is obviously continous on H1
∗ (R) × H1

∗ (R). Remarking that

a(v, v) = (Tv, v) = (hv, v)

+µ
(

h
( h√

3
vx −

√
3

2
εbxv

)

,
h√
3
vx −

√
3

2
εbxv

)

+
µε2

4
(hbxv, bxv),

we have

|v|2∗ ≤ |v|22 +
3µ

h2
0

| h√
3
vx|22

≤ |v|22 +
6µ

h2
0

(

| h√
3
vx −

√
3

2
εbxv|22 +

3ε2

4
|bxv|22

)

.

One deduces that

max
{

1,
18

h2
0

}(

|v|22 + µ| h√
3
vx −

√
3

2
εbxv|22 +

µε2

4
|bxv|22

)

≥ |v|2∗.

Since from (3) we also get

a(v, v) ≥ h0|v|22 + µh0

(

| h√
3
vx −

√
3

2
εbxv|22 +

µε2

4
|bxv|22

)

,

it is easy to deduce that

a(v, v) ≥ h0

max
{

1, 18
h2
0

} |v|2∗.(4)

In particular, a is coercive on H1
∗ . Using Lax-Milgram lemma, for all f ∈ L2(R),

there exists unique u ∈ H1
∗ (R) such that, for all v ∈ H1

∗ (R)

a(u, v) = (f, v);
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equivalently, there is a unique variational solution to the equation

(5) Tu = f.

We then get from the definition of T that

∂2
xu =

hu + εµ
2 ∂x(h2bx)u + ε2µhb2

xu − µ
3 ∂xh3∂xu − f

µh3

3

;

since u ∈ H1(R) and f ∈ L2(R), we get ∂2
xu ∈ L2(R) and thus u ∈ H2(R). �

The following lemma then gives some properties of the inverse operator T
−1.

Lemma 2. Let b ∈ C∞
b (R), t0 > 1/2 and ζ ∈ Ht0+1(R) be such that (3) is satis-

fied. Then:

(i) ∀0 ≤ s ≤ t0 + 1, |T−1f |Hs +
√

µ|∂xT−1f |Hs ≤ C( 1
h0

, |h − 1|Ht0+1)|f |Hs ;

(ii) ∀0 ≤ s ≤ t0 + 1,
√

µ|T−1∂xg|Hs ≤ C( 1
h0

, |h − 1|Ht0+1)|g|Hs ;

(iii) If s ≥ t0 + 1 and ζ ∈ Hs(R) then:

‖ T
−1 ‖Hs(R)→Hs(R) +

√
µ ‖ T

−1∂x ‖Hs(R)→Hs(R)≤ cs,

where cs is a constant depending on 1
h0

, |h−1|Hs and independent of (µ,ε) ∈ (0, 1)2.

Proof. Step 1. We prove that if u ∈ H1
∗ (R) solves

Tu = f +
√

µ∂xg

for f, g ∈ L2(R), then one has

|u|H1
∗
≤ C

( 1

h0

)(

|f |2 + |g|2
)

.

Indeed, multiplying the equation by u and integrating by parts, one gets, with the
notations used in the proof of lemma 1

a(u, u) ≤ (f, u) − (g,
√

µ∂xu).

We thus get from the proof of Lemma 1 and Cauchy-Schwarz inequality that

h0

max{1, 18
h2
0

}|u|
2
H1

∗
≤ |f |2|u|2 + |g|2|u|H1

∗
,

and the result follows easily.
Step 2. We prove here that |T−1f |Hs +

√
µ|∂xT−1f |Hs ≤ C( 1

h0
, |h−1|Ht0+1)|f |Hs .

Indeed, if f ∈ Hs and u = T−1f then Tu = f . Applying Λs to this identity, we get

T(Λsu) = Λsf + [T, Λs]u

= f̃ +
√

µ∂xg̃,

with,

f̃ = Λsf − [Λs, h]u +
εµ

2
[Λs, h2bx]ux − ε2µ[Λs, h2bx]u,

and

g̃ =

√
µ

3
[Λs, h3]ux − ε

√
µ

2
[Λs, h2bx]u.
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Now, one can deduce from the commutator estimate (see e.g Lemma 4.6 of [3])

(6) |[Λs, F ]G|2 . |∇F |Ht0 |G|Hs−1

that

|f̃ |2 + |g̃|2 ≤ |f |Hs + C
( 1

h0
, |h − 1|Ht0+1

)(

|u|Hs−1 +
√

µ|∂xu|Hs−1

)

.

One can use Step 1 and a continuous induction on s to show that the inequality (i)
holds for 0 ≤ s ≤ t0 + 1.
Step 3. We prove here that

√
µ|T−1∂xg|Hs ≤ C( 1

h0
, |h − 1|Ht0+1)|g|Hs . Indeed, if

g ∈ Hs and u =
√

µT
−1∂xg then Tu =

√
µ∂xg and thus

T(Λsu) = f̃ +
√

µ∂xg̃,

with,

f̃ = −[Λs, h]u +
εµ

2
[Λs, h2bx]ux − ε2µ[Λs, h2bx]u,

and

g̃ = Λsg +

√
µ

3
[Λs, h3]ux − ε

√
µ

2
[Λs, h2bx]u.

Proceeding now as for the Step 2, one can deduce (ii).
Step 4. If s ≥ t0 + 1 then one can prove (iii) proceeding as in Step 2 and 3 above,
but replacing the commutator estimate (6) by the following one

(7) |[Λs, F ]G|2 . |∇F |Hs−1 |G|Hs−1 .

�

2.2. Linear analysis. In order to rewrite the GN equations (2) in a condensed
form, let us decompose Q[h, εb](u) as

εµhQ[h, εb](u) = Q1[U ]ux + q2(U)

where U = (ζ, u)T and

Q1[U ]f =
2

3
εµ∂x(h3uxf) + ε2µh2bxuxf + ε2µh2bxxuf

(8)

q2(U) = ε3µhbxxbxu2 +
1

2
ε2µ∂x(h2bxx)u2.

The Green-Naghdi equations (2) can be written after applying T−1 to both sides
of the second equation in (2) as

(9) ∂tU + A[U ]∂xU + B(U) = 0,

with U = (ζ, u)T and where

(10) A[U ] =





εu h

T−1(h·) εu + T−1Q1[U ]
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and

(11) B(U) =





εbxu

T−1q2(U)



 .

This subsection is devoted to the proof of energy estimates for the following
initial value problem around some reference state U = (ζ, u)T :

(12)

{

∂tU + A[U ]∂xU + B(U) = 0;
U|t=0

= U0.

We define now the Xs spaces, which are the energy spaces for this problem.

Definition 1. For all s ≥ 0 and T > 0, we denote by Xs the vector space Hs(R)×
Hs+1(R) endowed with the norm

∀ U = (ζ, u) ∈ Xs, |U |2Xs := |ζ|2Hs + |u|2Hs + µ|∂xu|2Hs ,

while Xs
T stands for C([0, T

ε ]; Xs) endowed with its canonical norm.

First remark that a symmetrizer for A[U ] is given by

(13) S =





1 0

0 T



 ,

with h = 1 + ε(ζ − b) and T = h + µhT [h, εb]. A natural energy for the IVP (12) is
given by

(14) Es(U)2 = (ΛsU, SΛsU).

The link between Es(U) and the Xs-norm is investigated in the following Lemma.

Lemma 3. Let b ∈ C∞
b (R), s ≥ 0 and ζ ∈ W 1,∞(R). Under the condition (3),

Es(U) is uniformly equivalent to the | · |Xs-norm with respect to (µ, ε) ∈ (0, 1)2:

Es(U) ≤ C
(

|h|L∞ , |hx|L∞

)

|U |Xs ,

and

|U |Xs ≤ C
( 1

h0

)

Es(U).

Proof. Notice first that

Es(U)2 = |Λsζ|22 + (Λsu, TΛsu),

one gets the first estimate using the explicit expression of T, integration by parts
and Cauchy-Schwarz inequality.
The other inequality can be proved by using that infx∈R h ≥ h0 > 0 and proceeding
as in the proof of Lemma 1. �

We prove now the energy estimates in the following proposition:

Proposition 1. Let b ∈ C∞
b (R), t0 > 1/2, s ≥ t0 + 1. Let also U = (ζ, u)T

∈ Xs
T be such that ∂tU ∈ Xs−1

T and satisfying the condition (3) on [0, T
ε ]. Then for
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all U0 ∈ Xs there exists a unique solution U = (ζ, u)T ∈ Xs
T to (12) and for all

0 ≤ t ≤ T
ε

Es(U(t)) ≤ eελT tEs(U0) + ε

∫ t

0

eελT (t−t′)C(Es(U)(t′))dt′.

For some λT = λT (sup0≤t≤T/ε Es(U(t)), sup0≤t≤T/ε |∂th(t)|L∞) .

Proof. Existence and uniqueness of a solution to the IVP (12) is achieved in ap-
pendix A and we thus focus our attention on the proof of the energy estimate. For
any λ ∈ R, we compute

eελt∂t(e
−ελtEs(U)2) = −ελEs(U)2 + ∂t(E

s(U)2).

Since

Es(U)2 = (ΛsU, SΛsU),

we have

(15) ∂t(E
s(U)2) = 2(Λsζ, Λsζt) + 2(Λsu, TΛsut) + (Λsu, [∂t, T]Λsu).

One gets using the equations (12) and integrating by parts,

1

2
eελt∂t(e

−ελtEs(U)2) = −ελ

2
Es(U)2 − (SA[U ]Λs∂xU, ΛsU)

−
([

Λs, A[U ]
]

∂xU, SΛsU
)

− (ΛsB(U), SΛsU)

+
1

2
(Λsu, [∂t, T]Λsu).(16)

We now turn to bound from above the different components of the r.h.s of (16).
• Estimate of (SA[U ]Λs∂xU, ΛsU). Remarking that

SA[U ] =





εu h

h T(εu·) + Q1[U ]



 ,

we get

(SA[U ]Λs∂xU, ΛsU) = (εuΛsζx, Λsζ) + (hΛsux, Λsζ)

+(hΛsζx, Λsu) +
(

(T(εu·) + Q1[U ])Λsux, Λsu
)

=: A1 + A2 + A3 + A4.

We now focus to control (Aj)1≤j≤4.
− Control of A1. Integrating by parts, one obtains

A1 = (εuΛsζ, Λsζx) = −1

2
(εuxΛsζ, Λsζ)

one can conclude by Cauchy-Schwarz inequality that

|A1| ≤ εC(|ux|L∞)Es(U)2.

− Control of A2 + A3. First remark that

|A2 + A3| = |(hxΛsu, Λsζ)| ≤ |hx|L∞Es(U)2;
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we get,

|A2 + A3| ≤ εC(|hx|L∞)Es(U)2.

− Control of A4. One computes,

A4 = ε
(

T(uΛsux), Λsu
)

+ (Q1[U ]Λsux, Λsu)

=: A41 + A42.

Note that

A41 = ε(h uΛsux, Λsu) +
εµ

3
(h3 (uΛsux)x, Λsux)

−ε2µ

2
(h2 bx(uΛsux)x, Λsu) − ε2µ

2
(h2bxuΛsux, Λsux)

+ε3µ(h ub2
xΛsux, Λsu);

since

(h3 (uΛsux)x, Λsux) =
1

2

(

− (h3
x uΛsux, Λsux) + (h3 uxΛsux, Λsux)

)

,

by using successively integration by parts and the Cauchy-Schwarz inequality, one
obtains directly:

|A41| ≤ εC(|u|W 1,∞ , |ζ|W 1,∞)Es(U)2.

For A42, remark that

|A42| = |(Q1[U ]Λsux, Λsu)|

=
∣

∣ − 2

3
εµ(h3uxΛsux, Λsux) + ε2µ(h2 uxbxΛsux, Λsu)

+ε2µ(h2 ubxxΛsux, Λsu)
∣

∣

therefore

|A42| ≤ εC(|u|W 1,∞ , |ζ|W 1,∞)Es(U)2.

This shows that

|A4| ≤ εC(|u|W 1,∞ , |ζ|W 1,∞)Es(U)2.

• Estimate of
([

Λs, A[U ]
]

∂xU, SΛsU
)

. Remark first that
([

Λs, A[U ]
]

∂xU, SΛsU
)

= ([Λs, εu]ζx, Λsζ) + ([Λs, h]ux, Λsζ)

+([Λs, T−1 h]ζx, TΛsu) + ([Λs, εu]ux, TΛsu)

+
([

Λs, T−1Q1[U ]
]

ux, TΛsu
)

=: B1 + B2 + B3 + B4 + B5.

− Control of B1 + B2 = ([Λs, εu]ζx, Λsζ) + ([Λs, h]ux, Λsζ). Since s ≥ t0 + 1, we
can use the commutator estimate (7) to get

|B1 + B2| ≤ εC(Es(U))Es(U)2.
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− Control of B4 = ([Λs, εu]ux, TΛsu). By using the explicit expression of T we get

B4 = ([Λs, εu]ux, hΛsu) +
µ

3
(∂x[Λs, εu]ux, h3 Λsux)

−εµ

2
([Λs, εu]ux, h2 bxΛsux) +

εµ

2
([Λs, εu]ux, ∂x(h2 bxΛsu))

+ε2µ([Λs, εu]ux, h b2
xΛsu),

using the Cauchy-Schwarz inequality and the fact that

∂x[Λs, f ]g = [Λs, fx]g + [Λs, f ]gx

one obtains directly:

|B4| ≤ εC(Es(U))Es(U)2.

− Control of B3 = ([Λs, T−1 h]ζx, TΛsu). Remark first that

T[Λs, T−1]hζx = T[Λs, T−1 h]ζx − [Λs, h]ζx;

morever, since [Λs, T−1] = −T
−1[Λs, T]T−1, one gets

T[Λs, T−1 h]ζx = −[Λs, T]T−1hζx + [Λs, h]ζx,

and one can check by using the explicit expression of T that

T[Λs, T−1 h]ζx = −[Λs, h]T−1hζx +
µ

3
∂x{[Λs, h3]∂x(T−1hζx)}

−εµ

2
∂x[Λs, h2bx]T−1hζx +

εµ

2
[Λs, h2bx]∂xT

−1hζx

−ε2µ[Λs, hb2
x]T−1hζx + [Λs, h]ζx.

One deduces directly from Lemma 2, an integration by parts, and Cauchy-Schwarz
inequality that

|B3| ≤ C
( 1

h0
, |h − 1|Hs

)

{(

|hx|Hs−1 +
εµ

2
|h2bx|Hs + ε2µ|hb2

x|Hs

)

|hζx|Hs−1

+
(

√
µ

3
|h3

x|Hs−1 +
ε
√

µ

2
|h2bx|Hs

)

|hζx|Hs−1 + |hx|Hs−1 |ζx|Hs−1

)}

|Λsu|H1
∗
.

Finally, since

|hζx|Hs−1 ≤ C(Es(U))Es(U) and |hb2
x|Hs + |h2bx|Hs ≤ C(Es(U)),

we deduce

|B3| ≤ εC(Es(U))Es(U)2.

− Control of B5 =
([

Λs, T−1Q1[U ]
]

ux, TΛsu
)

. Let us first write

T
[

Λs, T−1Q1[U ]
]

ux = −[Λs, T]T−1Q1[U ]ux +
[

Λs, Q1[U ]
]

ux
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so, that

T
[

Λs, T−1Q1[U ]
]

ux = −[Λs, h]T−1Q1[U ]ux +
µ

3
∂x{[Λs, h3]∂x(T−1Q1[U ]ux)}

−εµ

2
∂x{[Λs, h2bx]T−1Q1[U ]ux} +

εµ

2
[Λs, h2bx]∂x(T−1Q1[U ]ux)

−ε2µ[Λs, hb2
x]T−1Q1[U ]ux + [Λs, Q1[U ]]ux.

To control the term
([

Λs, Q1[U ]
]

ux, Λsu
)

we use the explicit expression of Q1[U ]:

Q1[U ]f =
2

3
εµ∂(h3uxf) + ε2µh2bxuxf + ε2µh2bxxuf,

and the fact that

∂x[Λs, f ]g = [Λs, ∂x(f ·)]g.

Similarly to control the term
(

∂x{[Λs, h3]∂x(T−1Q1[U ]ux)}, Λsu
)

we use the explicit
expression of Q1[U ], the commutator estimate (7) and Lemma 2. Indeed,

(

∂x{[Λs, h3]∂x(T−1Q1[U ]ux)}, Λsu
)

= −2

3
εµ

(

[Λs, h3]∂x(T−1∂x(h3uxux)), Λsux

)

−ε2µ
(

[Λs, h3]∂x(T−1(h2bxuxux)), Λsux

)

−ε2µ
(

[Λs, h3]∂x(T−1(h2bxxuux)), Λsux

)

.

and thus, after remarking that

|∂x(T−1∂x(h3uxux))|Hs−1 ≤ |T−1∂x(h3uxux)|Hs

≤ ‖ T
−1∂x ‖Hs(R)→Hs(R) |h3uxux|Hs .

we can proceed as for the control of B3 to get

|B5| ≤ εC(Es(U))Es(U)2.

• Estimate of (ΛsB(U), SΛsU). Note first that

B(U) =





εbxu

T
−1q2(U)





where, q2(·) as in (8), so that

(ΛsB(U), SΛsU) = (Λs(εbxu), Λsζ) + (Λs(T−1q2(U)), TΛsu)

= (Λs(εbxu), Λsζ) −
(

[Λs, T]T−1q2(U), Λsu
)

+
(

Λsq2(U), Λsu
)

.

Using again here the explicit expressions of T, q2(U) and Lemma 2, we get

(ΛsB(U), SΛsU) ≤ εC(Es(U))Es(U).
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• Estimate of (Λsu, [∂t, T]Λsu). We have that

(Λsu, [∂t, T]Λsu) = (Λsu, ∂thΛsu) +
µ

3
(Λsux, ∂th

3Λsux)

−εµ

2
(Λsu, ∂th

2bxΛsux) − εµ

2
(Λsux, ∂th

2bxΛsu)

+ε2µ(Λsu, ∂thb2
xΛsu).

Controlling these terms by εC(Es(U), |∂th|L∞)Es(U)2 follows directly from a Cauchy-
Schwarz inequality and an integration by parts.

Gathering the informations provided by the above estimates and using the fact
that Hs(R) ⊂ W 1,∞, we get

eελt∂t(e
−ελtEs(U)2) ≤ ε

(

C(Es(U), |∂th|L∞) − λ
)

Es(U)2 + εC(Es(U))Es(U).

Taking λ = λT large enough (how large depending on supt∈[0, T
ε
] C(Es(U), |∂th|L∞)

to have the first term of the right hand side negative for all t ∈ [0, T
ε ], one deduces

∀t ∈ [0,
T

ε
], eελt∂t(e

−ελtEs(U)2) ≤ εC(Es(U))Es(U).

Integrating this differential inequality yields therefore

∀t ∈ [0,
T

ε
], Es(U) ≤ eελT tEs(U0) + ε

∫ t

0

eελT (t−t′)C(Es(U)(t′))dt′.

�

2.3. Main result. In this subsection we prove the main result of this paper, which
shows well-posedness of the Green-Naghdi equations over large times.

Theorem 1. Let b ∈ C∞
b (R), t0 > 1/2, s ≥ t0 + 1. Let also the initial condition

U0 = (ζ0, u0)
T ∈ Xs, and satisfy (3). Then there exists a maximal Tmax > 0,

uniformly bounded from below with respect to ε, µ ∈ (0, 1), such that the Green-
Naghdi equations (2) admit a unique solution U = (ζ, u)T ∈ Xs

Tmax
with the initial

condition (ζ0, u0)
T and preserving the nonvanishing depth condition (3) for any

t ∈ [0, Tmax

ε ). In particular if Tmax < ∞ one has

|U(t, ·)|Xs −→ ∞ as t −→ Tmax,

or

inf
R

h(t, ·) = inf
R

1 + ε(ζ(t, ·) − b(·)) −→ 0 as t −→ Tmax.

Morever, the following conservation of energy property holds

∂t

(

|ζ|22 + (hu, u) + µ(hT u, u)
)

= 0,

where T = T [h, εb].

Remark 3. For 2D surface waves, non flat bottoms, B. A. Samaniego and D.
Lannes [3] proved a well-posedness result to the Green-Naghdi using a Nash-Moser
scheme. Our result only use a standard Picard iterative and there is therefore no
loss of regularity of the solution with respect to the initial condition. In the one-
dimensional case and for flat bottoms, our result coincides with the one proved by
Li in [14].
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Remark 4. Our approach does not admit a straightforward generalization to the
2D case. The main reason is that the natural energy norm Xs is then given by

|U |2Xs = |ζ|2Hs + |u|2Hs + µ|∇ · u|2Hs ,

which does not control the H1(R2) norm of u (since u takes its values in R
2, the

information on the rotational of u is missing).

Remark 5. No smallness assumption on ε nor µ is required in the theorem. The
fact that Tmax is uniformly bounded from below with respect to these parameters
allows us to say that if some smallness assumption is made on ε, then the existence
time becomes larger, namely of order O(1/ε). This is consistent with the existence
time obtained for the (simpler) physical models derived under some smallness as-
sumption on ε, like the Boussinesq models. In fact, such models can be derived
from the Green-Naghdi equations [13]. The present theorem also has some direct
implication for the justification of variable-bottom Camassa-Holm equations [9].

Proof. We want to construct a sequence of approximate solution (Un = (ζn, un))n≥0

by the induction relation

(17) U0 = U0, and ∀n ∈ N,

{

∂tU
n+1 + A[Un]∂xUn+1 + B(Un) = 0;

Un+1
|t=0

= U0.

By Proposition 1, we know that there is a unique solution Un+1 ∈ C([0,∞); Xs)
to (17) if Un ∈ C([0,∞); Xs) and Un satisfies (3) for all times. Let R > 0 be such
that Es(U0) ≤ R/2, it follows from Proposition 1 that Un+1 satisfies the following
inequality

Es(Un+1(t)) ≤ eελT tEs(U0) + ε

∫ t

0

eελT (t−t′)C(Es(Un(t′))dt′,

we suppose now that
sup

t∈[0, T
ε

]

Es(Un(t)) ≤ R,

therefore

Es(Un+1(t)) ≤ R/2 + (eελT t − 1)(R/2 +
C(R)

λT
).

Hence, there is T > 0 small enough such that

sup
t∈[0, T

ε
]

Es(Un+1(t)) ≤ R.

Using now the link between Es(U) and |U |Xs given by Lemma 3 we get

sup
t∈[0, T

ε
]

|Un+1(t)|Xs ≤ C
( 1

h0

)

R.

We also know from the equations that

∂tζ
n+1 = −hnun+1

x − εζn
x un+1 + εbxun+1.

Hence, one gets

(18) |∂th
n+1|L∞ = ε|∂tζ

n+1|L∞ ≤ εC
( 1

h0

)

R.

Since moreover

hn+1 = hn+1
t=0 +

∫ t

0

∂tζ
n+1,
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we can deduce from (18) and the fact that hn+1
t=0 = 1 + ε(ζ0 − b) ≥ h0 that it is

possible to choose T small enough for Un+1 to satisfy (3) on [0, T
ε ], with h0 replaced

by h0/2.
Finally, we deduce that the Cauchy problem

{

∂tU
n+1 + A[Un]∂xUn+1 + B(Un) = 0;

Un+1
|t=0

= U0

has a unique solution Un+1 satisfing (3) and the inequality

Es(Un+1) ≤ eελT tEs(U0) + ε

∫ t

0

eελT (t−t′)C(Es(Un)(t′))dt′,

when 0 ≤ t ≤ T
ε and λT depending only on supt∈[0, T

ε
] E

s(Un). Thanks to this

energy estimate, one can conclude classically (see e.g. [1]) to the existence of

Tmax = T (Es(U0)) > 0,

and of a unique solution U ∈ Xs
Tmax

to (2) preserving the inequality (3) for any

t ∈ [0, Tmax

ε ] as a limit of the iterative scheme

U0 = U0, and ∀n ∈ N,

{

∂tU
n+1 + A[Un]∂xUn+1 + B(Un) = 0;

Un+1
|t=0

= U0.

The fact that Tmax is bounded from below by some T > 0 independent of ε, µ ∈
(0, 1) follows from the analysis above, while the behavior of the solution as t → Tmax

if Tmax < ∞ follows from standard continuation arguments.
Though the conservation of the energy can be found in some references (e.g. [5]),
we reproduce it in Appendix B for the sake of completeness.

�

Appendix A. Existence of solutions for the linearized equations

In this section we examine existence, uniqueness, and regularity for solutions to
the following system of equations:

(19)

{

∂tU + A[U ]∂xU = f ;
U|t=0

= U0,

where U = (ζ, u)T ∈ Xs
T is such that ∂tU ∈ Xs−1

T and satisfy the condition (3) on

[0, T
ε ]. We begin the proof by the following lemma (see for instance [17]):

Lemma 4. Let ϕ ∈ C∞
0 (R), such that ϕ(r) = 1 for |r| ≤ 1. Let also

Jδ = ϕ(δ|D|), δ > 0.

Then:
(i) ∀s, s′ ∈ R, Jδ: Hs(R) 7−→ Hs′

(R) is a bounded linear operator.
(ii) Jδ commutes with Λs and is self-adjoint operator.
(iii) ∀f ∈ C1(R) ∩ L∞(R), v ∈ L2(R) there exists C independent of δ such that

|[f, Jδ]v|H1 ≤ C|f |C1 |v|L2 .

(iv) ∀f ∈ Hs(R), s > 1
2 , Jδf ∈ L∞(R) with

|Jδf |L∞ ≤ C|f |L∞

where C is a constant independent of δ.
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Our strategy will be to obtain a solution to (19) as a limit of solutions Uδ to

(20)

{

∂tUδ + JδA[U ]Jδ∂xUδ = f ;
Uδ|t=0

= U0.

For any δ > 0, Aδ = JδA[U ]Jδ is a bounded linear operator on each Xs, and F δ =
Aδ∂x+B(U) ∈ C1(Xs) so by Cauchy-Lipschitz the ODE (20) has a unique solution,
Uδ ∈ C([0, T/ε], Xs). Our task will be to obtain estimates on Uδ, independent of
δ ∈ (0, 1) and to show that the solution Uδ has a limit as δ ց 0 solving (19). To
do this, we remark that

1

2
∂tE

s(Uδ)
2 = −(SA[U ]Λs∂xJδUδ, Λ

sJδUδ) −
([

Λs, A[U ]
]

∂xJδUδ, SΛsJδUδ

)

+(Λsf, SΛsUδ) +
1

2
(Λsuδ, [∂t, T]Λsuδ)

+
([

S, Jδ
]

ΛsUδ, A[U ]Λs∂xJδUδ

)

+
([

S, Jδ
]

ΛsUδ,
[

Λs, A[U ]
]

∂xJδUδ

)

.(21)

Note that we do not give any details for the control of the components of the r.h.s
(21) other than the last two terms because the others can be handled exactly as in
Proposition 1. To estimate the last two terms of the r.h.s (21), we have that

([

S, Jδ
]

ΛsUδ, A[U ]Λs∂xJδUδ

)

=
([

T, Jδ
]

Λsuδ, T
−1(hΛs∂xJδuδ)

)

+
([

T, Jδ
]

Λsuδ, εuΛs∂xJδuδ

)

+
([

T, Jδ
]

Λsuδ, T
−1Q1[U ]Λs∂xJδuδ

)

.

One can check by using the explicit expression of T that
[

T, Jδ
]

=
[

h, Jδ
]

− µ

3
∂x

[

h3, Jδ
]

∂x − εµ

2

[

h2bx, Jδ
]

∂x

+
εµ

2
∂x

[

h2bx, Jδ
]

+ ε2µ
[

hb2
x, Jδ

]

.

One deduces directly from Lemma 4, an integration by parts, the Cauchy-Schwarz
inequality and the explicit expression of Q1[U ] that

([

S, Jδ
]

ΛsUδ, A[U ]Λs∂xJδUδ

)

≤ CEs(Uδ)
2,

similarly, one can conclude
([

S, Jδ
]

ΛsUδ,
[

Λs, A[U ]
]

∂xJδUδ

)

≤ CEs(Uδ)
2,

where C is a constant independent of δ. By the Proposition 1, we have

−(SA[U ]Λs∂xJδUδ, Λ
sJδUδ) −

([

Λs, A[U ]
]

∂xJδUδ, SΛsJδUδ

)

+(Λsf, SΛsUδ) +
1

2
(Λsuδ, [∂t, T]Λsuδ)

≤ CEs(Uδ)
2 + CEs(f)2.

Consequently, we obtain an estimate of the form

(22)
d

dt
Es(Uδ)

2 ≤ CEs(Uδ)
2 + CEs(f)2.
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Thus Gronwall’s inequality yields an estimate

(23) Es(Uδ)
2 ≤ C(t)

[

Es(U0)
2 + sup

[0,t]

Es(f)2
]

,

independent of δ ∈ (0, 1). Thanks to this energy estimate, one can conclude clas-
sically (see e.g. [17]) to the existence of a unique solution U ∈ C([0, T ], Xs) to
(19).

Appendix B. Conservation of the energy

In order to prove that

∂t

(

|ζ|22 + (hu, u) + µ(hT u, u)
)

= 0,

we multiply the first equation of (2) by ζ and the second by u, integrateon R, and
sum both equations to find

1

2
∂t|ζ|22+(∂x(hu), ζ)+(∂tu, hu)+µ(hT ∂tu, u)+(∂xζ, hu)+ε(u∂xu, hu)+µε(Qu, u) = 0.

Therefore

1

2
∂t|ζ|22 +

1

2
∂t(hu, u) − 1

2
(∂th, u2) + ε(u∂xu, hu) + µ(hT ∂tu, u) + µε(Qu, u) = 0,

where the term Qu is defined as:

Qu = −1

3
∂x[(h3(u∂2

xu − (∂xu)2) +
ε

2
[∂x(h2u∂x(u∂xb) − h2∂xb(u∂2

xu − (∂xu)2)]

+ε2h∂xb(u∂x(u∂xb)).

Using now the fact that h = 1 + ε(ζ − b) and the first equation of (2), we get

−1

2
(∂th, u2) + ε(u∂xu, hu) = −ε

2
(∂x(hu), u2) + ε(u∂xu, hu) = 0.

Thus,

(24)
1

2
∂t|ζ|22 +

1

2
∂t(hu, u) + µ(hT ∂tu, u) + µε(Qu, u) = 0.

Regarding now the term µ(hT ∂tu, u), we remark as in [5] that

µ(hT ∂tu, u) = µ(T ∗
1 hT1∂tu, u) + µ(T ∗

2 hT2∂tu, u),

= µ(hT1∂tu, T1u) + µ(hT2∂tu, T2u),

= µ(h(∂t(T1u) − ∂tT1u), T1u) + µ(h∂t(T2u), T2u),

with T ∗
j (j = 1, 2) denoting the adjoint of the operators Tj given by

T1u =
h√
3
∂xu − ε

√
3

2
∂xbu, and T2u =

ε

2
∂xbu.

It comes:

µ(hT ∂tu, u) =
µ

2
∂t(hT1u, T1u) − µ

2
(∂th, (T1u)2) − µ(h(∂tT1u, T1u)

+
µ

2
∂t(hT2u, T2u) − µ

2
(∂th, (T2u)2),

=
µ

2
∂t(hT1u, T1u) +

µ

2
∂t(hT2u, T2u) − µ

2
(∂th, (T1u)2 + (T2u)2)

−µ(h∂tT1u, T1u).
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Inject this result in (24) to get:

1

2
∂t

(

|ζ|22 + (hu, u) + µ(hT u, u)
)

=
µ

2
(∂th, (T1u)2 + (T2u)2)

+µ(h∂tT1u, T1u) − µε(Qu, u).

Noting that h∂tT1u = ∂th(T1u +
√

3T2u), it comes:

1

2
(∂th, (T1u)2 + (T2u)2) + (h∂tT1u, T1u) =

1

2

(

∂th, 3(T1u)2 + (T2u)2 + 2
√

3T1uT2u
)

,

=
µ

2

(

∂th, (
√

3T1u + T2u)2
)

,

= ε
(

u,
h

2
∂x(

√
3T1u + T2u)2

)

,

where we used here the first equation of (2). Finally, we get:

1

2
∂t

(

|ζ|22 + (hu, u) + µ(hT u, u)
)

= µε
(h

2
∂x(

√
3T1u + T2u)2 −Qu, u

)

.

One can easily show that
(h

2
∂x(

√
3T1u + T2u)2 −Qu, u

)

= 0, which implies easily

the result.
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(2007), http// tel.archives-ouvertes.fr/tel-00200419 v2/
[6] W. Craig, An existence theory for water waves and the Boussinesq and the Korteweg-de

Vries scaling limits. Commun. Partial Differ. Equations 10, 787-1003 (1985).
[7] A. E. Green, N. Laws, and P. M. Naghdi.On the theory of water waves. Proc. Roy. Soc.

(London) Ser. A, 338: 43-55, 1974.
[8] A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of

variable depth, J. Fluid Mech. 78 (1976), 237–246.
[9] S. Israwi, Variable depth KDV equations and generalizations to more nonlinear regimes.

(2009) arXiv: 0901.3201v1.
[10] J. W. Kim, K. J. Bai, R. C. Ertekin, and W. C. Webster. A strongly-nonlinear model for

water waves in water of variable depth: the irrotational green-naghdi model. Journal of
Oshore Mechanics and Arctic Engineering, Trans. of ASME,, 2003.

[11] D. Lannes. Well-posedness of the water waves equations, J. Amer. Math. Soc.18 (2005),
605-654.

[12] D. Lannes Sharp Estimates for pseudo-differential operators with symbols of limited smooth-

ness and commutators, J. Funct. Anal. , 232 (2006), 495-539.

[13] D. Lannes, P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations

for surface water wave propagation, Physics of fluids 21 (2009).
[14] Y. A. Li, A shallow-water approximation to the full water wave problem, Commun. Pure

Appl. Math. 59 (2006), 1225-1285.



18 SAMER ISRAWI

[15] Madsen, P.A. and Bingham, H.B. and Liu, H., 2002. A new Boussinesq method for fully

nonlinear waves from shallow to deep water. J. Fluid Mech. 462, 1-30.
[16] V. I. Nalimov, The Cauchy-Poison problem. (Russian) Dinamika Splošn. Sredy Vyp. 18 Di-
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