
HAL Id: hal-00415821
https://hal.science/hal-00415821v1

Submitted on 11 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data sharing in DHT based P2P systems
Claudia Roncancio, María del Pilar Villamil, Cyril Labbé, Patricia

Serrano-Alvarado

To cite this version:
Claudia Roncancio, María del Pilar Villamil, Cyril Labbé, Patricia Serrano-Alvarado. Data sharing
in DHT based P2P systems. Transactions on Large-Scale Data- and Knowledge-Centered Systems,
2009, 5740, pp.327-352. �10.1007/978-3-642-03722-1_13�. �hal-00415821�

https://hal.science/hal-00415821v1
https://hal.archives-ouvertes.fr


Data sharing in DHT based P2P systems

Claudia Roncancio1, Maŕıa del Pilar Villamil2, Cyril Labbé1, and Patricia
Serrano-Alvarado3

1University of Grenoble, France⋆⋆

firstName.lastName@imag.fr
2University of Los Andes, Bogotá, Colombia,

mavillam@uniandes.edu.co
3University of Nantes, France

Patricia.Serrano-Alvarado@univ-nantes.fr

Abstract. The evolution of peer-to-peer (P2P) systems triggered the
building of large scale distributed applications. The main application
domain is data sharing across a very large number of highly autonomous
participants. Building such data sharing systems is particularly challeng-
ing because of the “extreme” characteristics of P2P infrastructures: mas-
sive distribution, high churn rate, no global control, potentially untrusted
participants... This article focuses on declarative querying support, query
optimization and data privacy on a major class of P2P systems, that
based on Distributed Hash Table (P2P DHT). The usual approaches
and the algorithms used by classic distributed systems and databases for
providing data privacy and querying services are not well suited to P2P
DHT systems. A considerable amount of work was required to adapt
them for the new challenges such systems present. This paper describes
the most important solutions found. It also identifies important future
research trends in data management in P2P DHT systems.

Key words: DHT, P2P Systems, Data sharing, Querying in P2P sys-
tems, Data privacy

1 Introduction

Peer-to-peer (P2P) systems take advantage of advances in networking and com-
munication for providing environments where heterogeneous peers with high
autonomy compose a system with a fully distributed control. P2P systems are
the chosen platform for new style of applications where distributed data can
be shared massively e.g., social networks [62], geo-collaboration systems [42],
professional communities (medical, research, open-source software [2]).

The development of massively distributed data sharing systems raises new
and challenging issues. This results from the intrinsic characteristics of P2P
systems (distribution among a huge number of peers, dynamic systems config-
uration, heterogeneity of data and peers, autonomy of data sources, very large

⋆⋆ This work is supported by the ECOS C07M02 action.



2 Roncancio and all.

volume of shared data) which prevent the direct use of distributed algorithms
issued from the more classical distributed systems and database worlds. Con-
sequently, new approaches are being proposed but also existing algorithms are
being revisited and adapted to provide high level data management facilities in
the P2P context.

The P2P context includes a large variety of systems, ranging from over-
lay networks and distributed lookup services, until high level data management
services. Structured and unstructured overlay P2P networks exist and lead to
systems with different characteristics.

This paper concerns data sharing in structured P2P systems based on a
Distributed Hash Table (DHT). It provides a synthesis of the main proposals on
efficient data querying and data privacy supports. These two aspects are essential
but challenging to implement in massively distributed data sharing systems.

The absence of a global view and control of a system composed by a large
set of volatile participants which can be both, data providers and requesters,
implies that new querying mechanisms are needed. Query processors rely on the
underlying overlay network and are expected to follow the P2P approach with-
out introducing centralization points. This paper gives an overview of the main
querying solutions proposed for systems sharing semi-structured or relational
data but also for data type independent systems where queries are based on
meta-data (attributes, keywords, etc). It also briefly discusses rich information
retrieval approaches. Query languages, index structures and other optimization
solutions, such as caches, will be analyzed.

As P2P systems are very attractive to some communities (e.g., professional
ones) willing to share sensitive or confidential data in a controlled way, data
privacy support is an important issue. Nevertheless, the open and autonomous
nature of P2P systems makes hard to provide privacy of peers and data. The P2P
environment can be considered as hostile because peers are potentially untrusted.
Data can be accessed by everyone and anyone, used for everything and anything1

and a peer’s behavior and identity can be easily revealed. This paper discusses
recent results on privacy support on P2P DHT systems. It analyzes proposals
to ensure a peer’s anonymity, to improve data access control and to use/adapt
trust techniques.

The paper is organized as follows. Section 2 introduces P2P DHT systems
and a functional architecture of them. Section 3 analyzes several representative
proposals providing declarative queries on top of DHT systems. It discusses the
main design choices concerning data, meta-data, language expressiveness and
index. More specific optimization aspects are discussed in Section 4. Section 5
concentrates on privacy issues. Section 6 concludes this paper and gives research
perspectives on P2P DHT data management.

1 Profiling, illegal competition, cheating, marketing or simply for activities against the
owner’s preferences or ethics.



Data sharing in DHT based P2P systems 3

2 System support for P2P DHT systems

This section introduces a functional architecture for P2P DHT systems and its
main provided services. It focuses on the specific services used by the high level
querying solutions that will be analyzed in Section 3.

P2P DHT systems have known great success mainly because their high scal-
ability to organize large sets of volatile peers. They use a self-organizing overlay
network on top of the physical network. One of their key characteristics is the
efficient lookup service they provide and, very important in data sharing, their
excellent support to provide comprehensive answers to queries.

Several proposals exist [63, 73, 66, 49]. They rely on the use of a distributed
hash table to index participant peers and shared objects by using hash keys as
identifiers. A DHT system splits a key space into zones and assigns each zone to
a peer. A key is a point in this space and the object corresponding to this key is
stored at the peer whose zone contains this point. Locating an object is reduced
to routing to the peers hosting the object. One of the main differences between
DHT solutions is their routing geometry. For instance, CAN [63] routes along
a d-dimensional Cartesian space, Chord [73] and Pastry [66] along a ring and
Viceroy [49] uses a butterfly network. Techniques used in the routing process
are the fundamentals to build P2P DHT systems but several other services have
been proposed to build more complete infrastructures. One of the reasons is
semantic less access provided at this level: to find an object in such a system, its
key has to be known. This key is then efficiently located among the peers in the
system. Such a query, called location query, retrieves the physical identifier of
the peer where the object is stored.

Several proposals extending P2P DHT systems exist but there is no stan-
dard yet [21]. Let’s consider the three layer functional architecture presented
in Figure 1. The lower level, labeled Distributed Lookup Service, provides
the overlay network support, the second layer, Distributed Storage Service,
provides data persistence services and the third layer, Distributed Data Ser-

vices, manages data as semantic resources.
The Distributed Lookup Service provides efficient mechanisms to find

peers (identified by keys) on a distributed system by managing the routing in-
formation (neighbors set of a peer). Their main functions are:

– lookup(key): returns the physical identifier of the peer in charge of a key.
– join(key): registers a new peer in the distributed system and updates routing

information.
– leave(key): handles the departure of a peer and updates routing information.
– neighbors(key): returns a list of keys identifying the peers in charge of the

neighbor zones.

This basic layer is used to build systems that give semantics to keys and provide
data storage.

Distributed Storage Services are responsible for stored object adminis-
tration – insertion, migration, etc. Objects migrate from a peer that leaves the
system to one of its neighbors to insure the object’s durability. Object migration



4 Roncancio and all.

and replication (in neighbors of their storage peers) work to ensure that stored
values never disappear from the system. Load balancing and caching strategies
are also proposed. Examples of systems of this level are PAST [67], CFS [20] and
DHash [29].

The main external functions of this layer are:

– get(key): returns the object (or collection) identified by key. It uses the lookup
function to locate the peers storing such objects. Answers are comprehensive,
i.e., all answers present in the system are retrieved2.

– put(key, Object): inserts into the system an object identified by its key. It
uses the lookup function to identify the peer where the object has to be
stored.

It is worth remarking that an object stored in such systems becomes a shared
object. In practice, it is not easy to remove objects as temporally absent peers
may have a copy of a deleted object. Coherency problems may arise when such
peers are restored.

PinS
MAAN
KSS

Pastry

PIER

KadoP

Locate peer Routing

PAST
CFS
DHash

CAN
Chord
Viceroy

MLP

Data persistence Find peer

Su
pp

or
t

O
ve

rl
ay

 N
et

w
or

k

Insert Query

Insert Find object

Lookup(key)

Put(key,object) Get(key)

Distributed Data Management
Service

Distributed Storage Service

Distributed Lookup Service

Fig. 1. Functional architecture of P2P DHT systems

The higher level of the proposed functional architecture offers services to al-
low semantic management of shared objects. This layer is important because un-
derlying layers do not provide keyword search functions, multi attribute searches
neither comparative query evaluation. They only offer access to objects giving
their key 3 and more powerful queries are hard to handle since the objects dis-

2 This characteristic can not be easily provided by unstructured P2P systems.
3 Obtained through a known hash function.



Data sharing in DHT based P2P systems 5

tribution criteria is based on semantic less keys. Several important proposals
to improve querying capabilities have been proposed [33, 26, 29, 15, 74, 74, 30, 75,
4]. They rely on distributed lookup and storage services. Chord is adopted by
KSS [29], MAAN [15] and FCQ[74]. PAST has been chosen by PinS [75] and
Kadop [4] whereas CAN is exploited by PIER [33]. Such high level querying
services are presented in Section 3.

To finish this section, it is worth mentioning some efforts [37, 11, 19] to op-
timize specific aspects of distributed lookup services. Proposals such as Baton
[37] and Mercury [11] modify the structure of the overlay network to improve
some kinds of research on keys. They concern mainly the optimization of range
queries or queries concerning intervals of keys. Baton proposes a balanced tree
structure to index peers whereas Mercury organizes peers in groups. Each group
of peers takes in charge the index of an attribute. Peers in a group are organized
in a ring and the attribute domain is divided to give the responsibility of an
interval of values to each peer. Mercury proposes an integrated solution without
distinction of the three layers.

3 Declarative queries

The purpose of this section is to present an overview of a representative sample
of works dealing with the evaluation of declarative high level queries in P2P
DHT systems. As seen in the previous section, basic configuration of P2P DHT
systems remains limited in term of research. Multi-attribute search based on
equality and inequality criteria, or including join and aggregates operations, are
not possible. Breaking this lack of semantic is a crucial point for the future of
P2P systems. Significant progress have been achieved thanks to a lot of work
made to improve declarative querying support.

3.1 Global view

The evaluation of declarative queries is made at the data management layer
which relies on underlying layers (storage management and overlay network).
Services provided by these layers are very important because they limit or allow
some flexibility to data management services.

Querying facilities offered by data management services are closely related to
the nature of shared data and used meta-data. One can find dedicated services
to a single type of data – for example [28] – or rather generic systems allowing
sharing various types of resources such as [70]. The choice of meta-data used
to describe and index resources determines usable criteria to formulate queries.
One can find approaches that use keywords [29, 64, 70] whereas others are based
on attributes [34, 27, 76].

In most cases [15, 29, 74, 34, 27], meta-data are stored using the storage man-
agement layer. Data and meta-data are identified by a key obtained with a hash
function. Such an identifier will be associated, with a keyword [70, 29], an at-
tribute [29, 28], a couple (attribute, value) [76], or a path in XML [27].



6 Roncancio and all.

The equality operator is proposed by a wide range of systems [29, 70]. More
complex operators, like inequality, are much more difficult to implement because
of the “blink” storage of shared resources. The storage management layer deals
with the placement of shared resources by using hash functions to decide which
peer will ensure the storage. This approach, which does not consider any seman-
tics, makes it impossible to determine the most useful peer to help to resolve
the query. One can find in [27, 33, 76], interesting solutions for query containing
inequality operators. Even more complex operators like joining or sorting can be
found in [74, 34, 60].

Massively distributed query processing systems came with new problems
including query optimization. With regard to improvement of response time,
proposals are based on index, caches [28, 75], duplication [27] and materialized
queries [29, 75].

Evolving in a very high scaled environment also leads to Information Re-
trieval (IR) techniques. As a huge number of objects are shared returning the
set of all objects satisfying a query may not be relevant, that is why research
trends dealing with top-k operators are important. With high scale also comes
a high semantic heterogeneity in data description, finding ways to bridge those
semantics is crucial.

In the following we give an overview of four classes of systems that are rep-
resentative of the data management layer. The first three classes of systems are
classified according to the structure adopted for the data and/or the meta-data
whereas the fourth one is more related to IR trends.

– Systems using meta-data composed by keywords or <attribut, value> cou-
ples: KSS [29], MLP [70], PinS [77, 75] and MAAN [15].

– Systems dealing with the relational model: PIER [33], and FCQ [74].
– Systems using the semi-structured or navigational model: DIP [28], KadoP [4],

LDS [27].
– IR approaches: SPRITE [46], DHTop [8] and works presented in [81].

3.2 Attribute based model

This first class of systems adopts simple meta-data composed by <attribut,
value> couples. Queries expressed on these attributes allow semantic search of
data.

KSS and MLP propose query languages with equality conditions on values of
attributes. Whereas in PinS and MAAN queries including equality and inequality
conditions are allowed. In addition to indexing techniques other optimization
techniques are also targeted.

A Keyword-Set Search System for Peer-to-Peer Networks (KSS) relies on DHash
and Chord. The storage of objects and related meta-data is delegated to the stor-
age management layer. Shared data have an identifier and can be described using
meta-data that can be either keywords or <attribute, value> couples. Meta-
data are used, one by one, to index related object in the DHT. Basically, one



Data sharing in DHT based P2P systems 7

can find in the DHT entries like: <hash(keyword1), {ObjId1, ..., ObjIdn

}> or <hash(attribute1,value1), {ObjIdi, ..., ObjIdm }>. These entries
give respectively all objects, registered in the systems, which satisfy keyword1
or have attribute1 = value1. Queries are conjunctions of meta-data and answers
are comprehensive.

KSS is one of the first works allowing evaluation of equality queries over P2P
DHT systems. It also proposes a systematic query materialization strategy that
enhances query processing to the detriment of storage usage.

Multi-level Partitioning (MLP) is also a keyword indexing system but it is build
over the P2P SkipNet [30] system. Peers are structured in a Nmax leveled hi-
erarchy of groups. Communication between groups is done using a broadcast
process.

This structuration allows a parallel evaluation of queries and the ability to
return partial answer. A query is broadcasted to all groups on the next level of
the hierarchy. At each level, several groups continue the broadcast of the query.
The propagation of the query stops at the last level. Answers from each group
are a partial answer that can be returned on the fly to the original peer that
sent the query.

Data are stored in the peer to which they belong and are not stored in the
storage management layer. Only Meta-data (keywords) are used to index data
thanks to the storage management layer. So data are published (indexed) but
not stored in the DHT.

MLP is a specific solution relying on the particularities of the underlying
lookup service SkipNet. As a matter of fact, the use of the hierarchical structure
and broadcasting are bases for query evaluation. This allows intensive use of
parallelism during query evaluation. As a drawback, the number of contacted
peers increases compared to a solution that does not rely on broadcasting. The
fact that data are not stored in the DHT can not assure the comprehensiveness
of the answer. Data may have gone with a peer but may be still indexed in the
system.

Peer to Peer interrogation and indexing (PinS) relies on PAST and Pastry.
Queries can be composed of conjunction and disjunction of equality, inequality
criteria and join-like operators [60]. Data can be either private or public. Data
which are stored and indexed in the DHT are public and data which are indexed
by the DHT but stored in a non-shared storage systems (not in the DHT) are
called private.

Several kinds of data indexing strategies in the DHT are proposed. The first
one allows equality search and is similar to KSS. Three others are proposed
to deal with queries composed of equality, inequality, and/or join terms. Those
strategies are based on distributed indexes giving values related to one attribute.

For a single query several evaluation strategy may exists and they can be
selected according to the execution context to enhance query processing (see
Section 4). PinS uses traditional DHT functionalities. For some of those indexes,



8 Roncancio and all.

the problem of peer saturation may arise due to the size of the index. To overcome
this, PinS proposes dynamic index fragmentation and distribution.

Multi-Attribute Addressable Network (MAAN) adopts the P2P approach for the
discovery of shared resources in grids. Like PinS, queries are composed of equality
and inequality criteria using meta-data. Shared resources are described using
systems oriented meta-data (e.g. name, operating system, CPU). Like others
solutions, the query evaluation is based on distributed index. This system uses
a hashing function with a special property, namely a uniform locality preserving
hashing function. This hashing function preserves order and assures a uniform
distribution.

MAAN allows the evaluation of inequality terms with a strategy based on its
ordered hashing function. There are several drawbacks for solution based on an
ordered hashing function. Building the hashing function implies the knowledge
of each attributes distribution. For attributes with a large domain of values in
which only few are used, the evaluation process will require useless processing
in many peers. The evaluation process relies on the successor function which
is a functionality that may not be a standard function for P2P systems. This
function may not be so simple in some overlay networks.

3.3 Relational model

The second group is composed of works which consider the P2P system as a
distributed relational database (PIER, DHTop and FCQ). They allow the eval-
uation of queries using operators of selection, projection, join and aggregation.
Such systems combine traditional database algorithms and hashing functions.

Peer-to-Peer Infrastructure for Information Exchange and Retrieval (PIER) re-
lies supposes that underlying layers (storage and lookup services) include special
functionalities. In particular, they must notify data migration caused by con-
figuration modifications (join/leave of peers), and more over they must allow
suppression of data and group communication.

This assumption allows PIER to offer new functionalities. For example, the
management of temporary resources, when data are stored only for a predefined
time duration, can be used in complex query processing.

PIER evaluates SQL queries on tuples stored in the P2P system. It defines
14 logical operators, 26 physical operators and three types of index to evaluate
queries. A set of optimized algorithms based on symmetric hash join is pro-
posed and query evaluation may include re-hashing and/or temporary storage
of intermediate results.

PIER allows the use of inequality terms and several indexes are proposed to
enhance the query processing. Prefix Hash Tree [61] (PHT) is an example of one
of them. Underlying DHT systems must provide the group concept, representing
relation concept of the relational model, and temporary storage of data.



Data sharing in DHT based P2P systems 9

Framework for complex query processing (FCQ) is a framework which offers
evaluation of relational operators like selection, projection, join and group by.
Tuples of relational tables are stored and indexed in the underlying distributed
storage service. The architecture of the system is based on a hierarchy of peers.
A super-peer layer named range guards is used to store copies of tuples, a simple
peer only stores pointers to super-peers.

FCQ uses a single index structure for the evaluation of all types of queries.
It imposes special conditions on underlying systems and on hashing function
as it uses a super peer layer and an order preserving hashing function. As a
consequence, the evaluation of inequality terms is simple. FCQ, like MAAN, uses
the successor function of the distributed storage service for query propagation.
This has the same drawbacks as the ones already mentioned for MAAN.

3.4 Semi-structured or navigational model

This section deals with works on XML. A lot of recent proposals concern this
kind of data. Among them DIP, KadoP and LDS, presented in the following.
Query processing optimization, for example, by using bloom filters [38, 3] have
been proposed so as some hints to reduce the size of indexing structures [13, 24].

Data Indexing in Peer-to-Peer DHT Networks (DIP) Data are shared in the
DHT system and are described through the use of a descriptor. This descriptor
is semi-structured XML data and has the form of XPath query. This descriptor
is used for the generation of a set of so called “interesting queries” that index
the data.

The query language is a subset of XPath queries which are “complete paths”
in the XPath terminology [35].

As optimization DIP proposes the creation of indexed queries and the use
of caches (see Section 4). These optimizations allow respectively an iterative
evaluation of queries and the enhancement of the response time. Nevertheless,
the mechanism to choose queries to be materialized may affect the performance
and the coherency of the solution. DIP may be used on top of most DHT as it
only uses simple functions (put and get).

KadoP [3, 4], has been built over FreePastry4 [65] and uses Active XML [1].
It focuses on sharing XML, HTML or PDF documents as well as web services.
These resources are described by using DTD files (conform to XML schemas [35])
or WSDL descriptions [78] for web services. Meta-data are structured using re-
lations such as partOf and isA. Meta-data contain semantic concept that enrich
queries on data. Concepts and values are linked through the use of the relatedTo
relation. KadoP also uses namespaces to structure spaces of definitions. Meta-
data are shared and stored in the P2P system. So data are indexed/published
but original data are stored in the owning peer and are not stored in the DHT.

4 A free implementation of Pastry.



10 Roncancio and all.

Published data are identified by URIs or URLs which give localization informa-
tion.

Different kinds of indexes are introduced. These indexes, registered in the
DHT, allow the publication of name spaces, concepts, relations between concepts,
sets of type in a namespace and finally the semantic link between two concepts.

All these allow the evaluation of semantically rich queries. Indexing and eval-
uation are closely related to LDS as shown in the next paragraph.

The main drawback of this solution is the fact that the quantity of informa-
tion used for indexing concepts, relations between concepts is huge and requires
a very large amount of storage resources. Techniques for going through this point
may be found in [3].

Locating Data Sources in Large Distributed Systems (LDS) is an indexation
service for XML data, it uses XPath for interrogation. LDS relies on traditional
functions, so it is independent of the underlying P2P layers. Data stay in the
owning peer and are published and described using “resumes”. The first element
of a resume is a set of paths to an attribute, the second is the set of values for this
attribute and the third is the set of id of peers containing data. Resumes may
be compressed using techniques like histogram [52] and bloom filters [43]. The
scaling of this solution may be affected by the frequent use of specific meta-data.
The peer in charge of the storage of this meta-data may overload. Therefore, a
fragmentation strategy to deal with this issue is proposed. LDS also proposes the
duplication of resumes linked to frequently used meta-data. But this solution is
kept as a last recourse as problems of coherency may arise.

Proposed query processing reduces the volume of transfered data as interme-
diate answers do not contain all objects satisfying a query but only id of peers
that are storing such object. As drawbacks, this introduces an additional step of
evaluation to identify relevant objects in these peers. Proposed indexation may
allow the evaluation of all types of queries in an homogeneous way, but indexes
contain a huge quantity of data.

XPath for P2P (XP2P) presented in [13] deals with these problems and
proposes to index only fragments of XML documents. In addition LDS indexes
are affected by the arrival or departure of peers and this may be a problem in
very dynamic systems.

3.5 Information retrieval trends

Infrastructure to support exact query evaluation is an important step forward,
but important challenges still remain. One of them is dealing with semantic het-
erogeneity coming from a large number of different communities bridged together
in a P2P system.

[81] deals with rich information retrieval in this context. This system doesn’t
try to offer exact answers. Instead, it seeks approximate answers like in retrieval
information systems. Users are looking to find files “semantically close” to a file



Data sharing in DHT based P2P systems 11

they already have. The proposed solution is based on vectors of terms for index-
ation and querying, and on an order preserving hashing function for evaluation.
Classical rappel and precision are used to measure the quality of an answer.

SPRITE focuses on reducing the amount of storage space required to index
documents. The idea is to ignore the terms used for indexing documents that
are never used in queries.

An other important trend concerns the huge number of shared objects and
the potentially too large size of answers returned to a simple query. To deal with
this problem DHTop [8] focuses on evaluating queries with a top-k [51] operator.
Like PIER, DHTop deals with relational data. Special indexes are introduce to
deal with inequality and top-k answers.

Based on the fact that the top-k operator is important in large centralized
databases, it seems obvious that its study in P2P DHT systems is very important.

4 Query processing optimization

Sections 2 and 3 provide core functionalities enabling P2P DHT systems to be
used in applications like web applications – search engines [55], P2P stream-
ing [56]– as well as in the security domain– generation of digital certificates and
intrusion detection [45]. In this style of applications, query processing optimiza-
tion is essential. On the one hand, the systems in Section 2 improve maintenance
processes and storage management for reducing the complexity of routing pro-
cesses and resource usage. On the other hand, systems in Section 3, for enhancing
query language capabilities, provide several kinds of evaluation strategies taking
into account query style and the information about system state.

The use of optimizers for improving query performance is a typical practice
in data management systems. Those optimizers use statistical information to
support their decisions on the availability of structures as indexes and caches.
This Section focuses on elements for supporting query processing optimization
and provides a description in a top-down way according to abstraction levels.
Section 4.1 presents optimizers based on static optimization, Section 4.2 analyzes
elements such as distributed cache and Section 4.3 is about statistics.

4.1 Optimizers

P2P systems optimizers research faces several challenges. Major challenges are
related to the impossibility of having global catalogs, the large number of peers
and their dynamicity, and the difficulty to build/maintain statistics in these
systems. The first part of this Section gives a brief description about some works
on P2P optimizers, and the second part highlights decisions about optimization
in some of the works described in Section 3.

P2P DHT Optimizers. Several works have analyzed and proposed different
styles of P2P optimizers ranging from classic optimizers to optimizers based on
user descriptions.



12 Roncancio and all.

Classic optimizers. [14] proposes a P2P optimizer based on the super-peers
existence and the concept of classic optimizers using distributed knowledge about
schemes in the network as well as distributed indexes. This work proposes several
execution plans considered as optimal and characterized by costs calculated using
statistical information. Indexes provide information to super-peers for them to
decide the place to execute a sub query. Two places are possible: locally in the
contacted super-peer or in an other super-peer. The cost associated to one plan
enables the selection of the best execution plan. This work does not consider the
dynamicity of peers.

Optimization defined by the user. Correlated Query Process (CQP) [17] and
PIER [32] are opposite proposals to the first one. In these cases, the user has
all the responsibility of the query optimization process. CQP defines a template
with information about peers to contact and about flows of data and processes.
A query execution is made using that template for generating parallel execution
between steps and using messaging for synchronization. On the other hand,
PIER provides a language to define in a specific manner, a physical execution
plan. This language named UFL (Unnamed Flow Language) contains logics and
physical operators used by an expert user to submit a query. These operators do
not include information about a peer responsible for its execution. This decision
is taken for PIER according to index information. In these proposals the user is
the key for providing a query optimization. PIER proposes a user interface to
support physical plans building. Still, the assumption about user responsibility
is very strong for inexpert users.

Range and join queries optimization. This Section presents some conclu-
sions about optimization features included in the works of Section 3. Works will
be presented according to the query type to be optimized.

Range queries. An interesting conclusion, based on MAAN and Mercury works,
about range queries optimization is that term selectivity is important for deciding
the terms execution order. In fact, terms execution order can impact the number
of peers contacted. MAAN concludes that a term selectivity greater than 20%
increases the number of contacted peers (that could be 50% of total peers) and
the number of messages used in the strategy increases as well and could be close
to the number of messages used by a flooding strategy. In the same way, Mercury
shows that selection of the term with the lowest selectivity reduces by 25% or
30% the number of contacted peers (and the number of messages) compared to
a random term selection.

PierSearch [47] (c.f. Section 4.2) explores the possibility to work with a DHT
system and a non structured P2P system for obtaining a more complete answer
as well as for improving the execution time. It shows that the answer recall
increases according to a threshold used to identify rare objects. In particular,
when the number of objects in a query result is 3 the answer recall is 95% and
with 10 objects the answer recall is 99%. In other cases, queries can be executed
in a more efficient manner using a non structured P2P system.



Data sharing in DHT based P2P systems 13

Join queries. Works as PIER and PinS highlight interesting results about the
use of network resources in queries containing joins terms. PIER [33] proposes
four join algorithms: Symmetric Hash Join (SHJ), Fetch Matches Join (FMJ),
Symmetric Hash Semi Join and Bloom Filter - Symmetric Hash Join. It con-
cludes that SHJ is the most expensive algorithm according to network resources,
FMJ consumes an average of 20% and optimizations of SHJ use less resources,
although this depends on the selectivity of conditions on the smaller relation.
PinS [60] complements PIER work proposing three join query evaluation strate-
gies: Index Based Join (IBJ), Nested Loop Join (NLJ) and NLJ with reduction
in the search space. PinS concludes that IBJ needs, in most cases, less messages.
When the join cardinality is less than the size of the search space NLJ is more
efficient.

4.2 Cache

The literature reports specific proposals on caching related to P2P DHT sys-
tems [36, 47, 72, 10] but also adaptable and context aware caching services [23,
41, 53] that can be used in such systems. This Section presents first cache solu-
tions implemented in P2P DHT Systems and then some proposals where DHT
systems themselves are used as a cache.

DHT Systems using cache. At the distributed storage service level there
are works as DHash [16] and PAST [67] (see Section 2) that propose a cache
to ameliorate queries on popular objects. In those works the load distribution
on peers is improved to reduce answer times. In the distributed data manage-
ment service layer, there are works as DCT [72], PinS [75, 59] and CRQ [68] that
improve the answer time by reducing the processing cost of queries previously
executed. These proposals improve the traffic consumption and enable the use
of a semantic cache for queries composed of equalities and inequalities terms.
Although there are cache proposals in both distributed storage service and dis-
tributed data management service layers, it is difficult to reuse these solutions
in new proposals as it is not clear how to provide cooperation between hetero-
geneous caches and as they do not give information about the context in which
they are used. In the next part of this Section, there is a brief description of
some representative works.

PAST and DHash are quite similar in their behavior. They propose popular
objects for caching using space available on peers. PAST takes advantage of
the peers contacted during a routing process to cache objects. An object in the
PAST cache is a couple composed of a key and a set of identifier related to
this key. A peer contacted in a routing process searches locally in its cache one
entry to answer the request. Then, when an cache entry is not found the typical
routing process continues. The cache entries are evicted from the cache using a
GD-S [67] policy and are discarded at any time.



14 Roncancio and all.

DIP (see Section 3) uses a query cache and entries in the cache contain the query
with its identifier and all descriptors associated to objects shared in the system.
These entries are registered in the peer contacted to evaluate the submitted query
or in all peers visited for providing the query evaluation. In a search process,
the local cache is visited before going to the peer responsible for the submitting
query identifier. DIP proposes LRU as replacement policy.

CRQ provides a cache for range queries using CAN [63] as a distributed lookup
service. CRQ has two types of exclusive entries. The first one is entries about
row identifiers of specific query. The second one contains information about
peers storing in their cache answers about a query. Once a query is required to a
peer, it searches in peers associated with the complete query or to a sub query.
Consequently, the complete answer for the submitted query or a partial answer,
used to calculate the total answer, can be found in the distributed cache. CRQ
guaranties a strong coherence, updating the cache when new objects are inserted
in the system. Moreover, CRQ proposes the use of LRU as a replacement policy.

PinS proposes two query caching solutions. The first one [75] about queries
including only equality terms whereas in the second case, PinS proposes a cache
including range queries. Unlike other cache proposals, in the first cache, PinS
provides a prefetch cache using statistics about queries frequency to identify
the most popular queries. These queries are the candidates to be stored in the
cache. As a new object arrives in the system, all entries containing queries that
include the new object are updated, providing a strong coherence. A cache entry
is indexed by a term identifier and contains a query with all objects shared in
the system verifying its conditions. This tuple is stored in the peer responsible
for the term identifier, related to the first term, in alphabetic order, of a query.
When an equality query is demanded, PinS contacts all peers responsible for
terms included in the query. These peers search in their local caches, queries
related to the term demanded. When a peer finds a query closest to the query
required by the user, it sends as answer the cache entry and not the answer
related to the term that it manages.

The second cache type [59] includes range terms evaluation. In this case, a
cache entry is indexed by the query identifier. The cache entry contains infor-
mation about a query and a couple atra = valj together with objects identifiers
associated to the attribute value. Queries are normalized to find the couple rep-
resentative of the query.

The cache entries enable to evaluate exact and partial coincidence of queries
within cache. Each entry uses a TTL to determine their freshness as well as a
Time to Update. Both PinS proposals use LRFU as replacement policy.

DCT identifies frequent queries as candidates to be stored in the cache. These
queries are stored as entries in a local peer only if there is available storage space.
Otherwise, the results set of these queries is shortened and top k answers are
selected and stored in the cache. Finally, if the space is not enough, a replacement
policy is used to identify the entry cache to be deleted from the cache. There



Data sharing in DHT based P2P systems 15

are two kinds of entry cache. The first one is indexed by a term contained in the
requested query. This term is selected in a random manner. This entry contains
all or partial document identifiers that answer the submitted query. The second
one is indexed according to the document identifier (URI) and contains a frequent
query together with all URI’s satisfying the query. When a query is subsumed
in the system, this query is decomposed in sub queries to identify peers with
information into the cache to answer the query. When cache information is not
enough to answer a query, a broadcast to all peers responsible for one of the
query terms is made.

DHT Systems used as cache. Squirrel [36] and PierSearch [47] are examples
of DHT systems used as cache. Squirrel tries to reduce the use of network re-
sources and PierSearch improves the answer recall. It is difficult to generalize a
cache proposal because they are coupled with the core proposals and there are
some important issues like object placement, replacement policy and coherence
models, that are not described or studied. The rest of this Section presents a
brief description about some representative works.

Squirrel enhances searches on web pages. In the same way as CRQ, it proposes
two storage techniques. Both of them use the URL of a web page for generating
object identifiers. In the first technique, a cache entry is indexed by URL’s and
contains the web page identified by the URL. In the second one, a cache entry
is composed of information distributed in several peers. The peers demanding a
query on a WebPage, named delegate peers, store the first type cache entries.
Additionally, the peer (Pr) responsible for the URL key stores information about
delegate peers maintained in their caches information about the web page in-
volved in the query. When a web page is demanded, the browser searches the
page in its local cache. When the page is not found or the version stored is not
adequate, Squirrel is contacted to search the page. Squirrel searches in Pr the
web page or information about delegate peers. Finally, when a miss is produced,
Squirrel searches the web page in the server. Squirrel uses TTL as freshness
technique and LRU for replacement policy.

PierSearch improves query evaluation on objects, considered as rare for Gnutella,
on a P2P DHT System. Several strategies are studied to classify an object as rare.
For example, an object is considered rare if the use frequency of one meta-data
(associated to this object) or the number of answer query (including this object),
are lower than a threshold. Two types of entry cache are proposed. The first one,
indexed by all object information like name, size, IPAdress, and PortNumber,
contains all this information. The second one, is indexed by one meta-data, and
contains all meta-data associated to one object and its object identifier. The use
of PierSearch occurs when a rare object is requested in Gnutella. In this case,
the search is made using PierSearch and not the typical search on Gnutella. TTL
are used as in Squirrel.



16 Roncancio and all.

4.3 Statistics

Statistics enable optimizers to decide on the best execution plan including de-
cisions about peers to contact, physic algorithms to use as well as creation of
new indexes or the inclusion of new terms in an index. In a general context, a
statistic is information about a system including a storage value, and a time to
live. Statistics management is a big difficulty one faces. Consequently, a process
to update statistic values and to identify events affecting the statistic will be
provided The use of notification mechanisms as publication/subscription are a
typical practice for communicating events to peers involved in statistic manage-
ment.

Several works tackle issues about statistics in P2P. Still, the number of works
is low with regards to works about declarative queries on P2P DHT. The main
topics analyzed in statistics research concern decisions about what statistics will
be gathered and how to provide statistics management. This Section focuses on
the second topic because it is closest to declarative queries and presents some
works with different characteristics to exemplify the research about statistics on
P2P context.

The statistics works in P2P DHT systems can be evaluated according to
distinct quality attributes [54]. The most important attributes are efficiency,
scalability, load balance and accuracy. Efficiency is related to the number of
peers contacted during the calculation of the statistic value. Scalability depends
on the way to distribute the calculation process; load balancing is focused on
increasing robustness in the statistic management process according to storage
and access policies; and accuracy affects the quality of decision process using
statistics values.

Mercury [11] provides an evaluation of queries composed of several attributes,
as described in Section 3. Mercury uses statistics to provide a load balance
according to storage dimension as well as to estimate selectivity of queries. It
gathers information about data distribution and number of peers classified by
range values. Additionally, it provides random sampling as statistic management
strategy to maintenance local histograms.

PISCES [79] provides data management based on BATON (see Section 2). Un-
like other works, PISCES proposes a mechanism to identify in a dynamic manner
terms to be indexed in the system. The use of statistics enables dynamic index-
ation. In fact, PISCES gathers information about the number of peers in the
system, average churn rates, number of all executed queries, and query distri-
bution. PISCES uses a gossip protocol [54] for providing maintenance on local
histograms.

Smanest [58] is a P2P service, contrary to the first’s proposals, for providing
statistics management on top of P2P DHT systems. It enables creation, main-
tenance and deletion of different kinds of statistics in a decoupling manner of
the P2P DHT system. At the same time, Smanest provides a uniform access



Data sharing in DHT based P2P systems 17

to statistics as well as guarantees a transparent solution according to statistics
placement. An update process is proposed, giving to the user the option to de-
termine the kind of update policy. Two types of updated policies are provided:
immediate and deferred. Immediate specifies the update on statistic value after
an event changes it. Whereas, deferred policy defines a time period or a num-
ber of events to trigger the update process. In the last two cases, the statistical
accuracy can be affected. Smanest proposes an automatic mechanism for statis-
tics management, based on events monitoring, and for events notification in an
efficient manner.

In fact, collecting statistics in P2P systems is a crucial and hard task. Crucial
because they will be needed to allow good performances and hard because the
usual way to deal with them are not well fitted to P2P systems. The same kind of
challenges appear for privacy concerns which are the focus of the next Section.

5 Data privacy

This section analyses privacy issues addressed by P2P DHT systems. It first in-
troduces the data privacy problem and then discusses access restriction (Section
5.2), anonymity (Section 5.3) and trust techniques (Section 5.4).

5.1 Rationale

Currently, the democratization of the use of information systems and the massive
data digitalization allow us to identify all aspects of the a person’s life. For
instance, their professional performance (e.g., publish or perish software, dblp
website), their client’s profile (e.g., thanks to fidelity smart cards), their user’s
profile (e.g., thanks to their user identity, access localities, generated traffic) or
their health level (e.g., thanks to the digitalization of medical records). Those
issues have given rise serious data privacy concerns.

P2P data sharing applications, due to their open and autonomous nature,
highly compromise the privacy of data and peers. The P2P environment can
be considered as hostile because peers are potentially untrustworthy. Data can
be accessed by everyone, used for everything (e.g., profiling, illegal competition,
cheating, marketing or simply for activities against the owner’s preferences or
ethics) and a peer’s behavior and identity can be easily revealed. It is therefore
necessary, in addition to other security measures, to ensure peer anonymity,
improve data access control and use/adapt trust techniques in P2P systems.

To limit the pervasiveness of privacy intrusion, efforts are being made in
data management systems [57]. Concerning P2P systems, several proposals take
into account security issues (integrity, availability and secrecy) that are closely
related to privacy. For instance, in [9], authors discuss various P2P content distri-
bution approaches addressing secure storage, secure routing and access controle;
[71] proposes an analysis of security issues in P2P DHT systems. It provides
a description of security considerations when peers in the DHT system do not
follow the protocol correctly, particularly secure assignment of node IDs, secure



18 Roncancio and all.

maintenance of routing tables, and secure forward of messages; and [48] looks
into the security vulnerabilities of overlay networks.

Nevertheless, very few works propose solutions to preserve privacy. In [12] a
comparison of several unstructured P2P systems is made. The comparison fo-
cuses on four criteria, namely, uploader/downloader anonymity, linkability (cor-
relation between uploaders and donwloaders) and content deniability (possibility
of denying the knowledge of the content transmitted/stored). [9] also presents
an analysis of authentication and identity management. It is worth noting that
most of these works concern unstructured P2P systems which are outside of the
scope of this paper.

This section discusses the three data sharing P2P DHT systems that, to our
knowledge, address data privacy in P2P DHT systems – PAST, OceanStore and
PriServ.

PAST [67], as mentioned in Section 2 is a distributed storage utility located
in the storage management layer (see Figure 1). Besides providing persistence,
high availability, scalability and load balancing it focuses on security issues. In
PAST, peers are not trusted (except requester peers) and its proposal limits the
potentially negative impact of malicious peers.

OceanStore [44] is a utility infrastructure designed for global scale persistent
storage which relies on Tapestry [80]. It was designed to provide security and
high data availability. As in PAST, server peers are not trusted.

PriServ [39, 40] is the privacy service of the APPA infrastructure [7]. It was
designed to prevent malicious data access by untrusted requesters. APPA has a
network-independent architecture that can be implemented over various struc-
tured and super-peer P2P networks. The PriServ prototype uses Chord [73] as
overlay network (similar to KSS, MAAN and FCQ (see Section 2)).

OceanStore and PriServ provide distributed data management services (see
Figure 1). They were not analyzed in the preceding sections of this paper because
they do not propose particular querying mechanisms. They use a basic hash key
search. However, OceanStore and PriServ propose interesting solutions to enforce
data privacy.

The next sections analyze the three aforementioned systems with respect to
access restrictions, anonymity support and trust management.

5.2 Access restriction

In OceanStore, non public data is encrypted and access control is based on two
types of restrictions: reader and writer restrictions. In the reader restriction,
to prevent unauthorized reads, data are encrypted (with symmetric-keys). En-
cryption keys are distributed to users with read permissions. To revoke the read
permission, the data owner requests that the replicas be deleted or re-encrypted
with a new key. A malicious reader is able to read old data from cached copies
or from misbehaving servers that fail to delete or re-key. This problem is not



Data sharing in DHT based P2P systems 19

specific to OceanStore, even in conventional systems there is no way to force a
reader to forget what has been read.

To prevent unauthorized writes, writes must be signed so that well-behaved
servers and clients can verify them against an access control list (ACL). The
owner of an object can choose the ACL for an object by providing a signed
certificate. ACL are publicly readable so that server peers can check whether a
write is allowed. Thus, servers restrict writes by ignoring unauthorized updates.

In PriServ, the access control approach is based on Hippocratic databases [6]
where access purposes are defined to restrain data access. Additionally, in PriServ
authors propose to take into account the operation (read, write, disclosure) that
will be applied. The idea is that in order to obtain data, peers specify the purpose
and the operation of the data request. This explicit request commits clients to use
data only for specified purposes and operations. Legally, this commitment, may
be used against malicious clients if data is used for other purposes/operations.

To make data access control, purposes and operations are included in the
generation of data keys. For this a publicly known hash function hashes the
data reference, the access purpose and the operation (it is considered that those
parameters are known by peers). Thus, the same data with different access pur-
poses and different operations have different keys. According to the authors,
previous studies have shown that considering 10 purposes allows to cover a large
number of applications. In addition, the number of operations considered is only
3.

Server peers are untrusted in PriServ. Two functions to distribute data are
proposed: publishReference() and publishData(). In the first one, owner and data
references are distributed in the system but not data themselves. When a peer
asks for data, server peers return only the data owner reference. Requester peers
must contact data owners to obtained data. In the second function, encrypted
data is distributed. When a peer requests data, server peers return the encrypted
data and the data owner reference that stores the decryption key. Owner peers
use public-key cryptography to send decryption keys to requester peers.

In PriServ a double access control is made during data requesting. Servers
make an access control based on the information received during data distribu-
tion. A more sophisticated access control is made by owners where, in particular,
trust levels of requester peers are verified. Malicious acts by servers are limited
because, for each request, peers contact data owners to obtain data (if data have
been published with the publishReference() function) or encryption keys (if the
publishData() function has been used.

In several systems, the lack of authentication is overcome by the distribution
of the encryption keys, necessary for accessing content, to a subset of privileged
users. As in OceanStore and PriServ, in PAST, users may encrypt their data
before publishing. This feature conduces to the deniability of stored content be-
cause nodes storing or routing encrypted data cannot know their content. This
protects router or server privacy because they are not responsible for the content
they transfer/store.



20 Roncancio and all.

5.3 Anonymity

In [22], the authors underline the need for anonymity in P2P systems. Anonymity
can enable censorship resistance, freedom of speech without the fear of perse-
cution, and privacy protection. They define four types of anonymity: 1) author
anonymity (which users created which documents?), 2) server anonymity (which
nodes store a given document?), 3) reader anonymity (which users access which
documents?) and 4) document anonymity (which documents are stored at a
given node?).

In PAST, each user holds an initially unlinkable pseudonym in the form of
a public key. The pseudonym is not easily linked to the user’s actual identity. If
desired, a user may have several pseudonyms to obscure that certain operations
were initiated by the same user. PAST users do not need to reveal their identity,
the files they are retrieving, inserting or storing.

PriServ and OceanStore do not use anonymity techniques. In systems where
anonymity is not taken into account, it is possible to know which peer potentially
can store which data. This knowledge facilitates data censorship [25, 31, 69].

5.4 Trust techniques

[50] discuses the complex problem of trust and reputation mechanisms and also
analyzes several distributed systems and some unstructured overlay systems.

In PAST, requester peers trust owner et server peers thanks to a smartcard
held by each node which wants to publish data in the system. A private/public
key pair is associated with each card. Each smartcard’s public key is signed with
the smartcard issuer’s private key for certification purposes. The smartcards
generate and verify various certificates used during insert and reclaim operations
and they maintain secure storage quota system. A smartcard provides the node
ID for an associated PAST node. The node ID is based on a cryptographic hash
of the smartcard’s public key. The smartcard of a user wishing to insert a file
into PAST issues a file certificate. The certificate contains a cryptographic hash
of the file’s contents (computed by the requested node) and the fileId (computed
by the smartcard) among others.

In PriServ, every peer has a trust level. An initial trust level is defined de-
pending on the quality of peers, then it evolves depending on the peer’s reputa-
tion in the system. There is no a global trust level for a peer. The perception of
the trustworthiness of peer A may be different for that of peer B or even that
of the peer C. Locally, peers have a trust table which contains the trust level of
some peers in the system.

If a server peer does not know the trust level of the requesting peer locally,
it asks its friends (peers having a high trust level in its trust table), and if a
friend does not have the requested trust level, it asks for it from its friends like
a flooding limited by a TTL (time to live). If a peer does not have friends it will
request the trust level from all peers in its finger table (log(N) peers).



Data sharing in DHT based P2P systems 21

6 Conclusion and perspectives

P2P DHT systems clearly provide a powerful infrastructure for massively dis-
tributed data sharing. This paper introduced first a global functional architec-
ture which distinguishes the underlying distributed lookup services to maintain
the P2P overlay network, then a distributed storage service layer providing data
persistency (involving data migration, replication and caching), and then a last
layer consisting of high level data management services as declarative query pro-
cessors. The paper then extensively discussed query and data privacy supports.
These discussions reveal some maturity in querying solutions but also deficiencies
on providing data privacy.

This paper considered many proposals on query processing on top of P2P
DHT systems covering a large variety of data models and query languages. Such
proposals allow queries on shared data in a “P2P database” style as well as
with less structured approaches. That is either by providing querying support
on meta-data associated to potentially any object (whatever its type), or by
using approximate queries in a “P2P information retrieval” style.

Optimization issues have been analyzed as they are crucial in developing
efficient and scalable P2P query processors. As such query processors operate
in dynamic massively distributed systems without global control and complete
statistics, query optimization becomes very hard. For almost each operator of
the query language it is necessary to find a specific optimization solution. Join
operators, range queries and top-k queries have been given particular atten-
tion because their evaluation can be extremely time and resource consuming.
Caching issues have also been presented, mainly as an approach to improving
the data management services. Several operational solutions exist but stale data
management is not yet optimum.

The last topic discussed in, this paper was data privacy support. This major
issue has surprisingly received little attention until now in P2P DHT systems
(most efforts concern unstructured P2P systems). Some access restriction tech-
niques, anonymity support and trust management have been proposed but more
complete proposals are required.

Providing appropriate privacy is certainly essential to allow more applications
(particularly industrial ones) to rely on P2P data sharing. Thus this important
issue has several interesting perspectives and challenging open problems. For
example, more effort is needed to prevent and limit data privacy intrusion but
also to verify that data privacy has been preserved. Verification can be made
with auditing mechanisms that can be based on techniques like secure logging
[18] of data access or even watermarking [5]. An auditing system should detect
violations of privacy preferences and punishments (or rewards) to misbehaving
(or honest) peers should be considered. It is important to notice the existence
of a tradeoff between anonymity and data access control. Veri?cation can hardly
be implemented in environments where everyone is anonymous.

Other privacy issues concern the distributed storage services. For instance
how to avoid storing data on peers that are untrustworthy by data owners.
Currently, data are stored on live peers whose key is the closest one to the data



22 Roncancio and all.

key (e.g., the successor function of Chord). It could be interesting to define DHT
where data owners can influence the distribution of their data.

Further important research perspectives concern data consistency and system
performances. Data consistency issues are out of the scope of this paper but are
nevertheless important in data sharing systems. Data shared through P2P DHT
system have been considered as read only by the majority of proposals. One
of the main reasons is the impossibility to guarantee update propagation to all
peers holding a copy of data5. The literature reports recent proposals on data
consistency support in P2P DHT systems but this aspect needs further research.

System performance also reveals some topics for research. One problem is
cross layer optimization combining the optimization solutions implemented by
the distributed storage services and data management services. For example,
such services may propose various caching approaches that should be ”coordi-
nated” to tune the system. Another important aspect is better support of peers
volatility and dynamic system configuration by the data management services.
Current query supports implicitly consider P2P systems with low churn rate.
Such supports could become inefficient or not work when there is a high churn
rate in the system. Data management services should therefore be highly adapt-
able and context aware. This will be even more important if mobile devices
participate in the system.

Lastly, the issue of semantic heterogeneity of shared data is important in all
data sharing systems and is even more accentuated in P2P environments where
peers are extremely autonomous.

There are certainly other important unsolved problems but the aforemen-
tioned ones already will lead to much exciting research.

Acknowledgement: Many thanks to Solveig Albrand for her help with this
paper.

References

1. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
A Data-Centric Perspective on Web Services. In Demo Proc. of Int. Conf. on Very
Large Databases (VLDB), Hong Kong, China, August 2002.

2. S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav. EDOS Distribution
System: a P2P Architecture for Open-Source Content Dissemination. In IFIP
Working Group on Open Source Software (OSS), Limerick, Ireland, June 2007.

3. S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML Processing in
DHT Networks. Int. Conf. on Data Engineering Data Engineering (ICDE), April
2008.

4. S. Abiteboul, I. Manolescu, and N. Preda. Sharing Content in Structured P2P
Networks. In Journées Bases de Données Avancées, Saint-Malo, France, October
2005.

5 disconnected peers could conserve stale copies.



Data sharing in DHT based P2P systems 23

5. R. Agrawal, P. Haas, and J. Kiernan. A System for Watermarking Relational
Databases. In Int. Conf. on Management of Data (SIGMOD), San Diego, Califor-
nia, USA, June 2003.

6. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases. In Int.
Conf. on Very Large Databases (VLDB), Hong Kong, China, August 2002.

7. R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Design and Implementation
of APPA. Global Data Management (Eds. R. Baldoni, G. Cortese, F. Davide), IOS
Press, 2006.

8. R. Akbarinia, E. Pacitti, and P. Valduriez. Processing Top-k Queries in Distributed
Hash Tables. In Euro-Par 2007 Parallel Processing, Rennes ,France, August 2007.

9. S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-Peer Content
Distribution Technologies. ACM Computing Surveys, 36(4), 2004.

10. M. S. Artigas, P. G. López, and A. F. Gómez-Skarmeta. Subrange Caching: Han-
dling Popular Range Queries in DHTs. In Int. Conf. on Data Management in Grid
and Peer-to-Peer Systems (Globe), 2008.

11. A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable Multi-
Attribute Range Queries. In Int. Conf. on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), Portland, Ore-
gon, USA, August-September 2004.

12. R. Blanco, N. Ahmed, D. H. L. Sung, H. Li, and M. Soliman. A Survey of Data
Management in Peer-to-Peer Systems. Technical Report CS-2006-18, University of
Waterloo, 2006.

13. A. Bonifati and A. Cuzzocrea. Storing and Retrieving XPath Fragments in Struc-
tured P2P Networks. Data & Knowledge Engineering, 59(2), 2006.

14. I. Brunkhorst, H. Dhraief, A. K. A, W. Nejdl, and C. Wiesner. Distributed Queries
and Query Optimization in Schema-Based P2P-Systems. In Int. Workshop on
Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), Berlin,
Germany, September 2003.

15. M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. In Int. Workshop on Grid Computing
(GRID), Phoenix, Arizona, November 2003.

16. J. Cates. Robust and Efficient Data Management for a Distributed Hash Table.
Master thesis, Massachusetts Institute of Technology, USA, May 2003.

17. Q. Chen and M. Hsu. Correlated Query Process and P2P Execution. In Int.
Conf. on Data Management in Grid and Peer-to-Peer Systems (Globe), Turin,
Italy, September 2008.

18. C. N. Chong, Z. Peng, and P. H. Hartel. Secure Audit Logging with Tamper-
Resistant Hardware. In Int. Conf. on Information Security (SEC), Athens, Greece,
May 2003.

19. G. D. Costa, S. Orlando, and M. D. Dikaiakos. Multi-set DHT for Range Queries
on Dynamic Data for Grid Information Service. In Int. Conf. on Data Management
in Grid and Peer-to-Peer Systems (Globe), 2008.

20. F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area Coopera-
tive Storage with CFS. In Int. Sysposium on Operating Systems Principles (SOSP),
Banff, Canada, October 2001.

21. F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a
Common API for Structured Peer-to-Peer Overlays. In Int. Workshop on Peer-to-
Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

22. N. Daswani, H. Garcia-Molina, and B. Yang. Open Problems in Data-Sharing
Peer-to-Peer Systems. In Proc Int. Conf. on Database Theory, Siena, Italy, January
2003.



24 Roncancio and all.

23. L. d’Orazio, F. Jouanot, C. Labbé, and C. Roncancio. Building Adaptable Cache
Services. In Int. Workshop on Middleware for Grid Computing (MGC), Grenoble,
France, November 2005.

24. F. Dragan, G. Gardarin, B. Nguyen, and L. Yeh. On Indexing Multidimensional
Values in A P2P Architecture. In French Conf. on Bases de Données Avancées
(BDA), Lille, France, 2006.

25. R. Endsuleit and T. Mie. Censorship-Resistant and Anonymous P2P Filesharing.
In Int. Conf. on Availability, Reliability and Security (ARES), Vienna, Austria,
April 2006.

26. P. Furtado. Schemas and Queries over P2P. In Int. Conf. on Database and Expert
Systems Applications (DEXA), 2005.

27. L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating Data Sources in Large
Distributed Systems. In Int. Conf. on Very Large Databases (VLDB), Berlin,
Germany, September 2003.

28. L. Garcés-Erice, P. Felber, E. Biersack, and G. Urvoy-Keller. Data Indexing in
Peer-to-Peer DHT Networks. In Int. Conf. on Distributed Computing Systems
(ICDCS), Columbus, Ohio, USA, June 2004.

29. O. Gnawali. A Keyword-Set Search System for Peer-to-Peer Networks. Master
thesis, Massachusetts Institute Of Technology, Massachusetts, USA, June 2002.

30. N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. In Int. Symposium on Internet
Technologies and Systems (USITS), Washington, USA, March 2003.

31. S. Hazel, B. Wiley, and O. Wiley. Achord: A Variant of the Chord Lookup Service
for Use in Censorship Resistant Peer-to-Peer Publishing Systems. In Int. Workshop
on Peer To Peer Systems (IPTPS), Cambridge, MA, USA, March 2002.

32. R. Huebsch. PIER: Internet Scale P2P Query Processing with Distributed Hash
Tables. Phd thesis, EECS Department, University of California, Berkeley, Califor-
nia, USA, May 2008.

33. R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe, S. Shenker,
I. Stoica, and A. Ymerefendi. The Architecture of PIER: An Internet-Scale Query
Processor. In Int. Conf. on Innovative Data Systems Research (CIDR), California,
USA, January 2005.

34. R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and I. Stoica. Querying
the Internet with PIER. In Int. Conf. on Very Large Databases (VLDB), Berlin,
Germany, September 2003.

35. D. Hunter. Initiation XML. Editions Eyrolles, 2001.
36. S. Iyer, A. Rowstron, and P. Drushchel. Squirrel - A Decentralized Peer-to-Peer

Web Cache. In Int. Symposium on Principles of Distributed Computing (PODC),
California, USA, July 2002.

37. H. Jagadish, B. Ooi, and Q. Vu. Baton: A Balanced Tree Structure for Peer-to-Peer
Networks. In Int. Conf. on Very Large Databases (VLDB), Trondheim, Norway,
September 2005.

38. C. Jamard, G. Gardarin, and L. Yeh. Indexing Textual XML in P2P Networks
Using Distributed Bloom Filters. In Int. Conf. on Database Systems for Advanced
Applications (DASFAA), 2007.

39. M. Jawad, P. Serrano-Alvarado, and P. Valduriez. Design of PriServ, A Privacy
Service for DHTs. In Int. Workshop on Privacy and Anonymity in the Information
Society (PAIS), Nantes, France, March 2008.

40. M. Jawad, P. Serrano-Alvarado, P. Valduriez, and S. Drapeau. Data Privacy in
Structured P2P Systems with PriServ. Submitted paper, May 2009.



Data sharing in DHT based P2P systems 25

41. F. Jouanot, L. D’Orazio, and C. Roncancio. Context-Aware Cache Management
in Grid Middleware. In Int. Conf on Data Management in Grid and Peer-to-Peer
Systems (Globe), Turin, Italy, September 2008.

42. D. D. Judd. Geocollaboration using Peer-Peer GIS, May 2005.
http://www.directionsmag.com/article.php?article id=850.

43. D. Kossmann. The State of the Art in Distributed Query Processing. ACM Com-
puting Surveys, 32(4), 2000.

44. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W.Weimer, C.Wells, and B. Zhao. OceanStore:
An Architecture for Global-Scale Persistent Storage. In Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Cam-
bridge, MA, November 2000.

45. F. Lesueur, L. Mé, and V. V. T. Tong. A Distributed Certification System for
Structured P2P Networks. In Int. Conf. on Autonomous Infrastructure, Manage-
ment and Security (AIMS), Bremen, Germany, July 2008.

46. Y. Li, H. V. Jagadish, and K.-L. Tan. SPRITE: A Learning-Based Text Retrieval
System in DHT Networks. In Int. Conf. on Data Engineering (ICDE), 2007.

47. B. Loo, J. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica. Enhancing P2P
File-Sharing with an Internet-Scale Query Processor. In Int. Conf. on Very Large
Databases (VLDB), Toronto, Canada, August-September 2004.

48. E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey and Comparison
of Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys and
Tutorials, 7, 2005.

49. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic Emu-
lation of the Butterfly. In Int. Symposium on Principles of Distributed Computing
(PODC), Monterey, CA, USA, July 2002.

50. S. Marti and H. Garcia-Molina. Taxonomy of Trust: Categorizing P2P Reputation
Systems. Computer Networks, 50(4), 2006.

51. S. Michel. Top-k Aggregation Queries in Large-Scale Distributed Systems. Phd
thesis, Saarland University, Saarbrucken, Germany, May 2007.

52. H. Molina, J. Ullman, and J. Widom. Database System Implementation. Prentice
Hall, 2000.

53. A. Mondal, S. K. Madria, and M. Kitsuregawa. CLEAR: An Efficient Context and
Location-Based Dynamic Replication Scheme for Mobile-P2P Networks. In Int.
Conf. on Database and Expert Systems Applications (DEXA), 2006.

54. N. Ntarmos, P. Triantafillou, and G. Weikum. Counting at Large: Efficient Car-
dinality Estimation in Internet-Scale Data Networks. In Int. Conf. on Data Engi-
neering (ICDE), Atlanta, USA, April 2006.

55. Open-Source Search Engine. YACY, 2009. http://yacy.net/.
56. P2P Streaming. Joost, 2009. http://www.joost.com/.
57. M. Petkovic and W. J. Eds. Security, Privacy, and Trust in Modern Data Man-

agement. Data-Centric Systems and Applications. Springer, 2007.
58. C. Prada. Servicio para Manejar Estad́ısticas en Sistemas P2P Basados en DHT.

Master thesis, Universidad de los Andes, Bogota, Colombia, January 2009.
59. C. Prada, C. Roncancio, C. Labbée, and M.P.Villamil. Semantic Caching Proposal

in a P2P Querying System. In Congreso Latinoamericano de Computacin de Alto
Rendimiento, Santa Marta, Colombia, June 2007.

60. C. Prada, M. Villamil, and C. Roncancio. Join Queries in P2P DHT Systems. In
Int. Workshop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P), Auckland, New Zealand, August 2008.



26 Roncancio and all.

61. S. Ramabhadran, S. Ratnasamy, J. Hellerstein, and S. Shenker. Prefix
Hash Trees An Indexing Data Structure Over Distributed Hash Tables, 2004.
http://berkeley.intel-research.net/sylvia/pht.pdf.

62. A. Ramachandran and N. Feamster. Authenticated Out-of-Band Communication
Over Social Links. In Int. Workshop on Online social networks (WOSN), Seattle,
WA, USA, August 2008.

63. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content
Addressable Network. In Int. Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), San Diego, CA, USA,
August 2001.

64. P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In Int.
Middleware Conf., Rio de Janeiro, Brasil, June 2003.

65. Rice University Houston, USA. FreePastry, 2002.
http://freepastry.rice.edu/FreePastry/.

66. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In Int. Conf. on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, November 2001.

67. A. Rowstron and P. Druschel. Storage Management and Caching in PAST, A
Large-scale, Persistent Peer-to-Peer Storage Utility. In Int. Symposium on Oper-
ating Systems Principles (SOSP), Banff, Canada, October 2001.

68. O. Sahin, A. Gupta, D. Agrawal, and A. El-Abbadi. A Peer-to-Peer Framework
for Caching Range Queries. In Int. Conf. on Data Engineering (ICDE), Boston,
USA, March-April 2004.

69. A. Serjantov. Anonymizing Censorship Resistant Systems. In Int. Workshop on
Peer To Peer Systems (IPTPS), Cambridge, MA, USA, March 2002.

70. S. Shing, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. Making Peer-to-Peer
Keyword Searching Feasible Using Multi-level Partitioning. In Proc. Int. Workshop
on Peer-to-Peer Systems (IPTPS), San Diego, CA, USA, February 2004.

71. E. Sit and R. Morris. Security Considerations for Peer-to-Peer Distributed Hash
Tables. In Int. Workshop on Peer To Peer Systems (IPTPS02), Cambridge, MA,
USA, March 2002.

72. G. Skobeltsyn and K. Aberer. Distributed Cache Table: Efficient Query-Driven
Processing of Multi-Term Queries in P2P Networks. In Int. Workshop on Infor-
mation Retrieval in Peer-to-Peer Networks (P2PIR), Arlington, USA, November
2006.

73. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. In Int. Conf. on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM), San Diego, CA, USA, August 2001.

74. P. Triantafillou and T. Pitoura. Toward a Unifying Framework for Complex Query
Processing over Structured Peer-to-Peer Data Networks. In Int. Workshop on
Databases, Information Systems, and Peer-to-Peer Computing (DBISP2P), Berlin,
Germany, September 2003.

75. M. Villamil. Service de Localisation de Données pour les Systèmes P2P. Phd
thesis, Institut National Polytechnique de Grenoble, Grenoble, France, June 2006.

76. M. Villamil, C. Roncancio, and C. Labbé. PinS: Peer to Peer Interrogation
and Indexing System. In Int. Database Engineering and Applications Symposium
(IDEAS), Coimbra, Portugal, June 2004.

77. M. Villamil, C. Roncancio, and C. Labbé. Querying in Massively Distributed
Storage Systems. In Journées Bases de Données Avancées, Saint-Malo, France,
October 2005.



Data sharing in DHT based P2P systems 27

78. WSDL. Web Services Description Language (WSDL) 1.1, 2001.
http://www.w3.org/TR/wsdl.

79. S. Wu, J. Li, B. Ooi, and K.-L. Tan. Just-in-Time Query Retrieval over Partially
Indexed Data on Structured P2P Overlays. In Int. Conf. on Management of Data
(SIGMOD), Vancouver, Canada, June 2008.

80. B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry:
A Resilient Global-scale Overlay for Service Deployment. IEEE Journal on Selected
Areas in Communications, 22(1), 2004.

81. Y. Zhu and Y. Hu. Efficient Semantic Search on DHT Overlays. Parallel and
Distributed Computing, 67(5), 2007.


