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ABSTRACT: Uptake and depuration kinetics of inorganic mercury (Hg) was investigated in 27 

the juvenile common cuttlefish Sepia officinalis following exposures via seawater and food 28 

using sensitive radiotracer technique (203Hg). The cuttlefish readily concentrated 203Hg when 29 

exposed via seawater, with whole body CF > 260 after only 10d of exposure. The total Hg 30 

accumulated from seawater was depurated relatively fast with a Tb½ of 17d. During both 31 

exposure and depuration periods, accumulated Hg was mainly (> 70%) associated with the 32 

muscular parts of the cuttlefish. However, the proportion of the whole body Hg content 33 

associated with the digestive gland increased during exposure and depuration phases, 34 

suggesting that the metal was transferred from the muscles towards this organ for 35 

detoxification. When fed with radiolabelled food, cuttlefish displayed high assimilation 36 

efficiency (AE > 90%) and the metal was found to be mainly located in the digestive gland 37 

(60% of the whole Hg content). Nevertheless, high depuration rates resulted in short Tb½ (i.e., 38 

4 d), suggesting that this organ has a major role in Hg detoxification and depuration. 39 

Whatever the exposure pathway was, low proportion of Hg (< 2%) was found in the 40 

cuttlebone. Assessment of the relative contribution of the dietary and dissolved exposure 41 

pathways to inorganic Hg bioaccumulation in juvenile cuttlefish revealed that Hg was mainly 42 

accumulated from food that contributed for 77 ± 16% of the global metal bioaccumulation. 43 

 44 

 45 

Keywords: mercury; bioaccumulation; kinetics; body distribution; cephalopod; relative 46 

contribution. 47 

48 
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INTRODUCTION 49 

Mercury (Hg) is one of the metals of highest concern in the marine environment as it is 50 

readily methylated by micro-organisms, bioaccumulates in marine biota and consistently 51 

biomagnifies along the food chain (Cossa 1990). Among marine organisms, most of the 52 

available information on Hg is related to fish, mainly because of their importance as a food 53 

source for human. In fish, most of the Hg (i.e. > 95%) is methylated and is therefore 54 

bioavailable for upper trophic levels (Bloom 1992). Hence, fish consumption is an important 55 

source of Hg for human (Svensson et al. 1992) and is of particular health concern (Clarkson 56 

1990).  57 

In contrast to fish, information on Hg in cephalopods tissues is scarce despite the fact that 58 

these molluscs represent an increasing component of the world fisheries (Boyle & Rodhouse, 59 

2006, FAO 2007). In addition, information on Hg in cephalopod is essentially limited to the 60 

main species targeted by fisheries and mainly reports metals levels in edible tissues, i.e. 61 

mantle muscle, arms and fins (e.g. Buzina et al. 1989, Sapunar et al. 1989, Plessi et al. 2001). 62 

Recently, a study on a large range of cephalopod species from the North Eastern Atlantic 63 

waters reported that Hg concentrations varied on two orders of magnitude among cephalopod 64 

species and that the metal was mainly stored under organic form in the muscular tissues 65 

(Bustamante et al. 2006). Several other studies on cephalopods from the Mediterranean 66 

suggest that these molluscs are able to accumulate high Hg concentrations in their tissues 67 

(Renzoni et al. 1973, Rossi et al. 1993, Storelli & Marcotrigiano 1999). Various factors are 68 

likely to influence Hg concentrations in cephalopods among which the size seems to be of 69 

primary importance (Monteiro et al. 1992, Rossi et al. 1993, Pierce et al. 2008). 70 

Although it was suggested that food would be the main source for Hg accumulation in 71 

cephalopod tissues (Bustamante et al., 2006), the relative contribution of dietary and 72 

waterborne pathways has not been assessed in cephalopods. Moreover, as cephalopods are 73 



 4

short-lived species, they might be interesting as short-term indicator species of the variation 74 

of Hg concentrations in the environment (Seixas et al. 2005, Pierce et al. 2008). 75 

For these reasons, the aim of this work was to investigate the biokinetics of Hg uptake and 76 

depuration in cephalopods in order to better characterize its bioaccumulation, tissue 77 

distribution and retention capacity. The common cuttlefish Sepia officinalis was selected as a 78 

model to study Hg transfer in cephalopods from seawater and food.  79 

 80 

MATERIALS AND METHODS 81 

Organisms and radiotracer 82 

Adult cuttlefish were collected by net fishing off Monaco in March and April 2006. They 83 

were acclimated and maintained in open-circuit tanks in the IAEA-MEL premises. After 84 

mating, the eggs laid by a single female were separated to optimise their oxygenation and kept 85 

in a separate aquarium during the whole embryonic development (constantly aerated open 86 

circuit; flux: 50 l h-1; salinity: 37 p.s.u; temperature: 17 ± 0.5°C; pH: 8.0 ± 0.1; light/dark 87 

cycle: 12 h/12 h). Hatching occurred approx. 50 d after the spawning. Young cuttlefish were 88 

then maintained in the same aquarium and fed with brine shrimp (Artemia sp.) for 5 days 89 

before the experiments. 90 

The radiotracer, 203Hg [as 203HgNO3; t½ = 46.59 d], was purchased from Isotope Product 91 

Laboratory, USA. Stock solutions were prepared in 1 N nitric acid to obtain final radioactivity 92 

allowing the use of spikes of only a few microliters (typically 5 µl). 93 

 94 

Experimental procedure 95 

Contamination from seawater: juveniles (n = 23; mean weight ± SD, 0.258 ± 0.009 g) were 96 

placed for 10 d in a 20-l glass aquarium containing 0.45 µm filtered natural seawater 97 

(constantly aerated closed circuit; temperature 17°C; 37 p.s.u.; light/dark cycle 12h/12h) 98 
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spiked with 203Hg (0.6 kBq l-1). In terms of stable metal, this concentration corresponded to 20 99 

ng l-1. To facilitate the recurrent counting of each individual during the experiment, the 100 

juveniles were held individually in separate circular plastics boxes (10 cm diameter, 5 cm 101 

height) covered up and down with a meshed plastic net to allow for free water circulation. 102 

Radiotracer and seawater were renewed every second day to maintain water quality and 103 

radiotracer activity constant. Radiotracer activities in seawater were checked before and after 104 

each water renewal in order to determine the time-integrated radiotracer activities (Rodriguez 105 

y Baena et al. 2006a, Warnau et al. 1996). Juveniles were separated in two groups: the first 106 

group contained 16 tag-identified individuals and the second was composed of unidentified 107 

animals for the body distribution analyses. At different time intervals, radiotracer activities 108 

were counted in the same tag-identified juveniles (n = 16) all along the experiment. 109 

According to their physiological states, the individuals should be removed from the 110 

experiment leading the following sampling plan: n=16 from days 0 to 3 and n = 14, 7, 6 at 111 

days 6, 9 10, respectively. In addition, after 3 and 9 d of exposure, 3 juveniles of the second 112 

group were counted and dissected to determine the radiotracer distribution among the 113 

digestive gland, the cuttlebone and the remaining tissues. 114 

After this exposure period, the 6 remaining identified and radiolabelled juveniles (n= 6 from 115 

days 0 to 4, 4 at day 6 and 1 at day 11) were held for 11 d in clean flowing water (open circuit 116 

with constant aeration; seawater flux 50 l h-1; temperature 17°C; 37 p.s.u.; light/dark cycle 117 

12h/12h). At different time intervals during the depuration period, the same identified 118 

juveniles (n = 6) were counted to establish the depuration kinetics of the radiotracer. 119 

 120 

Contamination through the food: brine shrimp (Artemia sp.) were exposed for 5 d in a 121 

plastic aquarium containing 4 l of natural seawater spiked with 203Hg until pools of 25 brine 122 
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shrimp reached 3.1 kBq g-1 wet weight. The organisms were subsequently used as food for the 123 

juvenile cuttlefish. 124 

As detailed in the seawater experimental procedure, juveniles were separated in two groups of 125 

identified and non-identified animals, which were devoted for the depuration kinetics and the 126 

body distribution studies, respectively. Hence, sixteen newly hatched cuttlefish (mean weight 127 

± SD, 0.297 ± 0.011 g) were placed in individual plastic containers (10 cm diameter, 5 cm 128 

height), and held in a 20-l aquarium under the same conditions as in the previous experiment. 129 

Each juvenile was fed for 1 h with 25 of the previously radiolabelled Artemia sp. At the end 130 

of the feeding period, the cuttlefish were immediately counted. From that time on, the 131 

cuttlefish were fed twice a day with uncontamined Artemia sp. for one month and regularly 132 

counted to determine radiotracer depuration kinetics and assimilation efficiency. As 133 

mentioned above, juveniles showing poor health condition were removed leading to a sample 134 

number decrease along the experiment: n = 16 from days 0 to 2, 14 from days 3 to 14, 4 from 135 

days 17 to 22 and 1 from days 24. Throughout the depuration period, faeces were removed 136 

twice a day to reduce possible radiotracer recycling through leaching from the faeces. In 137 

addition, after 3 h, 9 d, and 22 d of exposure, 3 others juveniles were counted and dissected to 138 

determine the radiotracer distribution among the digestive gland, the cuttlebone and the 139 

remaining tissues. 140 

 141 

Radioanalyses and data treatment 142 

Radioactivities were measured using a high-resolution γ-spectrometry system consisting of 143 

four coaxial Germanium (N- or P-type) detectors (EGNC 33-195-R, Canberra® and Eurysis®) 144 

connected to a multi-channel analyzer and a computer equipped with a spectra analysis 145 

software (Interwinner® 6). The detectors were calibrated with an appropriate standard for each 146 

counting geometry used and measurements were corrected for background and physical decay 147 
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of the radiotracer. Counting times were adapted to obtain relative propagated errors less than 148 

5% (Rodriguez y Baena, 2006b). They ranged from 10 min to 30 min for whole juveniles and 149 

from 10 min to 24h for the dissected tissues. 150 

Uptake of the 203Hg from seawater was expressed as change in concentration factors (CF; 151 

ratio between radiotracer content in the juvenile – Bq g-1 – and time-integrated activity in 152 

seawater – Bq g-1) along time (Warnau et al. 1996). Uptake kinetic was best described by a 153 

saturation equation (Eq.1): 154 

CFt = CFss (1-e-ke t) (Eq. 1) 155 

where CFt and CFss are the concentration factors at time t (d) and at steady state, respectively, 156 

ke is the biological depuration rate constants (d-1) (Whicker & Schultz 1982).  157 

Radiotracer depuration kinetics were expressed in terms of change of percentage of remaining 158 

activity (i.e., radioactivity at time t divided by initial radioactivity measured in the organisms 159 

or in the tissue at the beginning of the depuration period * 100) along with time. 160 

The depuration kinetic was best fitted by a mono-exponential equation (Eq. 2): 161 

At = A0 e
-ke t (Eq. 2) 162 

where At and A0 are the remaining activities (%) at time t (d) and 0, respectively, and ke is the 163 

biological depuration rate constant (d-1). The determination of ke allows the calculation of the 164 

radiotracer biological half-life (Tb½= ln2 / ke). In the context of seawater and feeding 165 

experiment, A0 represents the absorption (A0,w) and the assimilation (AE) efficiencies, 166 

respectively. 167 

 168 

Bioaccumulation model 169 

The relative contribution of each uptake pathway was determined using the bioaccumulation 170 

model originally proposed by Thomann (1981) and revised by Thomann et al. (1995) and 171 

Metian et al. (2008). In this model, the total concentration of radiotracers in the juveniles, Ct 172 
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(Bq g-1) is equal to the sum of each concentration resulting from the uptake by the different 173 

pathways (Eq. 3): 174 

Ct = Cf,ss + Cw,ss
 (Eq. 3) 175 

where Cf,ss is the food-derived radiotracer concentration (Bq g-1) in juveniles at steady state 176 

(Eq. 4) and Cw is the water-derived radiotracer concentration (Bq g-1) in juveniles at steady 177 

state (Eq. 5).  178 

Cf,ss = (AE × IR × Cf) / ke,f (Eq. 4) 179 

Cw,ss = (A0,w × ku,w × Cw) / ke,w
 (Eq. 5) 180 

where A0,w is the absorption efficiencies (%) of the radiotracer from seawater, AE is the 181 

assimilation efficiency (%) of the radiotracer from food, Cf and Cw are the radiotracer 182 

activities in food and seawater (Bq g-1 and Bq ml-1, respectively), respectively, IR is the 183 

ingestion rate (g g-1 d-1), ku,w is the uptake rate constants (d-1) from seawater, ke,f and ke,w are 184 

the biological depuration rate constants (d-1), for food and water pathways, respectively. 185 

The relative contribution (%) of each uptake pathway is then assessed from the relation: 186 

% food = Cf,ss / (Cf,ss + Cw,ss) 187 

% seawater = Cw,ss / (Cf,ss + Cw,ss) 188 

 189 

Constants (and their statistics) of the best fitting equations (decision based on ANOVA tables 190 

for two fitted model objects) were estimated by iterative adjustment of the models using the 191 

nls curve-fitting routine in R freeware. The level of significance for statistical analysis was 192 

always set at α = 0.05. 193 

 194 

Results 195 

Contamination through seawater 196 
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Uptake activity of 203Hg in whole-body S. officinalis was best fitted by a saturation 197 

exponential equation with a calculated CFss of 480 (Fig. 1; Table 1). The CF actually 198 

measured at the end of the uptake period (CF10d) of 203Hg was 260 ± 70 (Table 2). Calculated 199 

CF10d for the different organs indicated that 203Hg was concentrated according to the following 200 

decreasing order: digestive gland (1460 ± 480) > remaining tissues (290 ± 80) > cuttlebone 201 

(47 ± 9). In terms of body distribution, 203Hg was mainly found in the remaining tissues all 202 

along the exposure period; this compartment accounted for 89 ± 3 and 80 ± 4 % of the whole 203 

body load of 203Hg after 3 d and 10 d of exposure, respectively (Table 2). The cuttlebone 204 

presented very low Hg activity (< 15 Bq g-1) and loads (< 3%) whereas the Hg activity in the 205 

digestive gland was increasing with time, varying from 24 ± 4 Bq g-1 at day 3 to 520 ± 170 Bq 206 

g-1 at day 9 corresponding to 8% and 20% of the total radioactivity loads, respectively. 207 

 208 

After the 10 d exposure period, non-contaminating conditions were restored and depuration 209 

kinetic of 203Hg was followed for 11 d. The whole-body depuration kinetic of 203Hg in S. 210 

officinalis was best described by a mono-exponential model (Fig. 2; Table 1). This result 211 

indicated that 95% of the 203Hg previously accumulated were depurated with a relatively 212 

biological half-life relatively short (i.e. 17 d, Table 1). After 11 d of depuration conditions, 213 

most of the 203Hg body load was associated with the remaining tissues (72%) while the 214 

digestive gland proportion increase up to 28% (Table 2). 215 

 216 

Contamination through food 217 

The depuration kinetic of 203Hg ingested with food in S. officinalis was best fitted by a mono-218 

exponential model, characterized by a biological half-life of 4 d (Fig.2; Table 1) and allowed 219 

an estimated assimilation efficiency of 91%. 220 
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During the depuration period, the digestive gland displayed highest proportion of the total 221 

body burden of 203Hg, i.e. 68, 60, 64 % after 3 h, 9 d and 22 d of depuration, respectively 222 

(Table 2). The distribution of 203Hg remained unchanged all along the loss experiment, with 223 

the cuttlebone always showing the lowest proportion of the radiotracer (Table 2). 224 

 225 

Bioaccumulation model 226 

In order to assess the relative contribution of each uptake pathway to the global Hg 227 

accumulation in S. officinalis, the different kinetic parameters obtained for seawater and food 228 

experiments were used to feed the bioaccumulation model, along with other parameters such 229 

as the 203Hg concentration in seawater and food (Cw: 0.364 Bq ml-1 and Cf: 3100 Bq g-1, 230 

respectively, present study) and the ingestion rate (IR: 0.07 g g-1 d-1, present study value being 231 

congruent with IR value determined by Koueta et al., 1999). Modelling showed that food 232 

represented the main pathway for 203Hg bioaccumulation in the juvenile of cuttlefish, 233 

contributing to 77 ± 16% of the global metal bioaccumulation vs. 23 ± 14% for the seawater 234 

pathway. 235 

 236 

Discussion 237 

Cephalopods are an increasing marine resource for world fisheries (Boyle & Rodhouse 2006). 238 

In the 1990s alone there was a 40% increase in squid catches worldwide (FAO 2007). 239 

Cephalopods are well-known for their capacity to accumulate high levels of non-essential 240 

metals, especially Ag and Cd, in their tissues (e.g. Martin & Flegal 1975, Bustamante et al. 241 

1998, 2008). Hence, the intake of contaminants such as metals by human through cephalopod 242 

consumption is a matter of concern (e.g. Pierce et al. 2008). Some studies also reported high 243 

concentrations of Hg in cephalopods from areas naturally contaminated by cinnabar such the 244 

Tyrrhenian and Adriatic Seas (e.g. Renzoni et al. 1973, Rossi et al. 1993, Storelli & 245 
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Marcotrigiano 1999). However, the dynamic of Hg incorporation and its metabolism in 246 

cephalopods remain poorly understood. In the field, Hg could be methylated that generally 247 

increases its toxicity as a result of its enhanced capacity of penetration across cell membranes 248 

(Boudou et al. 1983). The known methylHg uptake pathways in the biota are the transfer from 249 

the sediment where sediment-associated bacterial floras able to methylate part of the 250 

inorganic Hg (Compeau & Bartha 1985), and the consumption of the prey such as juveniles of 251 

shrimp, crab or fis where Hg is stored under the methylated form in variable proportions. 252 

Considering that sand burying is a transient cryptic behaviour of cuttlefish (Poirier et al. 253 

2004) and the grain size of the sediment selected by these species did not favour the 254 

methylation of Hg, the inorganic form of the metal could also be a significant source of 255 

accumulation for this nectobenthic cephalopod. In this study, uptake and depuration 256 

biokinetics of Hg were determined using inorganic carrier-free 203Hg in order to measure 257 

metal fluxes in real time at environmentally realistic contaminant concentrations (Warnau et 258 

al. 1996). 259 

As a typical cephalopod, the common cuttlefish Sepia officinalis has high food intake 260 

requirements to sustain its elevated growth rate. Being active predators, cephalopods have a 261 

high digestion efficiency (Boucher-Rodoni et al. 1987) and food has been shown to constitute 262 

an important source of uptake for various trace elements such as Am, Cd, Co and Zn (e.g., 263 

Guary & Fowler 1982, Koyama et al. 2000, Bustamante et al. 2002ab, 2004). However, 264 

seawater could be an important bioaccumulation pathway as well, as elements can be taken up 265 

efficiently through the skin and the gills. For instance, it has been shown that seawater is the 266 

main intake pathway for Ag in adult S. officinalis (Bustamante et al. 2004). Therefore, there 267 

was a need to provide insights on the bioaccumulation of Hg under controlled experimental 268 

conditions in order to delineate the contribution of its uptake via the dissolved and dietary 269 

pathways. 270 
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After 10 d of exposure to dissolved 203Hg, cuttlefish displayed quite elevated whole-body 271 

activities (CF = 260 ± 70), indicating that Hg was efficiently bioconcentrated from seawater 272 

(Table 2). The estimated steady-state equilibrium (CFss = 480 ± 150) would be reached after 2 273 

weeks of exposure. Among the three considered compartments, the digestive gland displayed 274 

the highest concentration capacity 203Hg (CF = 1460 ± 480; Table 2) whereas the cuttlebone 275 

showed the lowest CF (i.e. less than 50; Table 2). This pattern is very similar to that for 276 

experimental data reported for other metals such as Ag, Cd, Co and Zn (Bustamante et al. 277 

2002a, 2004). However, in terms of body burden distribution, 203Hg was mainly stored in the 278 

remaining tissues (up to 80 % of the total Hg load; Table 2), which are mainly composed of 279 

muscles although they include the skin and the respiratory organs (i.e. gills) corresponding to 280 

the tissues directly exposed to the contaminated seawater. Consistently, Bustamante et al. 281 

(2006) reported that 70-90% of the total Hg body burden was stored in the muscular tissues in 282 

different cephalopod species collected from the North East Atlantic. This could be explained 283 

by the fact that 1) that these tissues represents more than 70% of the total body weight and 2) 284 

that Hg has a stronger affinity for the sulphydryl groups of muscular proteins rather than of fat 285 

tissue found in fish and/or cephalopod (Bloom 1992, Bustamante et al. 2006). 286 

When Sepia officinalis was exposed to dissolved Hg, the digestive gland contained 8% and 287 

20% of the total Hg burden after 3 d and 10 d exposure, respectively (Table 2). Therefore, this 288 

increasing Hg proportion found in this organ implied that the digestive gland accumulated 289 

more efficiently than the others. In a second time, in depuration conditions, 203Hg was release 290 

of following a mono-exponential model and whole-body depuration was relatively rapid with 291 

a Tb½ of approx. 17 d. After 11 d of depuration under running seawater, the tissues in direct 292 

contact with seawater contained significantly less 203Hg than at the beginning of the 293 

depuration period varying from 135 ± 15 Bq g-1 and to 95 ± 17 Bq g-1 at d 0 and d 11 of the 294 

depuration period, respectively, whereas the digestive gland activity remained unchanged 295 
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(i.e., from 520 ± 170 Bq g-1 at day 0 to 560 ± 30 Bq g-1 at day 11; Table 2). These results 296 

suggest that 1) the digestive gland shows a stronger retention capacity for Hg than the other 297 

compartments, and/or that 2) a metal translocation occurred from the remaining tissues 298 

towards the digestive gland. In cephalopods, the digestive gland plays obviously a major role 299 

in the digestive processes but also in the detoxification of xenobiotics. Indeed, this organ has 300 

already been shown to retain translocated metals from the other tissues (Bustamante et al. 301 

2002a, 2004). The digestive gland is involved in the storage and detoxification of several 302 

metals such as Ag, Cd, Cu, or Zn (e.g. Miramand & Bentley 1992, Bustamante et al. 2002b, 303 

Dorneles et al. 2007) and persistent organic pollutants such as PCBs (Ueno et al. 2003, Danis 304 

et al. 2005, Storelli et al., 2006). However, due to the fact this organ does not store Hg in 305 

large amounts as shown in the field study (Bustamante et al. 2006), the digestive gland might 306 

be also involved in the depuration of Hg when cuttlefish is exposed to the dissolved metal. 307 

In the case of dietary exposure, the AE of Hg ingested with food was found to be nearly 100% 308 

(Table 1). This high degree of Hg assimilation might be due to the very efficient digestive 309 

metabolism that characterizes the juvenile cuttlefish (Mangold 1989). Indeed, this early life 310 

stage is characterized by a predominant intracellular digestion process (compared to the 311 

extracellular digestion which is dominant in adults) (Boucaud-Camou & Roper 1995), which 312 

could favour the metal assimilation. Such extreme assimilation efficiency has already been 313 

documented in cuttlefish: for instance, 90% and almost 100% AE for Cd and Co, respectively, 314 

were reported in juvenile fed brine shrimp (Bustamante et al. 2002a, 2004). Nevertheless, the 315 

assimilated Hg was rapidly depurated with a Tb½ of 4 d, which suggests that the processes 316 

governing Hg elimination are particularly efficient as well. Indeed, the 203Hg activities in the 317 

digestive gland dropped from 310 ± 80 Bq g-1 to 36 ± 6 Bq g-1 during the 22 d depuration 318 

period after the feeding (Table 2). These results highlight the efficient excretion capacity of 319 

the digestive gland for Hg. Because following dietary exposure the main fraction of the whole 320 
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Hg body burden was associated with this organ, it is not surprising that the retention time of 321 

Hg following dietary exposure was 4 times lower than following seawater exposure, i.e. 4 d 322 

vs. 17 d (Table 1). 323 

In our experimental conditions, it appeared that the exposure of cuttlefish to contaminated 324 

seawater lead to an accumulation of the Hg in the juvenile remaining tissues (> 80%) mainly 325 

composed of muscular tissues. In the same time, Hg was translocated to the digestive gland 326 

and subsequently eliminated from the organism. Following dietary exposure, inorganic Hg 327 

was assimilated via the digestive gland and then rapidly eliminated. Consequently, the storage 328 

and/or redistribution of the bioaccumulated metal towards the remaining tissues is limited in 329 

cuttlefish. Nonetheless, considering both seawater and dietary exposure, food appears as the 330 

predominant pathway for inorganic Hg bioaccumulation in juvenile cuttlefish. This result is 331 

not surprising considering the relative high ingestion rate and the efficient digestive 332 

metabolism of cephalopods (Lee 1994). 333 

 334 
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 462 
 463 
 464 
 465 
Fig. 1: Sepia officinalis. Whole-body uptake kinetics of 203Hg in juvenile cuttlefish exposed for 10 days to the 466 

radiotracer dissolved in seawater (concentration factors, CF; mean ± SD, n=16 from days 0 to 3 and n = 14, 7, 6 467 

at days 6, 9 10, respectively). 468 
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469 

 470 
 471 

Fig. 2: Sepia officinalis. Whole-body loss kinetics of 203Hg (% of remaining activity; mean ± SD) in juvenile 472 

cuttlefish A) previously exposed to radiolabelled seawater for 10 days (n= 6 from days 0 to 4, 4 at day 6 and 1 at 473 

day 11); B) previously fed with radiolabelled brine shrimp (n = 16 from days 0 to 2, 14 from days 3 to 14, 4 from 474 

days 17 to 22 and 1 from days 24). 475 

Parameters for the best fitting equations are given in Table 1. 476 
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Table 1. Sepia officinalis. Whole-body uptake and loss kinetic parameters of 203Hg in whole cuttlefish following different exposure experiments: 

1) individuals (n = 16) were exposed 10-d to the radiotracer in seawater then placed 11-d in depuration conditions (n = 6); 

2) individuals fed on radiolabelled brine shrimp Artemia sp. were placed in depuration conditions for 30 d (n = 16); 

 

Uptake parameters: CFss concentration and transfer factors at steady state; ku: uptake rate constant (d-1) 

All loss kinetics followed a mono-exponential depuration fit. 

Depuration parameters: A0: activity (%) lost according to the exponential component; ASE: asymptotic standard error; ke: depuration rate 

constant (d-1), Tb½: biological half-life (d); R²: determination coefficient of the uptake or loss kinetics; p: probability of the model adjustment: 

*** and **: p-values < 0.001 and < 0.01, respectively. 

 

 
         Condition Uptake  Loss 

 CFss ke R²  A0 (SE) ke Tb½ ± SE (d) R2 

                  
         

1) uptake seawater 480 ± 150 0.083 ± 0.036 0.703  - - - - 

         

2) loss seawater - - -  95.3 (2.8) *** 0.041 *** 16.9 ± 3.9 0.472 

         

3) loss food - - -  90.7 (2.6) *** 0.180 *** 3.9 ± 0.3 0.804 
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Table 2. Sepia officinalis. Concentration Factors (mean CF ± SD) and tissue distribution (mean % ± SD) of 203Hg during seawater and feeding 1 

experiments. 2 

 3 

                   Seawater contamination  Food contamination  

Compartments  Uptake (3d, n = 3)  Uptake (10d, n=3) Loss (11d, n=1)  Loss (3h, n=3)  Loss (9d, n=3)  Loss (22d, n=3)  

  Concentration 
Factor 

 Distribution 
(%) 

 Concentration 
Factor 

 Distribution 
(%) 

Distribution 
(%) 

 Distribution 
(%) 

 Distribution 

(%) 
 Distribution 

(%) 
 

                                  Digestive gland  110 ± 20  8.3 ± 2.6  1460 ± 480  19.7 ± 3.8 28.2  67.9 ± 10.6  59.9 ± 3.4  63.6 ± 5.8  

Cuttlebone  29.7 ± 3.7  2.8± 1.0  47.0 ± 8.8  <1 <1  1.4 ± 0.9  2.4 ± 1.9  9.9 ± 3.2  

Remaining tissues  110 ± 10  88.9 ± 3.4  290 ± 80  79.5 ± 3.7 71.8  30.7 ± 9.9  37.7 ± 4.5  26.5 ± 3.3  

Whole body  96 ± 15 

 

 100  260 ± 70   100 100  100  100  100  

                 


