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LEARNING THE MORPHOLOGICAL DIVERSITY∗

GABRIEL PEYRÉ† , JALAL FADILI‡ , AND JEAN-LUC STARCK§

Abstract. This article proposes a new method for image separation into a linear combination
of morphological components. Sparsity in global dictionaries is used to extract the cartoon and
oscillating content of the image. Complicated texture patterns are extracted by learning adapted
local dictionaries that sparsify patches in the image. These global and local sparsity priors together
with the data fidelity define a non-convex energy and the separation is obtained as a stationary point
of this energy. This variational optimization is extended to solve more general inverse problems
such as inpainting. A new adaptive morphological component analysis algorithm is derived to find
a stationary point of the energy. Using adapted dictionaries learned from data allows to circumvent
some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is
indeed crucial to capture complex texture patterns.

Key words. Adaptive morphological component analysis, sparsity, image separation, inpainting,
dictionary learning, cartoon images, texture, wavelets.

AMS subject classifications. 41A25, 42C40, 65T60

Morphological diversity is a concept where an image is modeled as a sum of
components, each of these components having a given morphological signature. Spar-
sity in a redundant dictionary built by amalgamating several sub-dictionaries can
be used to discriminate between these signatures, and fast algorithms such as the
Morphological Component Analysis (MCA) have been developed to reconstruct si-
multaneously all the morphological components [48]. For natural images, containing
both edges/contours and oscillatory textures, two fixed dictionaries can be used such
as the local DCT for representing the texture and the curvelet for the edges [49]. Re-
sults were interesting, but this approach presents some limitations since complicated
textures may not be well represented by the local DCT, leading to a poor separation.

This paper extends the morphological diversity concept by learning the morpholo-
gies of complicated texture layers to enhance the separation process. These learned
dictionaries are coupled with more traditional fixed morphologies to characterize the
cartoon and oscillating content of an image. A new adaptive morphological compo-
nent analysis algorithm performs iteratively and alternately both the learning and the
separation.

1. Image Separation and Inverse Problem Regularization.

1.1. Image Separation. The image separation process decomposes an input
image u ∈ R

N of N pixels into a linear combination of |Λ| layers {us}s∈Λ, the so-
called morphological components

u =
∑

s∈Λ

us + ε, (1.1)
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where ε is an error term representing noise and model imperfections. Each us accounts
for a different kind of features of the original data u.

Image separation is usually achieved by solving a variational optimization problem
of the form

min
{us}s∈Λ
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+ µ
∑

s∈Λ

Es(us), (1.2)

where each energy Es : R
N 7→ R

+ favors images with some specific kind of structures.
More precisely, for successful separation, each energy Es is designed to be as small
as possible over the layer us it is serving, while being large (or at least not as small)
over the other components. Thus each of these layers has its attached prior Es, and
multiplying the number of priors might help to recover intricate image structures such
as smooth areas, edges and textures of natural images.

1.2. Inverse Problems Regularization. Many problems in image processing
can be cast as inverting a linear system f = Ku + ε where u ∈ R

N is the data to
recover, f ∈ R

m is the observed image and ε is a Gaussian white noise of known
finite variance. The bounded linear operator K : R

N 7→ R
m is typically ill-behaved

since it models an acquisition process that entails loss of information. This yields
ill-posedness of the inverse problem.

This inversion problem is regularized by adding some prior knowledge on the
typical structures of the original image u. This prior information accounts for the
smoothness of the solution and can range from uniform smoothness assumption to
more complex knowledge of the geometrical structures of u. The decomposition prob-
lem (1.2) is extended to handle an ill-behaved operator K which yields the following
minimization problem

min
{us}s∈Λ
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∣

2

+ µ
∑

s∈Λ

Es(us) . (1.3)

The simple case of image separation (1.1) corresponds to K = IdN . Typical
examples of inverse problems include deconvolution, inpainting and super-resolution.
In the latter, one seeks to recover a high-resolution image u from a low-resolution
observation f . In such a case, K is the convolution by a blurring kernel followed by a
sub-sampling, and f lacks the high frequency content of u.

There is a flurry of research activity on linear inverse problems regularization in
image processing. Comprehensive overviews can be found in dedicated monographs.

Sparsity-based regularization (e.g. in the wavelet domain) methods have re-
cently received considerable attention, either by adopting a Bayesian expectation-
maximization framework [25, 26, 6], by introducing surrogate functionals [14], or
using a forward-backward splitting proximal framework [12, 23]. This framework has
been successfully applied to inpainting [21, 23], deconvolution [24], multichannel data
restoration and blind source separation [53, 7].

1.3. Image Inpainting. This paper focuses on the inpainting inverse problem.
Inpainting is to restore missing image information based upon the still available (ob-
served) cues from destroyed or deliberately masked subregions of the image f .

The inpainting problem corresponds to a diagonal operator

K = diagi(ηi) where ηi =

{

1 if i /∈ Ω,
0 if i ∈ Ω.
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where Ω ⊂ {0, . . . , N − 1} denotes the set of missing pixels.
Inpainting of non-textured images has been traditionally approached by diffusion

equations that progressively fills the missing pixels. The original work of Masnou and
Morel makes use of the continuation law of the level sets [35]. Following their work,
several authors proposed high order PDEs, see for instance [10, 5, 3] and anisotropic
diffusion [50] for non-texture inpainting. The inpainting of complicated textures can
be achieved by copy-and-paste using available information from best matching can-
didates (e.g. surrounding pixels/regions) assuming self-similarity of the image. This
idea underlies many methods in computer graphics [13]. The Morphological Com-
ponent Analysis (MCA) is able to solve the inpainting problem [21, 23] for images
containing simple textural content such as locally parallel oscillations.

2. Morphological Diversity Modeling with Sparsity.

2.1. Cartoon Modeling. For the sketchy part of an image, a usual prior is to
assume that it belongs to some non-linear Banach space that favors the discontinuities
in the image. In particular, this entails that the functional norm of the sketchy part in
such spaces is small. Such spaces include the bounded variation (BV) space with the
associated total variation norm introduced by Rudin, Osher and Fatemi [46]. Another
important prior exploits the sparsity of wavelet coefficients, which corresponds to
various kinds of Besov norms. A standard example of such sparsity-promoting prior
is the ℓ1-norm popularized by Donoho and Johnstone [17] in the wavelet context for
denoising purposes.

Wavelets are however sub-optimal to efficiently capture edge singularities dis-
tributed along smooth curves. The curvelet tight frame, introduced by Candès and
Donoho [9], is able to better represent cartoon images with smooth edges. Sparsity
in a curvelet tight frame can thus improve the modeling of edges.

2.2. Oscillating Texture Modeling. Simple texture models can also be de-
fined through variational energies that favor oscillations in images. Toward this goal,
Meyer introduced a functional space where oscillating patterns have a small norm. It
turns out that this Banach space is close to the dual of the BV space [37]. Meyer has
defined the so-called G-norm that can be used to perform the decomposition of an
image into a cartoon component (using for instance the total variation norm) and an
oscillating texture component.

The work of Meyer paved the way to an active research area in variational image
processing: cartoon+texture image decomposition. Several authors have proposed
algorithms to solve Meyer’s problem or close extensions. We note for instance iterative
optimization schemes such as the one proposed by Aujol et al. [2]. Other algorithms
include [52, 30], to cite only a few.

Sparsity-based energies have also been proposed to decompose an image into
cartoon+oscillating texture. To this end, Starck and co-authors [21, 49, 48] introduced
the MCA framework, where overcomplete fixed dictionaries (one for each layer) are
used as a source of diversity to discriminate between the components. The key is that
each dictionary must sparsify the corresponding layer while being highly inefficient
in representing the other content. For example, MCA is capable of decomposing an
image into structure+oscillating texture, using the wavelet or curvelet dictionary for
the cartoon layer, and the frame of local cosines for the oscillating texture.

Other dictionaries can enhance over the results of local cosines to capture warped
locally oscillatory patterns. For instance, the waveatoms of Demanet and Ying [15]
and the brushlets of Meyer and Coifman [36] have been designed for this goal.
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However, the standard MCA is intrinsically limited by the discriminative perfor-
mance of its fixed non-adaptive dictionaries. Obviously, the latter are not able to
sparsify complex textures appearing in natural images.

2.3. Adaptivity and Dictionary Learning. To enhance the modeling of com-
plicated edge layouts and intricate texture patterns, one needs to resort to adapted
energies, that are tuned to fit the geometry of complex images.

A class of adaptive methods consists in using a family of orthogonal bases and
look for the best basis in this family using combinatorial optimization algorithms. The
wedglets [16] and the bandlets [28, 45] better represent contours than a traditional
wavelet dictionary. For oscillating textures, a proper basis of the wavelet packet tree
[33] with an appropriate tiling of the frequency domain sparsifies some oscillatory
patterns. Cosine packets allow a dyadic partition of the spatial domain [33] accord-
ing to a quad-tree structure. Grouplet bases [34] are able to approximate efficiently
oscillating and turbulent textures, and were successfully applied to texture synthesis
and inpainting in [42].

Contrary to these approaches, which are able to handle only a particular kind of
images or textures, other approaches can adapt to the content of images through a
learning process. By minimizing a sparsity criterion, such algorithms allow to optimize
a local dictionary for a set of exemplar patches.

Olshausen and Field [40] were the first to propose a way of learning the dictionary
from the data and to insist on the dictionary redundancy. They have applied this
learning scheme to patches extracted from natural images. The major conclusion of
this line of research is that learning over a large set of disparate natural images leads
to localized oriented edge filters. Since then, other approaches to sparse coding have
been proposed using independent components analysis [4], or different sparsity priors
on the representation coefficients [29, 27, 22, 1].

It is worth point out that this dictionary learning bears tight similarities with
sparsity-based blind source separation (BSS) algorithms as proposed in [53] and in
the GMCA algorithm [7]. The role played by the dictionary parallels the one of the
mixing matrix in BSS.

These learned dictionaries have proven useful to perform image denoising [19],
inpainting [32], texture synthesis [43] and image recognition [31].

A preliminary description of the adaptive MCA method was presented in [44].
Shoham and Elad have developed in [47] an adaptive separation method that approx-
imately minimizes our adaptive MCA energy, that is faster if no global dictionary is
used.

2.4. Contributions. This paper proposes a new adaptive image separation
method. It extends previous work on morphological component analysis by adapt-
ing the dictionary used to model and discriminate complex texture layer(s). Section
3 introduces the notions of global and local dictionaries, that can be combined to
achieve high quality separation. The local dictionaries are learned during the separa-
tion within a new adaptive morphological component analysis algorithm detailed in
Section 4. This algorithm converges to a stationary point of a non-convex variational
energy. Numerical results show that a single adaptive texture layer can be trained
without user intervention to extract a complicated texture. Additional layers can
be added as well, and in this case, a proper user-defined initialization is required to
drive the algorithm to the desired decomposition which corresponds to a particular
stationary point of the energy. This option offers some flexibility to the user to guide
the decomposition algorithm toward the desired solution.
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3. Global and Local Sparsity Energies. Each energy Es(us) depends on a
dictionary Ds that is a collection of atoms used to describe the component us sparsely.
This paper considers both global dictionaries, that are used to describe the content of
the component as a whole, and local dictionaries that are applied to (local) patches
extracted from the component.

The set of indices is thus decomposed as Λ = ΛG ∪ ΛL, and to each global layer
s ∈ ΛG is assigned a global energy EG(us, Ds), whereas a local layer uses a local
energy EL(us, Ds). The global dictionaries are fixed by the user and correspond typ-
ically to a cartoon morphological component or simple oscillating patterns. On the
contrary, local dictionaries {Ds}s∈ΛL are learned by our algorithm to capture compli-
cated stationary texture pattern. The corresponding adaptive separation process thus
extends (1.2) to an optimization on both the components and the local dictionaries

min
{us}s∈Λ,{Ds∈Ds}s∈ΛL
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+µ
∑

s∈ΛG

EG(us, Ds)+µ
∑

s∈ΛL

EL(us, Ds), (3.1)

where Ds is a suitable set of convex constraints.

3.1. Sparsity-based Energy for a Global Dictionary. A global dictionary
Ds = (ds,j)06j<ms

, for s ∈ ΛG, is a (possibly redundant) collection of ms > N
atoms ds,j ∈ R

N , that can be represented as a rectangular matrix Ds ∈ R
N×ms . The

decomposition of a component us using this dictionary reads

us = Dsxs =

ms−1
∑

j=0

xs[j]ds,j .

For a redundant dictionary where ms > N , such a decomposition is non-unique, and
a sparsity-promoting energy favors sparse coefficients xs, for which most of the entries
xs[j] are zero. In this paper we use a convex ℓ1 sparsity measure

||xs||1 =

ms−1
∑

j=0

|xs[j]|,

which was introduced by Chen, Donoho and Saunders [11] in the basis pursuit denois-
ing method for sparse approximation.

Finding a sparse approximation Dsxs of us in Ds can then be formulated as
minimizing the following global energy

EG(us, Ds) = min
xs∈Rms

EG(us, xs, Ds), (3.2)

where EG(us, xs, Ds) =
1

2
||us − Dsxs||2 + λ||xs||1. (3.3)

The parameter λ allows an approximate reconstruction Dsxs ≈ us and should be
adapted to the noise level ||ε||.

Cartoon sparse models. Wavelets [33] are used extensively in image compression
and allow to capture efficiently images with isotropic singularities and images with
bounded variations. We use a redundant dictionary Dwav of translation invariant
wavelets to capture the sketchy content of an image, which is assumed to have a small
total variation.

To capture more regular edge patterns, we use a redundant tight frame of curvelets
Dcurv, introduced by Candès and Donoho [9] to represent optimally cartoon images
with C2-regular edge curves.
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Oscillating sparse models. Locally oscillating and stationary textures are handled
with a redundant tight frame Ddct of local cosines [33]. We use local cosine atoms
defined on patches of 32×32 pixels, with an overlapping factor of 2 along the horizontal
and vertical directions, so that the redundancy of Ddct is ms/N = 4. As explained
in the introduction, other dictionaries well-suited for sparsifying oscillating patterns
could be used as well, e.g. waveatoms [15].

3.2. Sparsity-based Energy for a Local Dictionary. We use local dictio-
naries {Ds}s∈ΛL to capture fine scale structures of the textures. For s ∈ ΛL, a local
dictionary Ds ∈ R

n×ms is used to represent patches Rk(us) ∈ R
n of n = τ × τ pixels

extracted from a component us,

∀ 0 6 k1, k2 <

√
N

∆
, −τ/2 6 i1, i2 < τ/2, Rk(us)[i] = us(k1∆ + i1, k2∆ + i2),

where i = (i1, i2) is the location of a pixel in the patch, k = (k1, k2) indexes the patch
location and is represented as an integer in {0, . . . , N/∆2−1}, and 1 6 ∆ 6 τ controls
the sub-sampling of the patch extraction process.

Similarly to the energy (3.2) associated to a global dictionary, we define an energy
EL(us, Ds) associated to a local dictionary Ds. This energy allows one to control the
sparsity of the decomposition of all the patches Rk(us) in Ds. Following Aharon and
Elad [19, 1], we define this energy EL(us, Ds) as

EL(us, Ds) = min
{xs,k}k∈Rms×N/∆2

, EL(us, {xs,k}k, Ds) (3.4)

where EL(us, {xs,k}k, Ds) =
1

p

∑

k

(

1

2
||Rk(us) − Dsxs,k||2 + λ||xs,k||1

)

, (3.5)

where p = (τ/∆)2 = n/∆2. Each xs,k corresponds to the coefficients of the decom-
position of the patch Rk(us) in the dictionary Ds. The weight 1/p in the energy
(3.4) compensates for the redundancy factor introduced by the overlap between the
patches Rk(us). This normalization allows one to re-scale the local energy (3.4) to be
comparable with the global one (3.2).

3.3. Images vs. Coefficients. The variational formulation (3.1) proposed in
this paper directly seeks for the components {us}s∈Λ, and the coefficients are only
considered as auxiliary variables. Alternative formulations of inverse problems in
redundant dictionaries or union of bases would look instead for the coefficients xs or
{xs,k}k of each component in the dictionary Ds.

The corresponding coefficient-based minimization reads

({x⋆
s}s∈Λ, {D⋆

s}s∈ΛL) ∈ argmin
{xs}s∈Λ,{Ds∈Ds}s∈ΛL

1

2

∣

∣

∣

∣

∣

∣
f −K

∑

s∈ΛG

Dsxs −K
∑

s∈ΛL,k

R∗
k(Dsxs,k)

∣

∣

∣

∣

∣

∣

2

+ λ
∑

s∈ΛG

||xs||1 + λ
∑

s∈ΛL,k

||xs,k||1,
(3.6)

where the dual operator R∗
k reconstructs an image in R

N with zero values outside
the patch. Such a coefficient-based optimization is used for global dictionaries in
[49, 21, 23].
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A global components for s ∈ ΛG is retrieved from these optimized coefficients as
u⋆

s = Dsx
⋆
s. For a local dictionary, the reconstruction from the patches are averaged

∀ s ∈ ΛL, u⋆
s =

∑

k

R∗
k(D⋆

sx⋆
s,k). (3.7)

The reconstruction formula (3.7) shows that the optimization (3.6) for the local
component s ∈ ΛL corresponds to finding a sparse approximation of us in the highly
redundant global dictionary {R∗

k(ds,j)}k,j that gathers all the atoms at all patch
locations.

The two formulations (3.1) and (3.6) are expected to differ significantly. These
differences share some similarities to the one analyzed in [20], that studies analysis and
synthesis signal priors. In our setting, where we use local dictionaries, the formulation
(3.1) over the image domain makes more sense. In this formulation, each patch
is analyzed independently by the sparsity prior, and the L2 fidelity term gathers
linearly the contributions of the patches to obtain us. As noticed by Aharon and
Elad [19, 1], this average of sparse representations has some flavor of minimum mean
square estimation, which further helps to reduce the noise.

Furthermore, the formulation (3.6) corresponds to the optimization of coefficients
in a highly redundant dictionary, which is demanding numerically. In contrast, our
formulation (3.1) allows for an iterative scheme that optimizes the coefficients inde-
pendently over each patch and average them afterward. We describe this adaptive
MCA scheme in the following section.

The last chief advantage of (3.1) is that it decouples the contribution of each local
dictionary Ds, for s ∈ ΛL. This simplifies the learning process, since each dictionary
is independently optimized during the iterations of our adaptive MCA.

4. Adaptive Morphological Component Analysis. The morphological com-
ponent analysis (MCA) algorithm [49, 48] allows to solve iteratively the variational
separation problem (1.3) for sparsity-based energies Es as defined in (3.2). For the de-
composition of an image into its geometrical and textured parts, the original approach
[49, 48] uses fixed dictionaries of wavelets Dwav, curvelets Dcurv, and local cosines Ddct.
This paper extends the MCA algorithm to deal with energies Es associated to local
dictionaries Ds as defined in (3.4). In addition, our adaptive MCA algorithm is able
to optimize the local dictionaries Ds, which are automatically adapted to the texture
to extract.

4.1. Adaptive Variational Problem. The new adaptive MCA algorithm min-
imizes iteratively the energy (1.3) by adding to the decomposition variables {us}s∈Λ

and {Ds}s∈ΛL auxiliary variables {xs}s∈Λ corresponding to the coefficients of the de-
composition of each us. For a global layer s ∈ ΛG, these coefficients are stored in a
vector xs ∈ R

ms . For a local dictionary s ∈ ΛL these coefficients are a collection of

vectors {xs,k}N/∆2−1
k=0 ∈ R

ms×N/∆2

.
The energy minimized by the adaptive MCA algorithm is

E({us}s, {xs}s, {Ds ∈ Ds}s∈ΛL) =
1

2
||f −K

∑

s

us||2+

µ
∑

s∈ΛG

EG(us, xs, Ds) + µ
∑

s∈ΛL

EL(us, xs, Ds) ,
(4.1)

where the global and local energies EG and EL are defined in (3.3) and (3.5).
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The constraint Ds = (dj,s)06j<ms ∈ Ds for s ∈ ΛL ensures that the columns di,s

of Ds have bounded norm, and avoids the classical scale indeterminacy between the
dictionaries and the coefficients. We also impose that the atoms have zero mean, which
is consistent with the intuition that a texture contains locally only high frequencies.
The convex set Ds reads

Ds =

{

D ∈ R
n×ms \ ∀ j = 0, . . . ,ms − 1, ||dj,s|| 6 1 and

∑

i

dj,s[i] = 0

}

. (4.2)

Adaptive non-convex minimization. The energy E is marginally convex in each of
its arguments, and is optimized over a convex set. However, E is non-convex jointly
in all its arguments. We thus propose an iterative block relaxation coordinate descent
minimization scheme, and show that it converges to a stationary point of the energy.

The adaptive MCA algorithm operates by minimizing successively E on the set of
components {us}s∈Λ, on the set of coefficients {xs}s∈Λ and the set of local dictionary
{Ds}s∈ΛL . Each minimization is performed while keeping all remaining variables
fixed.

The initialization of the dictionaries {Ds}s∈ΛL is thus important, and user in-
tervention can improve the result by selecting initial features relevant for texture
extraction.

4.2. Step 1 – Update of the Coefficients {xs}s∈Λ. The update of the coef-
ficients requires the minimization of E with respect to {xs}s∈Λ. Since this problem is
separable in each of the coefficient variable xs, we perform the optimization indepen-
dently for the coefficients of each global layer or each patch in a local layer.

For a global dictionary s ∈ ΛG, this corresponds to solving

xs = argmin
x∈Rms

1

2
||us − Dsx||2 + λ||x||1. (4.3)

For a local dictionary s ∈ ΛL, the minimization is performed with respect to each
patch index k

xs,k = argmin
x∈Rms

1

2
||Rk(us) − Dsx||2 + pλ||x||1 . (4.4)

Both (4.3) and (4.4) correspond to sparse coding by minimizing a basis pursuit de-
noising (BPDN or Lasso for statisticians) problem [11]. Various algorithms have been
proposed to solve this convex problem efficiently, among which interior point solvers
[11], iterative soft thresholding [14, 12], or Nesterov multi-steps scheme [38, 39].

4.3. Step 2 – Update of the Components {us}s∈Λ. Updating the compo-
nents {us}s∈Λ requires to solve a quadratic minimization problem

min
{us}s∈Λ

||f −K
∑

s∈Λ

us||2 + µ
∑

s∈ΛG

||us − Dsxs||2 +
µ

p

∑

s∈ΛL,k

||Rk(us) − Dsxs,k||2. (4.5)

This is a high dimensional problem since it involves all the layers, and it can be solved
with a conjugate gradient descent.

An alternate method consists in cycling repeatedly on each component us for

s ∈ Λ, and optimizing (4.5) with respect to us alone. This generates iterates u
(ℓ)
s that

ultimately converge to a minimizer of (4.5). Although the convergence is slower than
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with a conjugate gradient descent, it is simpler to implement since each component
update is easy to compute.

At a step ℓ of this update of the components, a new iterate u
(ℓ+1)
s is obtained by

minimizing (4.5) with respect to us alone. For a global dictionary s ∈ ΛG, this leads
to

u(ℓ+1)
s = argmin

u∈RN

||rs −Ku||2 + µ||u − Dsxs||2 with rs = f −K
∑

s′ 6=s

u
(ℓ)
s′ ,

and for a local dictionary s ∈ ΛL

u(ℓ+1)
s = argmin

u∈RN

||rs −Ku||2 + µ
∑

k

||Rk(u) − Dsxs,k||2

This leads to the following update rule

u(ℓ+1)
s = (K∗K + µIdN )

−1
(K∗rs + µûs) , (4.6)

where the reconstructed ûs is computed differently depending whether the dictionary
is global or local

ûs =











Dsxs, if s ∈ ΛG,

1
p

∑

k

R∗
k(Dsxs,k), if s ∈ ΛL.

(4.7)

To derive the expression for a local dictionary, we used the fact that

1

p

∑

k

R∗
kRk = IdN ,

and a special care should be taken at the boundaries of the image.
For a general operator K, the update (4.6) requires to solve a well-conditioned

linear system, which can be computed by conjugate gradient. If the operator K is
known to be diagonalized in some basis (e.g. Fourier for convolution), this inversion
can be computed very efficiently in closed-form. For instance, in the image separation
problem, where K = IdN , the update of the component us reduces to the convex sum

u(ℓ+1)
s = (1 + µ)−1(rs + µûs).

In the inpainting problem, the update becomes

u(ℓ+1)
s [i] =

{

(1 + µ)−1(rs[i] + µûs[i]) if i ∈ Ω,

ûs[i] if i /∈ Ω.

4.4. Step 3 – Update of the Dictionaries {Ds}s∈ΛL . This update step con-
cerns only local dictionaries Ds for s ∈ ΛL. Since this problem is separable in each
of the dictionary, this optimization is performed for each Ds independently. This
corresponds to

Ds = argmin
D∈Ds

∑

k

||Rk(us) − Dxs,k||2 = argmin
D∈Ds

||Us − DXs||2F (4.8)
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where ||.||F stands for the Forbenius norm, the convex set Ds is defined in (4.2),

Us ∈ R
n×N/∆2

is the matrix whose k-column is Rk(us) ∈ R
n, and Xs ∈ R

ms×N/∆2

is
the matrix whose k-column is xs,k ∈ R

ms .
We perform this minimization using a projected gradient descent, that computes

iterates D
(ℓ)
s

D(ℓ+1)
s = PDs

(

D(ℓ)
s + τ(Us − D(ℓ)

s Xs)X
∗
s

)

(4.9)

where τ < 2/||XsX
∗
s || is the step size, and

(d̃j)
ms−1
j=0 = PDs(D)

is the projection of D = (dj)
ms−1
j=0 on the convex set Ds, that has an explicit expression

d̃j =
dj − c

||dj − c|| with c =
1

n

n−1
∑

i=0

dj [i].

We note that more efficient schemes, such as Nesterov multi-step descent [38, 39],
could be used to minimize (4.8). Other approaches, potentially faster, has been used
to perform the update of the dictionary [22, 1], but they do not minimize exactly
(4.8).

Figure 4.1 shows two example of dictionary learned from input exemplar textures.
One can see that the learned atoms dj do a good job at capturing the patterns of the
exemplar texture.

Exemplars ũ1 and ũ2 Dictionaries D1 and D2
Fig. 4.1. Example of dictionary learning, for patches of size τ = 10 pixels (only a subset of

the atoms is displayed on the right).
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4.5. Adaptive MCA algorithm. The adaptive MCA algorithm is summarized
in Algorithm 1. It iteratively cycles between these three steps. Each step is performed
with an iterative algorithm, and a tolerance ηcoef, ηcomp and ηdico is associate to these
inner iterations.

Algorithm 1: Adaptive Morphological Component Analysis.

Input: observation f , global dictionaries {Ds}s∈ΛG , parameters µ and λ ;
Initialization: ∀ s ∈ Λ, us = 0, ∀ s ∈ ΛL initialize Ds ;
while not converged do

begin Update the coefficients:

for each s ∈ ΛG do
compute xs by minimizing (4.3) with tolerance ηcoef,

for each s ∈ ΛL, each k do
compute xs,k by minimizing (4.4) with tolerance ηcoef.

end

begin Update the components: set ℓ = 0, ∀ s ∈ Λ, u
(0)
s = us

repeat

for each s ∈ Λ do

compute u
(ℓ+1)
s using (4.6).

until maxs ||u(ℓ+1)
s − u

(ℓ)
s || < ηcomp ;

Set ∀ s, us = u
(ℓ+1)
s ;

end

begin Update the dictionaries:

for each s ∈ ΛL do set ℓ = 0, D
(0)
s = Ds

repeat

compute D
(ℓ+1)
s using (4.9).

until ||D(ℓ+1)
s − D

(ℓ)
s || < ηdico ;

Set Ds = D
(ℓ+1)
s .

end

Output: Estimated components {us}s∈Λ.

Initialization of the dictionaries. Since the energy E minimized by the adaptive
MCA is non-convex, different initializations for the dictionaries {Ds}s∈ΛL might lead
to different solutions. In the numerical experiments detailed in Section 5, we consider
several initialization scenario, that might require some user intervention.

Convergence of adaptive MCA. The following result ensures that this adaptive
MCA algorithm converges to a stationary point of the energy E .

Proposition 4.1. Suppose that each of steps 1-3 is solved exactly by the adaptive

MCA algorithm. Then, the obtained sequence of iterates is defined, bounded and every

accumulation point is a stationary point of E.

Proof. The optimization problem (4.1) has at least one solution by coercivity. The
convergence proof of the block-relaxation minimization scheme follows, after identi-
fying our problem with the one considered by the author in [51]. Indeed using a
comparable notation to that of [51], we can write E({us}s, {xs}s, {Ds}s∈ΛL) as

J0({Ds}s, {us}s, {xs}s) + JD({Ds}s∈ΛL) + Ju({us}s) +
∑

s

Js
x(xs)
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where

J0({Ds}s, {us}s, {xs}s) =
µ

2

∑

s∈ΛG

||us − Dsxs||2 +
µ

2

∑

s∈ΛL,k

||Rk(us) − Dsxs,k||2

JD({Ds}s) =

{

0 if Ds ∈ Ds ∀s ∈ ΛL,

+∞ if Ds /∈ Ds for some s ∈ ΛL.
,

Ju({us}s) =
1

2
||f −K

∑

s

us||2 ,

Js
x(xs) =

{

µλ||xs||1, (global dictionary),

µλ/p
∑

k ||xs,k||1, (local dictionary).
,∀s ∈ Λ.

It is not difficult to see that J0 has a non-empty open domain and is continuously
differentiable on its domain. Thus J0 satisfies Assumption A.1 in [51]. Moreover, E
is continuous on its effective domain, with bounded level sets. E is also convex in
(u1, . . . , u|Λ|, x1, . . . , x|Λ|), and JD is convex. Thus, Lemma 3.1 and Theorem 4.1(a)
of [51] imply that the sequence of iterates provided by the block-relaxation MCA
algorithm is defined, bounded and every accumulation point is a stationary point of
E .

It is important to note that the convergence is only guaranteed for an exact adap-
tive MCA that performs an exact coordinate-wise minimization at each of the three
steps. Little is known about the behavior of an approximate block coordinate descent,
and the tolerances ηcoef, ηcomp and ηdico should be decayed through the iterations of
the MCA to ensure convergence. For the numerical experiments of Section 5, we use
fixed tolerances, which did not deteriorate the visual quality of the results.

Varying threshold. An important feature of the morphological component analysis
is that the value of the parameter λ is decreased through iterations until it reaches its
final value that is adapted to the noise level. This allows to speed up the convergence,
and bears similarities with continuation and path following methods for solving BPDN
[18, 41]. More sophisticated threshold update schedules might be used, see for instance
[8].

Computational complexity. The bulk of computation in Step 1 of Algorithm 1 is
invested in the application of the matrix Ds and its adjoint D∗

s . For global dictionaries
corresponding to tight frames used in this paper, these matrices are never explicitly
constructed. Rather, they are implemented as fast implicit analysis and synthesis
operators. The complexity of these operators for the translation invariant wavelets
Dwav, local DCT Ddct and curvelets Dcurv is O(N log N) operations. For local learned
dictionaries, the matrices Ds ∈ R

n×ms are explicitly constructed, but their size is
much smaller than that of global dictionaries.

The number of required iterations depends on the tolerance ηcoef used and on
the algorithm used to perform the minimization. Nesterov multi-step descent [38, 39]
enjoys a fast decay of the ℓ1-regularized objective which is O(1/ℓ2). this much faster
than the the convergence rate of iterative soft thresholding which is only O(1/ℓ). In
practice, Nesterov multi-step scheme performs well.

Each iteration of step 2 necessitates to reconstruct ûs for each s, which can be
typically achieved in O(N) or O(N log N) operations for a global dictionary, and
O(msnN/∆2) operations for a local dictionary. Then the linear system (4.6) must be
solved. For separation and inpainting problems, this step is fast and costs at most
O(N) for each s. The complexity of each iteration of the projected gradient descent
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of step 3 is similar to the complexity of Step 2.

5. Numerical Examples. Throughout all the numerical examples, we use pat-
ches of width τ = 10 pixels for the local dictionaries, with an overlap ∆ = τ/2. For
all experiments, we artificially add a Gaussian white noise ε of standard deviation
σ/||f ||∞ = 0.03.

Selecting optimal values for µ and λ is a difficult task. We set µ = σ2/30,
that has been shown by Aharon and Elad [19, 1] to be a good choice for denoising
applications. The parameter λ is adapted to the noise level so that the residual satisfies
||f −K

∑

s u⋆
s|| ≈

√
Nσ, which works well for separation and denoising applications.

Original u1 Original u2 Mixture f = u1 + u2 + ε

Adaptive MCA u⋆
1 Adaptive MCA u⋆

2

u⋆
1 MCA u⋆

2
Fig. 5.1. Top row: original component to recover and observed mixture. Middle row: separa-

tion using adaptive MCA with a wavelet dictionary and an adapted local dictionary. Bottom row:
separation using MCA with a wavelet and a local DCT dictionary.

5.1. Image Decomposition. We recall that the image decomposition problem
corresponds to K = IdN in (4.1). One thus looks for an approximate decomposition
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f ≈ ∑

s us.

Image decomposition with a single adapted layer. We perform two experiments
to study the behavior of our algorithm with a fixed dictionary D1 to capture the
sketchy part of the image, and an adapted local dictionary D2 to capture an additional
homogeneous texture. When only |ΛL| = 1 adapted layer is computed, we found that
the obtained results depend only slightly on the initialization. In this case, D2 is
initialized with random patches extracted from the observations f .

Figure 5.1, second row, depicts the results of a first separation experiments where
D1 = Dwav is a fixed redundant wavelet tight frame and D2 is an adapted dictionary.
The adaptive layer is able to capture the fine scale details of the texture. Figure 5.1,
third row, shows the results where D2 = Ddct is a fixed local DCT tight frame. This
clearly demonstrates that the local DCT is not able to capture efficiently the details
of the texture, and the usefulness of the adaptivity in the separation process.

Figure 5.2, first row, displays an example of separation where the layer u1 has
a strong cartoon morphology. We thus use a fixed curvelet dictionary D1 = Dcurv.
The second layer uses an adapted local dictionary. Figure 5.2, second row, shows the
separation obtained with our adaptive MCA. Although the high pass content of the
texture is well capture by the adaptive dictionary, some low pass residual content is
visible in the curvelet layer, mainly because elongated curvelets atoms are coherent
with some patterns of the texture.

Original u1 Original u2 Mixture f = u1 + u2 + ε

Adaptive MCA u⋆
1 Adaptive MCA u⋆

2
Fig. 5.2. Top row: original component to recover and observed mixture. Bottom row: separa-

tion using adaptive MCA with a curvelet dictionary and an adapted local dictionary.

Supervised separation of two textures using exemplars. In a supervised separation
scenario, we consider an observed image f = u1+u2+ε of N = 256×256 pixels, where
each ui corresponds to a stationary texture. We also consider two exemplar textures
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(ũ1, ũ2) of 128× 128 pixels that are similar to the component to retrieve. In practice,
both ui and ũi are extracted from the same larger image, at different locations.

The local dictionaries D1, D2 are optimized during the adaptive MCA algorithm 1.
They are initialized using the exemplars (ũ1, ũ2) by minimizing (4.8) where Us is
composed of patches extracted from the exemplars.

Figure 4.1 shows the two exemplars together with the initialized dictionaries
learned from these exemplars. Figure 5.3 shows the separation obtained with our
adaptive MCA, which is of high visual quality, because the two textures have a large
morphological diversity.

Original u1 Original u2 Mixture f = u1 + u2 + ε

Recovered u⋆
1 Recovered u⋆

2
Fig. 5.3. Example of separation of using dictionaries learned from exemplars.

Un-supervised separation. To study the ability of the adaptive MCA to automat-
ically discriminate two complicated texture, Figure 5.4, left, shows a synthetic image
obtained by linearly blending two textures (ũ1, ũ2) as follow

f [i] = γ[i]ũ1[i] + (1 − γ[i])ũ2[i] + ε[i]

where γ is linearly decaying from 1 to 0 along the horizontal axis.
We use two adapted dictionaries (D1, D2) to perform the separation, and these

dictionaries are initialized by extracting random patches respectively from the left
and the right part of the observed image f .

5.2. Inpainting. Figure 5.5 depicts an example of inpainting to restore an image
f = Ku + ε where 65% of the pixels are missing. The original image u =

∑3
s=1 us

is a superposition of a piecewise-smooth cartoon layer, a locally oscillating texture
(scarf), and a texture similar to the one in Figure 5.1. This figure compares the result
of inpainting with and without an additional layer corresponding to the local learned
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γ[i]ũ1[i] (1 − γ[i])ũ2[i] Mixture f

Adaptive MCA u⋆
1 Adaptive MCA u⋆

2
Fig. 5.4. Example of adaptive separation using two learned dictionaries.

dictionary D3, with redundancy m3/n = 2. In both results, the global dictionaries
Dwav and Ddct were used. The signal to noise ratio between the original image u and
the recovered on u⋆ is defined as

SNR(u, u⋆) = −20 log10

( ||u − u⋆||
||u||

)

.

This shows that inpainting with a learned dictionary is able to recover the missing
fine scale details of the texture, which is not the case with the use of a local cosine
dictionary Ddct alone to represent the texture.

Figure 5.6 shows another example of inpainting with larger gaps. Again, the
inpainting with an additional learned dictionary D3 brings some improvement over
the inpainting obtained using standard MCA with only global dictionaries, although
the improvement is visually less important than with the random mask used in Figure
5.5. Our method however not only solves the inpainting problem, but also computes a
visually appealing separation of the resulting inpainted image, which might be relevant
for some applications in computer vision.

Conclusion. We have proposed a new adaptive method to perform structure and
texture separation using both global and local dictionaries, along with an application
to the inpainting problem. The main feature of the method is its ability to jointly
decompose the image and learn the local dictionaries, which allows to adapt the
process to the properties of the textures to be extracted. Convergence of the algorithm
to a stationary point was proved. Numerical examples have shown that this adaptivity
improves the efficiency and visual quality of the separation and inpainting. We have
also shown that handling several learned dictionary is possible, but this requires a
special care to be taken at the initialization to achieve the desired separation effect.
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Original Image u =
∑3

s=1 us Input Image f = Ku + ε

MCA, SNR=14.8dB Adaptive MCA, SNR=17.3dB

Cartoon layer u1 Local cosines layer u2 Learned dictionary u3
Fig. 5.5. Top row: original image and masked image with 65% randomly removed pixels.

Middle row: inpainted images provided by the standard and adaptive MCA algorithms. Bottom: the
three layers provided by the adaptive MCA algorithm.
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