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LOCALLY PARALLEL TEXTURE MODELING∗

PIERRE MAUREL∗, JEAN-FRANÇOIS AUJOL† , AND GABRIEL PEYRÉ‡

Abstract. This article presents a new adaptive framework for locally parallel texture modeling.
Oscillating patterns are modeled with functionals that constrain the local Fourier decomposition
of the texture. We first introduce a texture functional which is a weighted Hilbert norm. The
weights on the local Fourier atoms are optimized to match the local orientation and frequency of
the texture. This adaptive model is used to solve image processing inverse problems, such as image
decomposition and inpainting. The local orientation and frequency of the texture component are
adaptively estimated during the minimization process. To improve inpainting performances over
large missing regions, we introduce a higly non-convex generalization of our texture model. This new
model constrains the amplitude of the texture and it allows one to impose an arbitrary oscillation
profile. Numerical results illustrate the effectiveness of the method.

Key words. Locally parallel textures, image decomposition, inpainting, total variation, curvelets,
cartoon image.

AMS subject classifications. 68U10, 65K10, 65F22

1. Introduction. Texture modeling is fundamental for a large number of im-
age processing problems, such as image segmentation, object recognition and image
restoration. Image restoration methods take advantage of a texture model which
imposes constraints on the geometry of textures present in the image. This paper
proposes a framework for modeling locally parallel oscillating patterns based on local
Fourier decompositions. Figure 1.1 shows examples of typical locally parallel textures.

Our framework parametrizes the geometry of the texture using a frequency field
ξ(x) which gives the orientation and frequency of the texture around a point x. Two
different models based on this frequency field are introduced. A first one is used
for image separation and for inpainting small holes. To improve the performance of
inpainting large missing regions, we extend our framework using a highly non-convex
texture model.

Fig. 1.1. Examples of locally parallel natural textures.
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1.1. Previous Works. Decomposing an image into meaningful components is
an important and challenging inverse problem in image processing. A variational
decomposition algorithm seeks a decomposition of an image f into various components
representing different information in the image. In this paper we focus on the cartoon-
texture decomposition problem and we seek for a decomposition of f = u + v where
u should capture the sketch of the image and v the texture content. The definition of
texture is vague and depends on the local image scale. As a matter of fact, a structure
at one scale can be regarded as a texture at another scale. This article is focused on
locally parallel textures, that correspond to oscillating patterns with a local geometric
orientation.

Inverse problem regularization is an active area of research in image processing.
It aims at restoring a high resolution image f0 from possibly incomplete observations
f = Φf0 +w where Φ is a non-invertible operator and w is an additive noise. Some of
these problems, such as image denoising, image deconvolution or image inpainting, can
be solved efficiently by seeking the solution as the sum of two components, f0 ≈ u+v,
where u and v capture two different meaningful components, e.g. the structure and
the texture.

The decomposition and regularization are done simultaneously by solving the
following minimization problem

(u, v) = argmin
ũ, ṽ

1
2
||f − Φ(ũ+ ṽ)||2L2 + λ J(ũ) + µ T (ṽ) (1.1)

where the functionals J and T model respectively the cartoon and the texture con-
tents, λ and µ are two positive real parameters balancing the importance of each term,
and ||f −Φ(ũ+ ṽ)||L2 is a fidelity term which takes into account the presence of noise
in the image. The solution of the inverse problem is then given by u+ v.

When Φ = Id is the identity operator, the solution of (1.1) provides a decomposi-
tion of f between two components u and v such that J(u) and T (v) are small. If the
functionals J and T do not capture the noise, then u + v is a denoised version of f .
When Φ is a blurring operator, then problem (1.1) is a deconvolution problem. Im-
age decomposition into a cartoon part and a texture part has already been proposed
in [40, 24, 25, 33] for image deconvolution.

Cartoon Model. In the early 90’s and for denoising purpose, Rudin, Osher and
Fatemi [45] proposed to use the total variation of an image to model its cartoon part.
The TV norm, J(u) = ||u||TV, is

∫
|∇u| for a continuously differentiable function u

and is extended to discontinuous functions. It allows one to recover piecewise smooth
functions without smoothing sharp discontinuities. This is related to the wavelet
thresholding algorithm of Donoho and Johnstone [26] where the wavelet decompo-
sition of a cartoon image is assumed to be sparse. The cartoon functional J(u) is
therefore the `1 norm of the coefficients of this decomposition. To exploit the geomet-
ric image regularity along edge curves, Candès and Donoho proposed to decompose
an image over curvelet atoms having both an elongated support and vanishing mo-
ments [14, 15]. It brings a mathematical and algorithmic solution to the problem
of approximating geometric C2 images whose contours are C2. The bandlet trans-
form, [36, 43], uses an adaptive scheme to approximate an image. A dictionary of
bandlet bases is parametrized by the local orientation of edges and an algorithm finds
a best basis adapted to the function to approximate.
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Texture Model. Following [45], Yves Meyer [38] pushed forward the idea of using
more sophisticated norms to capture oscillating patterns. In particular he proposed
a weak norm dual of the TV norm, T (v) = ||v||G where the Banach space G contains
signals with large oscillations, and thus in particular textures and noise. This model
has been successfully implemented in [3, 51]. Meyer’s idea inspired several works.
In [40] Osher, Solé, and Vese use the H−1 norm to extract high frequency patterns.
In [5], Aujol and Gilboa propose a general framework based on a Hilbert norm defined
by some symmetric positive kernel K, T (v) = 〈Kv, v〉L2 . They showed an example
where the Hilbert norm promotes a single frequency in the extraction of the texture.
Similarly to the cartoon case, several approaches are based on the sparsity of the
texture in a well chosen dictionary. The morphological component analysis of Starck
et al. [47] uses a local cosine dictionary to model oscillating patterns. Peyré improves
this fixed sparse regularization by using an adaptive grouplet frame for geometric
textures [42] that makes use of a local orientation field.

Inpainting. Inpainting aims at restoring an image f0 from which a set Ω ⊂
{0, . . . , n − 1}2 of pixels is missing. It corresponds to the inversion of the ill-posed
problem f = Φf0 + w where Φ is defined as

(Φf0)(x) =
{

0 if x ∈ Ω,
f0(x) if x /∈ Ω (1.2)

and w is some additive noise. The solution of this inverse problem can be obtained
as u+ v by solving (1.1) with the operator Φ defined above.

The J and T functionals mentioned above for structure and texture separation
can also be used to solve the inpainting problem. These regularization approaches are
successful for missing regions Ω of small size, because inpainting corresponds to an
interpolation problem. Let us for example cite the total variation inpainting of Chan
and Shen [19] inspired from [37], or the morphological component analysis [31, 32]
which relies on sparse regularization in several transform domains such as wavelet for
structure and local cosine for texture. When the size of the missing parts is larger
than the characteristic length of the structure or texture, more constrained models
are required. Several variational methods have been developed [37, 10, 46], often
adding a curvature term to the total variation to guide the diffusion along the level
lines. These higher-order methods improve the inpainting results but are also more
unstable and slower.

For images where large areas are missing, inpainting corresponds to a problem of
image synthesis with prescribed boundary conditions, and non-convex methods are
required. Indeed, convex regularization approaches suffer from contrast attenuation in
the center of large missing areas. Exemplar-based methods [30, 52] enables such a con-
strained synthesis of missing data. They perform the inpainting by using a consistent
recopy of patches. These methods reconstruct well non-geometric textures. How-
ever in images where edges and directional textures are present, a geometry-oriented
process seems necessary. Different approaches have been proposed in combination
with an exemplar-based inpainting, by using an optimized ordering of pixels to copy
[22, 41, 27, 16], a manual intervention by the user [48], or combining texture and
geometric interpolation [11]. Exemplar-based methods can be casted as non-convex
variational minimizations, see for instance [8, 1, 34, 35]. This non-convexity is crucial
to cope with the attenuation effect that plagues convex regularization approaches.

1.2. Contributions. The main contribution of this work is a new adaptive
framework for modeling locally parallel oscillating patterns. A first adaptive tex-
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ture norm which promotes locally parallel oscillating patterns is constructed in Sec-
tion 3. This texture model is based on a local Fourier decomposition and an adap-
tive frequency and orientation field ξ which is estimated during the minimization,
T (v) = Tξ(v). Tξ(v) is a convex functional (with respect to v) which is small for
a texture v if its main frequency around a point x is close to ξ(x). Our model has
therefore two important properties: it is spatially variant since different frequencies
are locally extracted and it is adaptive since the frequency field is optimized to fit the
features of the texture to extract.

This field ξ : {1, . . . , n}2 → R2 associates to a point x in the image v ∈ Rn×n

the instantaneous frequency of the oscillating texture around x. ||ξ(x)|| gives the local
frequency and ξ(x)/||ξ(x)|| the local orientation of the texture around x. Figure 1.2
shows an example of the field ξ for several points of a locally parallel texture.

Fig. 1.2. On the right, a graphic representation of the instantaneous frequency field ξ for the
texture on the left. The length of the lines is proportional to the local frequency of the oscillating
patterns and the orientation of the lines gives their local orientation.

Section 4 shows how our adaptive texture model can be used to regularize inverse
problems such as image decomposition, denoising or inpainting. The minimization is
done with respect to u and v, respectively the structure and texture part, but also
with respect to ξ, the frequency field, and this problem is written as

(u, v, ξ) ∈ argmin
ũ, ṽ, ξ̃∈C

1
2
||f − Φ(ũ+ ṽ)||2L2 + λ J(ũ) + µ Tξ̃(ṽ) (1.3)

where C is a set of constraints on the field ξ and Φ is the linear operator to invert.
For the decomposition and denoising problem Φ is the identity operator Id. For the
inpainting case, Φ is the masking operator given by (1.2). This methods computes
a separation of the image into a structure component u and a texture component v;
the denoising or inpainting result is then obtained by adding these two components,
i.e. by considering u + v. The energy to be minimized in (1.3) is non-convex, and
Section 4details a block coordinate descent that converges (up to a sub-sequence) to
local minimum.

Section 5 shows numerical examples for image decomposition, denoising and in-
painting. Let us remark that some of the existing decomposition frameworks (such
as TV-G [38] or TV-H−1 [40]) are not suitable for denoising. As a matter of fact,
the G and the H−1 norms are low for any high-frequency patterns, and they are also
low for a large part of the noise. On the other hand, the TV norm penalizes strongly
oscillating patterns and therefore these models are not able to separate efficiently the
texture from the noise. On the contrary our norm is low for patterns which present a
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certain frequency and orientation, but it is high for noise without any significant ori-
ented patterns. Our texture model is therefore more appropriate for denoising locally
parallel textures.

To tackle the inpainting of large missing regions, Section 6 introduces a highly
non convex texture functional TA,ξ(v). It extends our texture modeling framework by
integrating an amplitude field A(x) that imposes the contrast of the texture patterns
around a point x inside the area to inpaint. This non-convex model makes also use
of a “rendering function” h which is a change of contrast that maps the inpainted
texture v to a more general oscillating profile h(v). This enables the inpainting of
arbitrary locally parallel textures over large missing areas. An algorithm finds a local
minimum of this non-convex energy and numerical examples show the efficiency of
this approach.

2. Cartoon Model. This section presents the cartoon model J(u) that we use
to constrain the cartoon layer u in our regularization framework. Following the idea
of [9] and [47], it mixes the total variation norm and the `1-norm of the curvelet
decomposition of u.

Total Variation Norm. In the following, u ∈ RN is a discrete image of N = n×n
pixels. A discretized gradient for such an image u is defined as

∇u[i, j] = (∂xu[i, j], ∂yu[i, j]), (2.1)

where

∂xu[i, j] =
{
u[i+ 1, j]− u[i, j] if 0 6 i < n− 1,
0 otherwise, (2.2)

∂yu[i, j] =
{
u[i, j + 1]− u[i, j] if 0 6 j < n− 1,
0 otherwise. (2.3)

The gradient is thus a vector field ∇u ∈ RN×2.
The discrete total variation of an image u is the `1-norm of the gradient

JTV (u) = ||∇u||1 (2.4)

where the `1 norm of a vector field z = (z1, z2) ∈ RN×2 is

||z||1 =
∑

16i6N

√
(z1

i )2 + (z2
i )2. (2.5)

Curvelets. The curvelet transform [14, 15] is a decomposition on multiscale ori-
ented atoms cm = cj,l,k designed to represent images at different scales and angles.
The curvelets atoms form a redundant tight frame of RN . A curvelet atom cj,l,k ∈ RN

is parametrized by a scale j, an orientation l and a position k. cj,l,k(x) is of rapid
decay away from a 2−j by 2−j/2 rectangle (width = length2), with major axis pointing
in the direction θl = 2π · 2−bj/2c · l and centered on a point xk depending on k, l and
j.

Cartoon images that are C2 outside a set of C2 edge curves have a sparse decom-
position in the curvelet frame [14]. The `1-norm of the curvelet coefficient

JCurv(u) =
∑
j,k,l

|〈u, cj,l,k〉| (2.6)
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is thus an appealing functional to characterize such cartoon images, as advocated by
Starck et al. [47].

We use the CurveLab 2.1.2 toolbox, which implements the discrete curvelet trans-
forms described in [15]. It corresponds to a non-normalized Parseval tight frame. The
`2-norm of the atoms is then approximately 1/

√
P/N where P is the number of

curvelet atoms.

TV-Curvelets. JTV is well suited for piecewise constant images whereas JCurv

captures efficiently piecewise smooth images with C2-smooth contours. However, con-
trary to JTV , JCurv also captures oscillating patterns of locally parallel textures. This
is an issue to perform an efficient texture/structure decomposition. Following the idea
of [9] and [47], we thus use a linear combination of these two energies in our cartoon
model

J(u) = ρ JTV (u) + (1− ρ) JCurv(u) (2.7)

where ρ ∈ [0, 1] balances the importance of the two functionals and allows one to find
the best compromise between the effects of each energy. For the decomposition or
denoising case, ρ is chosen to be equal to 1, J(u) = JTV (u). For the inpainting case
ρ is chosen function of the size of the holes. If the size of the missing parts is large,
the total variation inpainting fails indeed to reconstruct the geometric structure and
the curvelet transform helps to improve the result of inpainting.

3. Texture Modeling Using an Adaptive Hilbert Norm. This section in-
troduces a new texture model based on an adaptive vector field ξ which represents
the instantaneous frequencies of the texture. Figure 1.2 shows a graphical represen-
tation of this field. This first model is a functional Tξ(v) (convex with respect to v),
depending on ξ, which is small for a texture v if its main frequency around a point x
is close to ξ(x).

In [5], Aujol and Gilboa use a linear Hilbert norm defined by a symmetric positive
kernel K,

T (v) = 〈Kv, v〉L2 .

This norm can be computed using a frame {ψ`}` that is a possibly redundant family
of P > N atoms ψ` ∈ RN . The decomposition of an image in this frame reads

Ψv = {〈v, ψ`〉}P−1
`=0 ∈ RP (3.1)

where Ψ : RN → RP is the frame operator.
Given a set of positive weights γ` > 0, a norm is then defined as

T (v) =
∑

`

γ2
` |〈v, ψ`〉|2 = ||ΓΨv||2L2 (3.2)

where Γ = diag`(γ`). This corresponds to a Hilbert space associated to the kernel
K = Ψ∗Γ2Ψ.

Defining a norm in this framework requires to define a transform Ψ well-suited to
capture oscillating textures, and to compute a set of weights Γ adapted to the texture
content v to extract from f . Aujol and Gilboa [6] proposed to use the Fourier basis
so that Ψ corresponds to the discrete Fourier transform. This defines a translation-
invariant kernelK. This paper proposes to replace the global Fourier basis by a redun-
dant local Fourier basis, to capture the spatially and frequentially varying structures
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of locally parallel textures and to use the frequency field ξ in the definition of the
weights Γ(ξ) to promote locally the main frequency of the texture,

Tξ(v) = ||Γ(ξ)Ψv||2L2 (3.3)

where Ψ is the decomposition on the local Fourier frame presented in Section 3.1 and
Γ(ξ) are the weights depending on ξ defined in Section 3.2.

3.1. Local Fourier Frame. A discrete short time Fourier atom, located around
a position xp = p∆x and with local frequency ξk = k∆ξ = k/q is defined as

ψp,k[y] = q−1g[y − p∆x]e
2iπ

q (y1k1+y2k2) (3.4)

for k ∈ {−q/2, . . . , q/2 − 1}2 and p ∈ {0, . . . , n/∆x}2, where g is a smooth window,
centered around 0, and the size of its support is q × q pixels with q > ∆x.

The local Fourier frame {ψp,k}p,k is a redundant family of P = (q/∆x)2N vectors
of RN . The decomposition operator Ψ defined by (3.1) which decomposes an image
v in this frame, Ψv = {〈v, ψp,k〉}p,k ∈ RP , is computed with the 2D Fast Fourier
Transform of the q × q images v[y]g[∆xp − y]. The computation of Ψv thus requires
O(Nq2 log2(q2)/∆2

x) operations.
The dual operator Ψ∗ reconstructs an image Ψ∗c ∈ RN from a set of coefficients

c[p, k] ∈ Rq2×N

Ψ∗c =
∑
p,k

c[p, k]ψp,k. (3.5)

This dual operator is implemented using N/∆2
x inverse Fast Fourier Transforms.

The operator Ψ∗Ψ is diagonal

Ψ∗Ψ = diagx(
∑

y

g[∆xy − x]2). (3.6)

The window g is normalized to satisfy

∀x,
∑

y

g[∆xy − x]2 = 1. (3.7)

This implies that Ψ∗Ψ = IdN so that Ψ∗ = Ψ+ is the pseudo inverse of the decom-
position operator Ψ. The corresponding Gabor family {ψp,k}k,p is then a tight frame
of RN and one has both the analysis-synthesis formula and the conservation of the
energy

v =
∑
p,k

〈v, ψp,k〉ψp,k and ||v||2 =
∑
p,k

|〈v, ψp,k〉|2, (3.8)

which generalize the concept of orthogonal basis to a redundant family of P > N
vectors. Let us finally remark that Ψ∗Ψ = IdN but ΨΨ∗ 6= IdN , since the Gabor
frame is a redundant family.

For the numerical results, we use a tensor product window g[x] = go[x1]go[x2]
where go is a normalized Hanning window

go[x1] =
g̃o[x1]√∑

y g̃
o[∆xy − x1]2

where g̃o[x1] = sin(πx1/q)2. (3.9)
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The size q of the local Fourier windows should be set according to the smoothness
of the geometry of the texture and to its frequency content. A locally parallel texture
with irregular directions requires small windows, but this might be an issue to detect
low frequency patterns. In practice, an estimation ξmin of the lowest frequency present
in the texture is given by the user, and we set q = 3/ξmin.

The overlapping ∆x of the windows should satisfy ∆x < q and selecting a small
value helps to reduce visually unpleasant artifacts. In practice we set ∆x = q/4.

3.2. Adaptive Weight Design. The Hilbert norm Tξ(·) adapted to oscillating
textures is a weighted norm over the local Fourier coefficients. It is parametrized by
a vector field ξ

ξ : {1, . . . , n/∆x}2 7→ R2 (3.10)

which represents the local frequency of the texture component v. For p ∈ {1, . . . , n/∆x}2,
the local frequency around the point xp = p∆x is given by |ξ(p)| and the local orien-
tation of the texture is given by ξ(p)/|ξ(p)|.

The general formulation (3.2) is instantiated using a local Fourier frame ψ` = ψp,k

for ` = (p, k) as

Tξ(v) =
∑
p,k

γp,k(ξ)2|〈v, ψp,k〉|2 = ||Γ(ξ)Ψv||2L2 (3.11)

where

Γ(ξ) = diag`=(p,k)(γp,k(ξ)). (3.12)

Each γp,k(ξ) > 0 weights the influence of each local Fourier atom in the texture model.
The norm Tξ(·) should be small for an oscillating pattern around the point xp

if its main frequency is close to ξ(p). As a consequence the weight γp,k(ξ) should
be small if ξk is close to ξ(p) or to −ξ(p). Furthermore, a special case is considered
when there is locally no significant parallel texture in a certain area of the image. By
convention, ξ(p) is set to (0, 0) if there is no significant oriented patterns around xp

in the image.
The weights are therefore defined as

γp,k(ξ) =

{
1 if ξ(p) = (0, 0)

γ0 +
(
1−Gσ

(
||ξk + ξ(p)||

))(
1−Gσ

(
||ξk − ξ(p)||

))
otherwise (3.13)

where Gσ(x) = exp(−(x/σ)2/2)), and γ0 > 0 is a small constant that prevents the
weights from vanishing, and is required to prove the convergence of our numerical
scheme, see Theorem 1.

The scale parameter σ reflects the deviation we are expecting to find in the
frequency spectrum of the texture compared to ξ(p). In our numerical experiments
we took σ = 1/q. When there is not a significant oriented texture around xp, we
choose γp,k = 1 for all k, in order not to promote an arbitrary orientation in the
extraction. The decision between the presence or the absence of the oriented texture
is made during the computation of ξ and will become clear in the next section, see
(4.2).
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3.3. Sparsity versus Unimodality for Texture Modeling. Our texture
model (3.11) assumes an unimodality of the local Fourier expansion of the texture.
This can be understood as a strong sparsity prior, since the local expansion of the
texture is constrained to be highly localized near a single frequency. Our texture prior
is thus less general than the MCA framework [47] that makes use of a less constrained
`1 sparsity.

Imposing unimodality however helps to better recover strongly geometric textures,
such as the natural textures displayed in Figure 1.1. For applications that require
processing or extraction of this kind of patterns, our method is able to improve the
results of more general sparsity priors.

Furthermore, our method introduces an explicit geometric flow parameter ξ(x),
that might be of interest for certain applications beyond texture restoration. Although
this is out of the scope of this paper, this flow ξ(x) might also be regularized by
imposing additional constraints on its regularity.

3.4. Color Texture Processing. The adaptive texture energy Tξ(v) extends
to the color setting, where v = (v1, v2, v3) and each vi(x) ∈ R is a color component.
Natural textures tend to have a single geometry across all the three color components,
and we thus consider a single geometrical flow ξ. The energy (3.11) is extended as

Tξ(v) =
∑
p,k

γp,k(ξ)2
3∑

i=1

|〈vi, ψp,k〉|2.

Using a single geometry for all the components produces a coherent texture separation
and inpainting.

For the TV part of the regularization term (JTV ), we can use any classical scheme
for color TV minimization. It can be done with a regularized version of TV and the
use of the CB or HSB spaces as in [20, 7]. Another possibility is to use the definition
of BV (R3) and then resort to a projection scheme as in [12, 29] (the mixing of the
three channels is then done through the vectorial norm). For the curvelet part (Jcurv)
of the regularization term, the same idea can be used with a multichannel `1-norm as
in [49].

4. Adaptive Texture Regularization Algorithm. Taking advantage of the
adaptivity of the texture model introduced in Section 3, an adaptive texture reg-
ularization algorithm is presented. It splits an image f into three components,
f = u + v + w, where u captures the sketch of the image, v the texture content
and w the noise. The minimization is done with respect to u and v, the structure and
texture parts, but also with respect to ξ, the frequency field. This algorithm finds a
stationary point of problem (1.3)

(u, v, ξ) = argmin
ũ, ṽ, ξ̃∈C

E(ũ, ṽ, ξ̃) = argmin
ũ, ṽ, ξ̃∈C

1
2
||f−Φ(ũ+ ṽ)||2L2 +λJ(ũ)+µTξ̃(ṽ), (4.1)

where J is the regularization term defined in (2.7) and Tξ is our texture norm defined
by (3.11). The residual noise layer is computed as w = f − u − v. Φ is a linear
operator so that an inverse problem can be solved during the decomposition process.
For a denoising and separation purpose, Φ is simply the identity operator, i.e. Φ = Id,
and for the inpainting inverse problem, where one wants to reconstruct some missing
parts, Φ is the masking operator given by (1.2).
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C is a set of constraints on the orientation field ξ. Since the texture component v
does not contain low frequency patterns, the frequency |ξ| is forced to be large enough,
i.e. ∀p, |ξ(p)| > τ , for some real positive parameter τ > 0. Furthermore, an oscillating
pattern of frequency ξ(p) is assumed to be present in the image f around the point
xp only if |〈f, ψp,k〉| > ηp where k = ξ(p)/∆ξ and ηp > 0 is a real positive parameter.
This reflects the fact that one does not want to arbitrary select a frequency for an
area of the image where there is no oscillating pattern. In short, we have

C =
{
ξ : {1, . . . , n/∆x}2 7→ R2

∣∣∣∣ ∀p, τ 6 |ξ(p)| 6 1/2
∀p,

(
∀k, |〈f, ψp,k〉| 6 ηp

)
⇒ ξ(p) = (0, 0)

}
. (4.2)

In our numerical experiments we take τ = 2/q, where q is the size of the local Fourier
windows, and ηp = 2|Ψfp| where |Ψfp| is the average value of |〈f, ψp,k′〉| for k′ ∈
{−q/2, . . . , q/2− 1}2.

4.1. Block coordinate descent optimization algorithm. The energy E de-
fined in (1.3) is non-convex. We propose a block coordinate descent algorithm to
minimize E : we iteratively minimize E with respect to each of its variables ξ, u, v.
Starting from u(0) = v(0) = ξ(0) = 0, the following iterates are defined :

u(`+1) ∈ argmin
u

E(ũ, v(`), ξ(`)), (4.3)

v(`+1) = argmin
v

E(u(`+1), ṽ, ξ(`)), (4.4)

ξ(`+1) = argmin
ξ̃∈C

E(u(`+1), v(`+1), ξ̃). (4.5)

Sections 4.2, 4.3 and 4.4 detail how to perform each one of these three minimizations.
The energy E is decreasing at each step. The following theorem ensures the

convergence up to a sub-sequence of the algorithm towards a stationary point of E .
Theorem 1. Suppose that Φ1 6= 0. The sequence (u(`), v(`), ξ(`)) defined in (4.3)

is well defined and bounded. Every cluster point of this sequence is a stationary point
of E.

Proof. The energy E is non-convex and non-smooth, and we use Theorem 4.1 of
Tseng [50]. The energy E is re-written using the notations of [50] as

E(u, v, ξ) =
1
2
||f − Φ(u+ v)||2 + λTξ(v) + µJ(u) + χC(ξ)

= f0(u, v, ξ) + f1(u) + f2(v) + f3(ξ),

where f1 = µJ , f2 = 0 and f3 = χC . The indicator function is defined as χC(ξ) = +∞
if ξ /∈ C and χC(ξ) = 0 otherwise.

First, the function E is continuous on the level set

X0 =
{

(u, v, ξ) \ E(u, v, ξ) 6 E(u(0), v(0), ξ(0))
}
.

We then show that X0 is bounded, which ensures the existence of convergence
sub-sequences. First we note that the constraint set C defined in (4.2) is bounded.
The texture norm with the weights defined in (3.13) satisfies

Tξ(v) > γ0||Ψv||2 > C1||v||2 (4.6)
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for some constant C1 because Ψ is injective. If ρ < 1, the cartoon energy J(u) defined
in (2.7) is coercive because JCurv is coercive. If ρ = 1, J(u) = JTV (u), and denoting
m(u) = (

∑
i,j u[i, j])/N the mean of u, one has

J(u) = ||∇(u−m(u))||1 > ||∇(u−m(u))||2 > C2||u−m(u)||, (4.7)

where we have used the fact that || · ||1 > || · ||2, and where C2 > 0 is the smallest non-
zero singular value of the gradient ∇. We decompose f = Φf̄ + r where r ∈ Im(Φ)⊥,
so that

||f − Φ(u+ v)||2 > ||Φ(f̄ − u− v)||2 > C2
3 ||m(f̄)−m(u)−m(v)||2 (4.8)

where C3 > 0 is the smallest non zero singular value of Φ, and where the last inequality
makes use of the hypothesis that Φ1 6= 0. Putting (4.6), (4.7) and (4.8) together proves
that

E(u, v, ξ) >
C2

3

2
||m(f̄)−m(u)−m(v)||2 + λC2||u−m(u)||+ µC1||v||2,

and hence the boundedness of X0.
The function f0(u, v, ξ) is of class C1, since the mapping

(u, ξ) 7→ Tξ(u) = ||Γ(ξ)Ψu||2

is smooth because Γ is a smooth function. The function E satisfies hypothesis (A1)
of [50], and hence to lemma 3.1 of [50] shows that E is regular at each point of X0.

This shows that E satisfies the hypotheses of Theorem 4.1 in [50] and it concludes
the proof.

4.2. Minimization with respect to the Orientation Field ξ. If u and v are
fixed, we search for the frequency field ξ satisfying

ξ = argmin
ξ̃∈C

Tξ̃(v), (4.9)

where Tξ is given by (3.11). This requires, for each p, to compute

ξ(p) = argmin
|θ|>τ

∑
k

(
1−Gσ

(
||ξk + θ||

))2(
1−Gσ

(
||ξk − θ||

))2

|〈v, ψp,k〉|2. (4.10)

If the width σ of the weights (3.13) is small enough, this minimization is ap-
proximately equivalent to compute maxk |〈v, ψp,k〉|, which allows us to speed up the
computation by defining

ξ(p) = ∆ξ argmax
k> τ

|∆ξ|

|Ψv[p, k]|. (4.11)

Figure 4.1 illustrates the underlying principle of this orientation estimation. For a
given point xp, a unique direction and frequency ξ(p) is selected and the corresponding
weights γp,k(ξ) are constructed according to (3.13).

4.3. Minimization with respect to u. If v is fixed and if we set y = f−Φ(v(i)),
one minimizes

u(i+1) = argmin
ũ

1
2
||y − Φ(ũ)||2L2 + λ J(ũ). (4.12)
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(a) (b) (c) (d)

Fig. 4.1. Illustration of the orientation estimations: (a) the input image f , (b) the windowed
image around some point xp, (c) the corresponding local Fourier transform

`
|〈v, ψp,k〉|

´
k

and (d)

the weights
`
γp,k(ξ)

´
k

corresponding to the ξ estimated from the local Fourier transform.

First case: Φ = Id. The solution of (4.12) when Φ = Id is then given by

u(i+1) = proxλJ(y)

where the proximity operator of ωJ for ω > 0 and g ∈ RN is defined as

proxωJ(g) = argmin
g̃

1
2
||g − g̃||2 + ω J(g̃) (4.13)

This corresponds to a denoising problem for which one can use for instance the al-
gorithm proposed by Chambolle [17]. For sake of completeness, this algorithm is
described in appendix A.

General case. The inverse problem corresponding to the general case of Φ 6= Id
can be solved using gradient methods such as forward-backward splitting [21, 9] or
Nesterov algorithms [39], see also [2] for an overview of these methods.

In the numerical experiments, we use the forward-backward splitting scheme.
Starting from some initial w(0), one iterates between

• a gradient descent step of the minimization of the data term,

w̄(n) = w(n) + αΦ∗(y − Φw(n)) (4.14)

• a denoising step over the current estimate w̄(n),

w(n+1) = proxλαJ(w̄(n)) (4.15)

where proxλαJ(w̄(n)) is the proximity operator defined in (4.13) for ω = λα,
that is computed using the iterative algorithm detailed in Appendix A.

If the gradient step size α in (4.14) satisfies 0 < α < 2
||Φ∗Φ|| , then w(n) in (4.14) and

(4.15) converges to u(i+1), a global minimizer of (4.12). In the inpainting case, when
Φ is the masking operator given by (1.2), we have ||Φ∗Φ|| = 1.

4.4. Minimization with respect to v. If u is fixed, one minimizes

v(i+1) = argmin
ṽ

1
2
||f − Φ(u(i+1))− Φ(ṽ)||2L2 + µ ||Γ(ξ)Ψṽ||2L2 , (4.16)

Computing the gradient of (4.16), we obtain that v(i+1) satisfies

(2µΨ∗Γ2Ψ + Φ∗Φ)v(i+1) = Φ∗(f − Φ(u(i+1))) (4.17)

and the solution v(i+1) is computed with a conjugate gradient descent, since 2µΨ∗Γ2Ψ+
Φ∗Φ is a positive symmetric operator.
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4.5. Case of the Decomposition of a Noise Free Image. If the input image
f does not contain any noise, one would like to decompose f into only two components,
the sketch u and the texture v = f − u. This requires to solve

(u, ξ) = argmin
ũ, ξ̃∈C

1
2
Tξ̃(f − ũ) + λ J(ũ). (4.18)

The minimization step on ξ is the same as the one described in Section 4.2, but the
second step on u should be modified. When ξ is fixed, using the definition (3.11) of
Tξ and setting y = Γ(ξ)Ψf , the minimization on u can be rewritten

u = argmin
ũ

1
2
||y − Γ(ξ)Ψ(ũ)||2L2 + λ J(ũ). (4.19)

This minimization corresponds to a regularized inverse problem associated to the oper-
ator Γ(ξ)Ψ. It can therefore be solved using the forward-backward splitting algorithm
described in Section 4.3.

5. Numerical Examples. For our numerical experiments, we use a non-optimi-
zed implementation in Matlab and, for an image of size 512×512, the processing time
is about 10 minutes. As mentioned in the section 4.3, we use a forward-backward
splitting scheme for the minimizing step on u. The computation time should be
reduced by using Nesterov algorithms [39] instead. However the computation of the
decomposition in the local Fourier frame and its dual operator is the most time-
consuming step and it should be optimized if better computational time is desired.

5.1. Image decomposition and denoising. For the decomposition and de-
noising problem, we take Φ = Id and solve (1.3) using the algorithm described above.
We choose J(u) = ||u||TV for the cartoon functional, which corresponds to taking
ρ = 1 in (2.7).

Cartoon+texture decomposition.. Figure 5.1 shows an input image f , 256 × 256
generated by addition of a cartoon picture1 and a synthetic texture whose orientation
and frequency vary spatially (||f ||∞ = 3). Figure 5.2 presents the decomposition
results obtained with different classical methods on this noise free image: the TV −L2

model of [45], the TV − G model of Y. Meyer [38] with the implementation of [3],
the TV − L1 model with the implementation of [18], the TV −H−1 model [40] with
the implementation of [4], and the TV -Gabor model [6]. For each of these methods
we chose the first set of parameters which provides a total extraction of the texture.
For our method we chose λ = 0.1, q = 16, ∆x = 4. As can be seen, the approach
developed in this paper provides much better result. This is due to the fact that the
texture in the image of Figure 5.1 lies exactly in the model of the paper. In particular,
the TV − L1 model performs poorly on this type of texture, since it splits an image
into geometry and texture on a texton criterion [28].

Figure 5.3 presents an example of the decomposition of a natural image containing
locally parallel textures. The input image f , 389 × 389, is in the first column. The
second column presents the result of the TV −L2 method [45], we chose the smallest
parameter λ (on the total variation norm) which provides a total extraction of the
texture (here λ = 0.4). And finally our method is shown in the last column (we chose
λ = 0.1, q = 32, ∆x = 10). As can be seen, whereas both texture components contain

1This picture is a frame from the animated cartoon “Falling Hare” (1943). This cartoon is in
the public domain.
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(a) (b) (c)

Fig. 5.1. A synthetic example. (a) the input image ; (b) and (c) respectively the structure and
texture components used to produce the image.

the locally parallel patterns of the fish, our method achieves a better decomposition in
the sense of more details of the background are present in the geometric component.

Cartoon+texture+noise decomposition.. In Figure 5.4 an image f0 composed of a
cartoon picture and a fingerprint texture (the size of f0 is 512× 512 and ||f0||∞ = 3)
is degraded by a Gaussian noise of standard deviation σ = 0.2. The noisy image f
is then decomposed into three components u, v, and w using our method with the
following parameters λ = 0.1, µ = 0.3, q = 48 and ∆x = 16. An orientation field ξ
is therefore also computed. Since u captures the sketch of the image, v the locally
parallel patterns and w the noise, we can reconstruct a restored version u+ v of the
noisy image.

One should be careful that the comparison with TV-denoising is only intended
to show the relevance of our texture model to extract oscillating components, since
our cartoon model is the TV energy. The TV model should not be considered as a
state of the art method for denoising, and we give below examples of state of the art
denoising methods on a natural image.

Comparison with state of the art denoising methods.. Figure 5.5 shows the de-
composition and denoising process applied to the “Barbara” image f0 degraded by a
Gaussian noise of standard deviation σ = 0.15. The size of f0 is 512 × 512 and we
have ||f0||∞ = 1.

Figure 5.6 compares our result with Portilla et al. denoising method [44], based
on scale mixtures of Gaussians over the wavelet domain, with the non-local means
methods [13], and with the recent state of the art BM3D method [23].

We use the Signal-to-Noise Ratio (SNR) measure of distortion between the original
noiseless image f0 and the denoised image f?

SNR(f0, f?) = 20 log10

||f0||L2

||f0 − f?||L2
.

We used λ = 0.2, µ = 5, q = 32 and ∆x = 8 as parameters for our method.
We note that our method improves the wavelet-based statistical modeling of Por-

tilla et al. denoising [44] and the non-local means methods [13], but it fails to improve
over a more recent state of the art denoising method, BM3D [23]. Zoom on the tex-
tured region of the image shows that our method gives satisfactory results on textured
part, but does not performs as good as the state of the art in region containing either
edges or complicated texture patterns. This is consistent with the fact that we use
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(a) TV − L1 (b) TV − L2 (c) TV −G

(d) (e) (f)

(g) TV −H−1 (h) TV−Gabor (i) Our method

(j) (k) (l)

Fig. 5.2. A synthetic example. (a) and (d): decomposition results with TV −L1 ; (b) and (e):
decomposition results with TV −L2 ; (c) and (f): decomposition results with TV −G ; (g) and (j):
decomposition results with TV − H−1 ; (h) and (k): decomposition results with TV−Gabor ; (i)
and (l) : decomposition results with our adapted TV-Hilbert method. The obtained result is almost
perfect.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5.3. A natural image. (a): the input image ; (b) and (c): decomposition results with
TV − L2 ; (d): contrast enhanced version of (c) ; (e) and (f): decomposition results with our
adapted TV-Hilbert method ; (g) contrast enhanced version of (f)

a TV regularization for the cartoon layer, and that our model is tailored for highly
geometric textures.

5.2. Image Decomposition and Inpainting. Let us recall that inpainting
aims at restoring an image f0 from which a set Ω ⊂ {0, . . . , n − 1}2 of pixels is
missing. It corresponds to the inversion of the ill posed problem f = Φf0 + w where
Φ is defined as

(Φf0)(x) =
{

0 if x ∈ Ω,
f0(x) if x /∈ Ω. (5.1)

and w is some additive noise. We search for the image f0 as a decomposition f0 ≈ u+v
where J(u) and Tξ(v) are small, and ξ is optimized during the inpainting process. This
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(a) f0

(b) f (c) u+ v (d) ξ

(e) u (f) v (g) w

Fig. 5.4. (a) the original noise free image ; (b) the input noisy image f ; (c) the restored image
u+ v ; (d) the estimated orientations of oscillating patterns ξ ; (e) the sketch u of the image ; (f)
the texture content v ; (g) the noise w.

corresponds to the solution of (1.3) where the operator Φ is given by (1.2) and y is the
image with missing parts one wants to inpaint. For the cartoon model, we take J(u)
given by (2.7), which mixes the total variation norm and the `1-norm of the curvelet
decomposition of u. An experimental exploration leads us to choose ρ = 0.75 which
gives a good compromise between the effects of each energy.

Inpainting of a synthetic image.. Figure 5.7 shows an example of inpainting re-
construction of the image f0 of size 512× 512 from Figure 5.4 degraded by randomly
placed holes, which consists in 350 squares of 15×15 pixels each. We use the same pa-
rameters as in Figure 5.4. The texture is well reconstructed thanks to the estimation
of the orientations and to the overlapping of the local Fourier windows.
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(a) (b) Noisy input image f (c)
Original image f0 (SNR = 10.25 dB) Restored image u+ v

(d) u (e) v (f) w

Fig. 5.5. (a) the original noise free image f0 ; (b) the noisy input image f ; (c) the restored
image u+ v ; (d) the sketch u of the image ; (e) the texture content v ; (f) the noise w.

Comparison with state of the art inpainting methods.. Figure 5.8 shows a second
example of inpainting reconstruction for the “Barbara” image. We use the same
parameters as in Figure 5.5. For comparison, we also show the result of inpainting
using TV regularization, the “patchworks” method from Perez et al. [41] and the MCA
method [32], using a curvelet dictionary for the cartoon component and a local discrete
cosine transform for the texture part, that corresponds to take T (v) = ||ΨLCv||1 where
ΨLC is the local cosine transform. The enlargements in the second and third columns
illustrate the differences between the different methods and our framework.

As far as the MCA method is concerned, on the one hand, our reconstruction of
the hatched chair (top-right corner of the original image) selects the main orientation
since we are modeling locally parallel patterns. Our method is in fact designed to deal
with strongly parallel textures which can be locally explained by a single frequency,
whereas the MCA method based on sparsity seems to be able to handle more general
cases such as the one presented in the second column. On the other hand, for parts of
the image with locally parallel patterns, our method achieves a better reconstruction
of the directions of the texture inside the missing parts thanks to its adaptivity. This
is clearly visible in the third column.

Figure 5.8 also shows the result of a copy-paste based method [41], even though
it is beyond the scope of this paper to make such comparisons, since the focus is on
energy minimization based methods. Nevertheless, the enlargements in the second
and third columns show that such a method reconstructs very well not-oriented tex-
ture parts of the image (first column), whereas it fails to reconstruct properly the
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(a) TV (17.34 dB)

(b) Portilla et al. (19.62 dB)

(c) Non-local means
(19.75 dB)

(d) Our method (19.93 dB)

(e) BM3D (21.8 dB)

Fig. 5.6. Denoising of image f from Fig. 5.5. (a) TV-denoising ; (b) result of Portilla et al.
method [44] ; (c) resultat of the Non-Local means method [13] (d) our method ; (e) result of BM3D
method [23].
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(a) y (b) u (c) v

(d) TV Inpainting (e) u+ v

Fig. 5.7. (a) the image y to inpaint degraded by randomly chosen holes in black, the original
image is f0 in Fig. 5.4 ; (b) the inpainted geometric component u, (c) the inpainted texture com-
ponent v ; (e) “TV Inpainting” using only a TV regularization ; (d) the reconstruction u+ v using
our method.

orientation of the locally parallel texture present in the third column.

6. Highly non-Convex Generalization of our Model. Similarly to other
existing convex regularization methods, our approach suffers from a contrast atten-
uation in the center of the inpainted area. Section 6.1 describes a higly non-convex
functional that fixes this issue. Another issue with our locally parallel texture model
is that it favors the apparition of patterns with a sinusoidal profile. Section 6.2 thus
introduces a “rendering function” that enables the reconstruction of arbitrary locally
parallel textures.

6.1. Amplitude Boosting.
Contrast attenuation problem. Although convex methods provide good solutions

to inpaint small or medium holes, this class of methods is not efficient to inpaint large
holes. Notice that the functional presented in the previous section is convex with
respect to the texture v. We therefore will refer to this previous model as convex
energy, as opposed to the new one we introduce here. The minimization of convex
energies causes some attenuation in the reconstruction, as shown on Figure 6.1. This
texture inpainting is computed by solving

argmin
ṽ, ξ̃∈C

1
2
||y − Φṽ||2L2 + µ Tξ̃(ṽ)

which corresponds to taking λ = ∞ in (1.3).
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(a)

(b)
TV

(c)
Patch-
Works

(d)
MCA

(e)
Our

method

Fig. 5.8. Inpainting of a degraded image, the original image is f0 in Fig. 5.5. First column: (a)
the image y to inpaint ; (b) reconstruction using a TV regularization ; (c) result of the “patchworks”
method [41] ; (d) result of MCA [32] with curvelets and local discrete cosine dictionaries ; (e) our
reconstruction. Second and third columns: enlargement of parts of the same images.
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We thus propose a new non-convex energy to cope with large holes. The new
texture functional TA,ξ depends both on the orientation field ξ and on some amplitude
field

A : {1, . . . , n/∆x}2 → R+.

For a point xp = p∆x in the image plane, A(p) is an estimation of the amplitude of the
oscillating pattern around xp. The new texture functional imposes a given amplitude
field inside the missing parts which annihilates the attenuation problem.

y vconvex vnon−convex

Fig. 6.1. From left to right: the image y to inpaint, the result vconvex of our convex inpainting
and the result vnon−convex of our non convex inpainting.

Non-convex texture functional. The non-convex energy TA,ξ(v) sums over all
points xp = p∆x the distance between the magnitude Ap of the local Fourier co-
efficients of v and a pure pattern A(p)χξ(p) of amplitude A(p) and orientation ξ(p).
It is therefore defined as

TA,ξ(v) =
∑

p

||Ap −A(p)χξ(p)||2 =
∑
p,k

(Ap(k)−A(p)χξ(p)(k))2 (6.1)

Pure oriented pattern. The magnitude of the local Fourier transform of the tex-
ture v corresponds to

Ap = {Ap(k)}k where Ap(k) = |〈v, ψp,k〉|ε.

We use a regularized absolute value

|a|ε =
√
|a|2 + ε,

where ε > 0 is a small positive number chosen to avoid numerical instabilities.
The pure pattern χξ is defined as the magnitude of the local Fourier transform of

a pure sinusoidal function Sξ

χξ(k) = |〈Sξ, ψ0,k〉|ε where Sξ(x) = sin(2π〈x, ξ〉). (6.2)

Figure 6.2 compares, for a given position xp, the weights {γp,k(ξ)}k of the convex
texture model defined in (3.13) with the pure pattern χξ(p) defined in (6.2). Whereas
the convex weights correspond to a double “potential well”, the non-convex pattern
corresponds to a “double-bump” of fixed height. This difference is crucial since the
amplitude Ap of the reconstructed texture is boosted in the non-convex setting due
to the similarity term ||Ap −A(p)χξ(p)||.
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{γp,k(ξ)}k {χξ(p)(k)}k

Fig. 6.2. Left: graphical representation of the convex weights {γp,k(ξ)}k ; right: graphical
representation of the pure pattern χξ(p) used by the non-convex functional.

Estimating the amplitude field. In our numerical experiments, this field A(p) is
estimated during the inpainting process from the texture v = v(i) obtained at iteration
i of the algorithm. The automatic computation of a texture amplitude field with
missing information is a difficult problem, and we assume here that this field varies
smoothly over the image plane, which is a reasonable assumption for many natural
textures.

For positions xp located at a distance greater than q/2 from the mask Ω,

p ∈ UΩ = {p \ d(xp,Ω) > q/2} where d(xp,Ω) = min
y∈Ω

||xp − y||

the amplitude field A(p) is computed by minimizing ||Ap − A(p)χξ(p)||2 since there is
no missing information. If v = v(i) and ξ(p) are fixed, the amplitude A(p) is thus
defined as

A(p) =
〈Ap, χξ(p)〉
||χξ(p)||2

. (6.3)

For the other remaining positions p /∈ UΩ, the amplitude A(p) is computed by a
smooth interpolation over the missing region, obtained by solving

∀ p /∈ UΩ, ∆A(p) = 0, ∀ p ∈ UΩ, A(p) =
〈Ap, χξ(p)〉
||χξ(p)||2

(6.4)

where ∆ is the Laplacian second derivative operator. The full field A is thus computed
by conjugate gradient descent.

6.2. General Oscillation Profile.
Sinusoid texture profile problem. In the inpainting problem, the reconstruction

inside the missing regions is only constrained by the two terms J(u) and T (v). There
is no fidelity term inside these regions. For points x around xp = p∆x close to the
center of a missing region, the inpainted texture v is thus well approximated by a
single frequency

v(x) ≈ A(p) sin(2π〈x, ξ(p)〉+ φ) (6.5)

where φ ∈ R is a local phase.
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Figure 6.3 (b) shows an example of this issue, where this texture inpainting result
is obtained by solving

argmin
ṽ, ξ̃∈C

1
2
||y − Φṽ||2L2 + µ Tξ̃(ṽ),

which corresponds to taking λ = ∞ in (1.3).

(a) y (b) vId (c) vh (d) v[h]
h

Fig. 6.3. (a) the image y to inpaint ; (b) the result vId of our inpainting with h = Id ; the result

vh of our inpainting with h = h0.1,−0.5 before the contrast change ; the result v
[h]
h of our inpainting

after the contrast change.

Rendering function. To cope with more general form of oscillating patterns, the
reconstructed texture is switched from v to v[h] using a “rendering function”

h : [0, 1] → R.

This function allows one to change the contrast of a texture v having a local amplitude
field A(p) by computing

v[h](x) = A(p)h(v(x)/A(p)) (6.6)

where p is the closest integer to x/∆x.
By analogy to (6.5), for points x around xp = p∆x close to the center of a missing

region, the inpainted texture v is approximately

v(x) ≈ A(p)h (sin(2π〈x, ξ(p)〉+ φ)) .

Figure 6.3 (c) and (d) shows an example of inpainting using a well chosen rendering
function. The details of the inpainting method are given in Section 6.3.

Estimating the rendering function. Similarly to the computation of the amplitude
field, computing an optimized rendering function to achieve the best visual result is
difficult. We thus restrict ourself to a parametrized family {ha,b}a,b depending on two
shape parameters a > 0 and − 1

2 < b < 1
2

∀ t, ha,b(t) = sign(t− b)|t− b|a. (6.7)

Figure 6.4 shows some examples of functions ha,b for various values of a and b and
the effect of applying the change of contrast v[ha,b] to a sinusoidal pattern v.

The parameter a controls the shape of the oscillating pattern: for a < 1 one
obtains a “crenel” profile, for a = 1 one gets a sinusoidal profile, and for a > 1 the
profile is flat around 0 and presents peaks at the minimum and maximum values. The



LOCALLY PARALLEL TEXTURE MODELING 25

parameter b balances the importance between the negative and the positive values in
the pattern profile.

In the numerical simulation, the parameters (a, b) are manually tuned by the user
to achieve a good visual quality. More advanced adaptation strategies could be used,
but we found it sufficient to explore manually the set of parameters.

h1,0 h0.3,0 h0.1,−0.5 h2,0

(a, b) = (1, 0) (a, b) = (0.3, 0) (a, b) = (0.1,−0.5) (a, b) = (2, 0)

Fig. 6.4. Examples of functions ha,b (top row) for various values of a and b and patterns v[ha,b].

6.3. Non-Convex Inpainting. Taking into account the non convex energy TA,ξ

defined in (6.1) and the change of contrast (6.6) gives rise to the following non-convex
minimization problem:

(u, v, ξ) = argmin
ũ, ṽ, ξ̃∈C

1
2
||f − Φ(ũ+ ṽ[h])||2L2 + λ J(ũ) + µ TA,ξ̃(ṽ). (6.8)

The texture component extracted by this method is then given by v[h] and v is an
approximation using pure sinusoidal oscillations of the texture present in the image.
The inpainted image is computed as u+ v[h].

Non-Convex Regularization Algorithm. This section describes an algorithm to
minimize (6.8) for a given rendering function h : R → R+ and a given amplitude
field A : {1, . . . , n/∆x}2 → R+ with respect to ξ, u and v. Similarly to Section 4, one
iterates between the minimization on ξ, on u and on v. In practice, the amplitude field
A is updated during the minimization process to provide a more accurate estimation
of the texture amplitude.

The energy is decreasing at each step but this algorithm is not guaranteed to
converge to a local minimum of (6.8). However during our numerical experiments, we
observed that the algorithm always converges.

Minimization with respect to ξ. Similarly to Section 4.2, if u and v are fixed, we
compute the frequency field ξ that satisfies

ξ = argmin
ξ̃∈C

TA,ξ̃(v) (6.9)
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where TA,ξ is defined in (6.1).
This requires, for each p, to compute

ξ(p) = argmin
|θ|>τ

||Ap −A(p)χθ|| where Ap = {|〈v, ψp,k〉|ε}k. (6.10)

To speed up the computation, and similarly to Section 4.2, we compute an approxi-
mate solution

ξ(p) = ∆ξ argmax
k> τ

|∆ξ|

|Ψv[p, k]|. (6.11)

Minimization with respect to u. If ξ and v are fixed, the minimization on u is
similar to (4.12) by setting y = f − Φ(v[h]), and it can therefore be solved using the
algorithm described in Section 4.3.

Minimization with respect to v. When ξ and u are fixed, the minimization on v
is a smooth non-convex problem. Defining y = f − Φ(u), one minimizes

E(v) =
1
2
||y − Φ(v[h])||2L2 + µ TA,ξ(v) (6.12)

For a given step size ν > 0, we use a gradient descent scheme

v(l+1) = v(l) − ν
(
G1 + µG2

)
(6.13)

where G1 is the gradient of 1
2 ||y − Φ(v[h])||2L2 with respect to v and G2 is the gradient

of TA,ξ(v) with respect to v.
These two gradients are computed as

G1 = −
(
y − Φ(v[h])

)
h′(v) and G2 = Ψ∗c (6.14)

where c is a set of coefficients defined by

c[p, k] = 2
(
1−

A(p) χξ(p)(k)
|〈v, ψp,k〉|ε

)
〈v, ψp,k〉. (6.15)

and where the dual operator Ψ∗ is defined in (3.5).
If the gradient step size ν is small enough, the iterates v(l) converge to a local

minimum of E(v) defined in (6.12).

6.4. Numerical Experiments. Similarly to Section 5.2, we define the cartoon
functional J(u) using (2.7) with ρ = 0.75. As far as the computational cost is con-
cerned, the minimizing steps on u and ξ are equivalent to the one studied in section 4.
The minimizing step on v is yet different and the conjugate gradient descent is re-
placed by a standard gradient descent which is generally slower. For an image of size
512× 512, the processing time is about 30 minutes.

Figure 6.5 shows an example of inpainting reconstruction of the image f0 from
Figure 5.4 degraded by a large hole Ω. We used the same parameters as in Figure 5.4.
To obtain a “crenel” profile similar to the profile of the fingerprint texture, we chose
h = h0.3,0.

Figure 6.6 compares our result with a copy-paste based method [41], even though
it is beyond the scope of this paper to make such comparisons, since the focus is on
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(a) y (b) u+ v[h]

(c) u (d) v (e) v[h]

Fig. 6.5. (a) the image y to inpaint (the missing part is in black), the original image is f0 in
Fig. 5.4 ; (b) the reconstruction u+ v[h] using our non convex method ; (c) the inpainted geometric
component u, (d) the sinusoidal approximation v of the texture component, (e) the inpainted texture
component v[h] after the change of contrast.

(a) (b) (c)

Fig. 6.6. (a) the image to inpaint (the missing part is in black), (b) the reconstruction using
our non convex method, (c) result of the “patchworks” method [41].

energy minimization based methods. Nevertheless, this figure shows that, as expected,
a copy-paste based method fails to reconstruct properly the orientation of the locally
parallel texture.

Figure 6.7 shows the inpainting of a desert picture2 of size 512× 512. We use our

2This picture is extracted from a photography of Cesar Fernandez and we thank him for allowing
us to use it.
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non-convex method with parameters λ = 0.3, µ = 0.01, q = 48 and ∆x = 16. We
choose as rendering function h = h2,0 which gives a texture profile similar to the one
present in the original picture (see Figure 6.4). Since the profile of the real texture
is more sophisticated than the chosen rendering function, the difference between the
inside and the outside of the mask is visually noticeable. However the reconstruction
of the texture orientation inside the mask is coherent with the known part of the
image.

(a) f0

(b) y (c) u+ v[h] (d) A

(e) u (f) v (g) v[h]

Fig. 6.7. First row: (a) f0 the original image. Second row: (b) y the image to inpaint (the
missing part is in black), (c) the reconstruction u + v[h] using our non convex method, (d) the
estimated amplitudes A. Third row: (e) the inpainted geometric component u, (f) the sinusoidal
approximation v of the texture component, (g) the inpainted texture component v[h] after the change
of contrast.

Figure 6.8 compares our result with a copy-paste based method [41], even though
it is beyond the scope of this paper to make such comparisons, since the focus is on
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energy minimization based methods. Nevertheless, this figure shows that, as expected,
a copy-paste based method fails to reconstruct properly the orientation of the locally
parallel texture.

(a) (b) (c)

Fig. 6.8. (a) the image to inpaint (the missing part is in black), (b) the reconstruction using
our non convex method, (c) result of the “patchworks” method [41].

7. Conclusion. This paper presented a new adaptive framework for locally par-
allel texture modeling. Two new adaptive texture models well-suited for locally par-
allel oscillating patterns were studied. The use of these adaptive models provide
satisfactory results both in decomposition and inpainting for images which contain
oriented textures. Adaptivity is indeed crucial for this kind of images where the
texture is anisotropic, since it allows one to take into account the texture geometry.

The adaptation to the texture geometry is obtained by optimizing an orientation
field ξ which is computed iteratively by our algorithm. To inpaint large missing
regions, we increase this adaptivity by considering also an amplitude field and a
rendering function. Inpainting larges holes, which boils down to the synthesis of
new information, is hence obtained by switching from a convex regularization to a
non-convex boosting term controlled by an amplitude field.

Acknowledgment:. The authors would like to thank Yann Gousseau for providing
them with the inpainting results of the patch-based inpainting algorithms.

Appendix A. Algorithm to Compute the Proximity Operator.
In the following we use the discrete gradient operator ∇ defined in (2.1) and

denote the curvelet decomposition operator as

Dg = {〈g, cm〉}m

where cm = cj,l,k is a curvelet atom. As first noted by Bect et al. in [9], the cartoon
model defined in Section 2 can be written as

J(g) = ||Qg||1

where the linear operator Q is defined as

Q :

 RN −→ RN×2 × RP

g 7−→
(

ρ∇g
(1− ρ)Dg

)
(A.1)
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where P is the number of curvelet atoms. The `1 norm of an element p = (z, w) ∈
RN×2 × RP is defined as

||(z, w)||1 = ||z||1 + ||w||1 =
∑

16i6N

√
(z1

i )2 + (z2
i )2 +

∑
16i6P

|wi|. (A.2)

The dual operator Q∗ is then given by

Q∗ :

 RN×2 × RP −→ RN(
z
w

)
7−→ −ρdiv z + (1− ρ)D∗w

(A.3)

where the divergence of a vector field p ∈ RN×2 is computed as described in [17]

div(p) = −∇∗p = ∂∗xp1 + ∂∗yp2,

where

∂∗xf [i, j] =

 f [i, j]− f [i− 1, j] if 0 < i < n− 1,
f [i, j] if i = 0,
−f [i− 1, j] if i = n− 1,

∂∗yf [i, j] =

 f [i, j]− f [i, j − 1] if 0 < j < n− 1,
f [i, j] if j = 0,
−f [i, j − 1] if j = n− 1.

Chambolle shows in [17] that for such a functional J(g) = ||Qg||1, the proximal
operator satisfies

proxωJ(g) = g − ωQ∗(p?) (A.4)

where p? = (z?, w?) ∈ RN×2 × RP is a solution of

min
||p||∞61

||Q∗p− g/ω||2 (A.5)

where the `∞ norm is defined as

||(z, w)||∞ = max
(

max
16i6N

√
(z1

i )2 + (z2
i )2, max

16i6P
|wi|

)
. (A.6)

For the computation of p?, Chambolle proposes a fixed point algorithm that can be
replaced by a projected gradient descent. Starting from p(0) = (0, 0) ∈ RN×2 × RP ,
` = 0, one then iterates between a gradient descent step to minimize ||Q∗p− g/ω||2

p̃(`) = p(`) − νQ(Q∗p(`) − g/ω) (A.7)

and a projection onto the constraints {p \ ||p||∞ 6 1}

∀ i, p
(`+1)
i =

p̃
(`)
i

max(1, ||p̃(`)
i ||)

. (A.8)

If the gradient step size satisfies ν < 2/||QQ∗||, then g−ωQ∗p(`) converges to proxωJ(g).
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[41] P. Pérez, M. Gangnet, and A. Blake, Patchworks: Example-based region tiling for image
editing, tech. report, Microsoft Research, MSR-TR-2004-04, 2004.
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