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Abstract

This work explores how model-driven engineering tech-

niques can support the configuration of systems in domains

presenting multiple variability factors. Video surveillance

is a good candidate for which we have an extensive experi-

ence. Ultimately, we wish to automatically generate a soft-

ware component assembly from an application specifica-

tion, using model to model transformations. The challenge

is to cope with variability both at the specification and at

the implementation levels. Our approach advocates a clear

separation of concerns. More precisely, we propose two

feature models, one for task specification and the other for

software components. The first model can be transformed

into one or several valid component configurations through

step-wise specialization. This paper outlines our approach,

focusing on the two feature models and their relations. We

particularly insist on variability and constraint modeling

in order to achieve the mapping from domain variability to

software variability through model transformations.

1. Introduction

This work explores a possible synergy between the video

surveillance software domain and model-driven engineer-

ing (MDE). Building video surveillance software is a com-

plex process, with many design decisions, both at specifi-

cation and implementation levels. On the one hand, we

expect that MDE techniques will promote new paradigms

in video surveillance design processes. On the other hand,

confronting MDE with such a large scale application will

certainly raise new challenging problems in MDE itself.

In the video surveillance community, the focus has

moved from individual vision algorithms to integrated and

generic software platforms, and now to the security, scal-

ability, evolution, and ease of use of these platforms. The

last trends require a modeling effort, for video surveillance

component frameworks as well as for task specification.

Thus this domain is a good candidate not only to put MDE

to the test, but also to improve and enrich it.

MDE seems mature enough to be confronted with real

applications. A crucial question is to determine the current

limits regarding complexity, scalability, and variability is-

sues. The latter item is of major importance and is central

to our work. Indeed, we know that a huge number of correct

configurations is possible, even with few variation points.

This is difficult to master, even by experienced users [9, 12].

Our approach is to apply modeling techniques to the

specification (describing the video surveillance task and

its context) as well as to the implementation (assembling

the software components). The final objective is to de-

fine methods mature enough to specify a video surveillance

task and its context and to obtain (semi-)automatically a set

of valid component assemblies, through model transforma-

tions. The key issue is variability representation and man-

agement. In this paper we focus on static configuration;

run-time adaptation and control are a matter for other tech-

niques that we will briefly mention in the conclusion.

In the next section, we introduce the challenges faced

by designers of video surveillance applications. The ma-

jor problems are due to the huge number of variants. Our

approach uses feature models to cope with this variability,

together with model to model transformations presented in

section 3. Section 4 describes our approach, its specific

models and their transformations. Finally, we conclude with

the current status of the project and its intended evolution.

2. Video Surveillance Processing Chains

The purpose of video surveillance is to process one or

several image sequences to detect interesting situations or

events. Depending on the application, the corresponding

video analysis results may be stored for future processing

or may raise alerts to human observers.
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Figure 1. A simplified video surveillance processing chain

There are several kinds of video surveillance tasks ac-

cording to the situations to be recognized: detecting intru-

sion, counting objects or events, tracking people, animals

or vehicle, recognizing specific scenarios... Apart from

these functional characteristics, a video surveillance task

also sports non functional properties, such as quality of ser-

vice. The most typical criteria concern the robustness char-

acterized by the number of false positive and negative de-

tections, the response time, the accuracy of object and event

recognition... As a matter of examples, intrusion detection

may accept some false positives, especially when human

operators are monitoring the system; counting requires a

precise object classification; recognition of dangerous be-

havior must be performed within a short delay.

Moreover, each kind of task has to be executed in a par-

ticular context. This context includes many different ele-

ments: information on the objects to recognize (size, color,

texture...), description and topography of the scene under

surveillance, nature and position of the sensors (especially

video cameras), lighting conditions... These elements may

be related together, e.g., an indoor scene implies a particular

lighting. They are also loosely related to the task to perform

since different contexts are possible for the same function-

ality. For instance, intrusion detection may concern people

entering a warehouse or pests landing on crop leaves.

The number of different tasks, the complexity of contex-

tual information, and the relationships among these items

induce a high variability at the specification level. Defining

several product lines is a usual way to reduce variability.

However, each line (intrusion, counting, scenario recogni-

tion...) still contains many variability factors.

The variability even increases when considering imple-

mentation issues. A typical video surveillance processing

chain (figure 1) starts with image acquisition, then segmen-

tation of the acquired images, clustering to group image

regions into blobs, classification of possible objects, and

tracking these objects from one frame to the other. The

final steps depend on the precise task. Additional steps

may be introduced, such as reference image updating (if the

segmentation step needs it), data fusion (in case of multi-

ple cameras) or even scenario recognition. This pipe-line

architecture is rather stable across tasks. By contrast, for

each step, many variants exist along different dimensions.

For instance, there are various classification algorithms with

different ranges of parameters, using different geometri-

cal models of physical objects to recognize, with different

strategies to merge and split image blobs to label them as

objects. And it is of course the same for other algorithms.

These steps and their variants constitute software com-

ponents that designers must correctly assemble to obtain a

processing chain. For this, current research in video surveil-

lance not only focuses on individual algorithms but also on

integrated component frameworks (or platforms) that cover

all the steps. Such a framework is being developed [2] in

our group: written in C++, it targets most of video surveil-

lance tasks and proposes a choice of algorithms for each

step. Such frameworks indeed favor software reuse and as-

sembly safeness; however, they are still delicate to master,

a real challenge.

To sum up, designing a video surveillance system re-

quires to cope with multiple sources of variability, both on

the task specification side and on the implementation one.

For this, following modern software engineering practices,

we propose to model both sides, each with its variabili-

ties. Model transformations will then assist the process of

producing a video surveillance system from a requirement

specification. Separation of concerns makes models easier

to manage. However, since concerns are usually not com-

pletely independent, we also need to introduce constraints

enforcing the relationships inside as well as across models.

3. Variability and Model Transformation

Software video surveillance products exhibit similar fea-

tures; hence, they can be considered as a software product

line (SPL), a.k.a. a product family [13]. A crucial issue

is to make explicit their differences in terms of provided

features, fulfilled requirements, or execution assumptions.

Central to SPL approaches is the ability to deal with prod-

uct variability that is ”the ability of a system to be efficiently

extended, changed, customized or configured for use in a

particular context” [15]. Consequently, we need methods

for representing variability, and for efficiently operating on

it at each stage of software development. Moreover, model

transformations require mechanisms to handle relations be-

tween variability models at different abstraction levels.



3.1. Variability Modeling

Modeling variability has been explored in several do-

mains. One of the most practical techniques is feature mod-

eling. It aims at modeling the common and variable fea-

tures of a product family. Several definitions of the notion

of feature appear in the literature, ranging from ”anything

user or client programs might want to control about a con-

cept” [4], ”a prominent or distinctive user-visible aspect,

quality or characteristic of a software system” [6] to ”an

increment in product functionality” [3]. Feature modeling

is not only relevant to requirement engineering but it can

also apply at design or implementation time. Furthermore,

features are ideal abstractions that customers, experts and

developers can easily understand.

The FODA (Feature-Oriented Domain Analysis) method

[6] was the first to propose to capture feature models as dia-

grams. A feature diagram is a set of features, hierarchically

organized. Features are nodes of the corresponding tree and

can be mandatory or optional. Edges are used to progres-

sively decompose features into sub-features that detail the

parent ones. Aggregation and alternative groups (AND and

XOR) are examples of such decompositions. In addition,

aside from the tree structure, composition rules express de-

pendencies and capture possible complex interactions be-

tween features. For instance, it is possible to express that

one feature requires an other one or that two features are

mutually exclusive even if they belong to distant sub-trees.

As an extension of FODA, the FORM method provides addi-

tional types of constraints [7].

A feature model represents a set of configurations, each

being a set of features consistent with the constraints and

the semantics of feature models. As proposed in [5], the

process of deriving a valid configuration may be performed

in stages, where each stage specializes the feature diagram.

A feature model f ′ specializes another one, say f , if the

set of configurations represented by f ′ is a subset of the

configurations represented by f . Hence, specialization re-

duces the set of possible configurations of f by selecting

or removing features. Note that a fully specialized feature

diagram represents a single configuration.

Since the original definition [6], a plethora of notations

and extensions have been proposed [7, 5, 15]. Schobbens

et al. provide a generic formal definition of feature dia-

grams that is a generalization of all the variants of feature

diagrams [14]. They define a pivot abstract syntax called

Free Feature Diagram, that constitutes a meta-model of fea-

ture diagrams and allows to reason formally on the syntax

and semantics of these diagrams.

In our case we have multiple variability factors, both

for specifying an application and for describing the soft-

ware framework. Indeed, it is difficult to reason directly

on implementation-oriented abstractions and to integrate re-

quirement level knowledge at the same time. We thus de-

cided to separate these two concerns. This led to two fea-

ture models: one for video surveillance task specification,

the other for framework description. Both models address

the static configuration phase. This phase raises interest-

ing enough problems that must be solved before tackling

run-time control and adaptation that require other kinds of

models.

3.2. Model Transformation

The two feature models provide a basis to understand the

two aspects of software in video surveillance, the applica-

tion requirement and the processing chain. The challeng-

ing task here is to map the domain variability (or problem

space) to software variability (or solution space).

Model-driven engineering uses models to represent par-

tial or complete views of an application or a domain, pos-

sibly at different abstraction levels. MDE offers techniques

to transform a source model into a target one. Source and

target models can reside at the same abstraction level (e.g.

specialization of a feature model) or at different abstraction

levels (e.g. mapping between task and framework models).

A set of transformation rules describes how one or more

constructs in the source model can be transformed into one

or more constructs in the target one [8].

Our approach combines SPL and MDE. SPL exploits the

knowledge of problems in a particular domain and tries to

automate the construction of applications. MDE techniques

narrow the gap between the problem and solution spaces

through transformations. Moreover, MDE puts forward

multi-stage strategies to derive software assets by step-wise

refinement. MDE and SPL are complementary technolo-

gies [12, 19] and model transformations are at the heart of

their potential synergy.

4. A MDE Approach to Video Surveillance

4.1. Outline of the Approach

As already mentioned we propose two feature models: a

generic model of video surveillance applications (task spec-

ification model, for short task model) and a model of video

processing components and chains (component framework

configuration model, for short framework model). Both of

them are feature models expressing configuration variabil-

ity factors. The task model describes the relevant concepts

and features from the stakeholders’ point of view, in a way

that is natural in the video surveillance domain: charac-

teristics and position of sensors, context of use (day/night,

in/outdoors, target task)... It also includes notions of quality

of service (performance, response time, detection robust-

ness, configuration cost...). The framework model describes



the different software components and their assembly con-

straints (ordering, alternative algorithms...).

It is convenient to use the same kind of models on both

sides, leading to a uniform syntax. Feature models are ap-

propriate to describe static variants; they are simple enough

for video surveillance experts to express their requirements.

Nevertheless, other types of models may deserve consider-

ation (e.g., component models on the framework side) or

may be needed when it comes to run-time control (e.g.,

work-flow models). In all cases, these new models must

be compatible with the variability configuration models.
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Figure 2. MDE approach to video surveillance

We clearly need to model transformations from the first

model to the second, to allow to automatically (or semi-

automatically) turn an application specification into a suit-

able processing chain. Our approach is represented on fig-

ure 2. A designer of video surveillance systems instantiates

the task model, thus producing a task specification. This

latter is a configuration of the task model, consistent with

the constraints. Then, the designer triggers the automatic

transformation. Due to the multiple causes of variability,

the result of the transformation is usually not one single in-

stance of the framework model, but rather a set of possible

component assemblies fulfilling the task and context speci-

fication. This means that the designer obtains a sub-model,

in fact a specialization (see 3.1), of the framework model.

This sub-model is, by construction, consistent with the con-

straints in both models. The final configuration of the video

processing chain has to be manually fined-tuned by the de-

signer, leading to an instance of the framework model.

Since we wish to define the static configuration of the

system, the designer has to choose all the features that

would induce the selection of those components that may

be useful at run-time. Some of these features are imposed

by the task definition, other will be controlled at run-time.

4.2. Task Specification and Framework Models

Figure 3(a) shows an excerpt of the feature diagram cor-

responding to the task specification. To enforce separation

of concerns, we identified four top level features. The Task

feature expresses the precise function to perform. QoS cor-

responds to non-functional requirements, especially those

related to quality of service. Then, we need to define the

Object(s) of interest to be detected, together with their prop-

erties. Finally, Scene context is the feature with the largest

sub-tree; it describes the scene itself (its topography, the na-

ture and location of sensors) and many other environmental

properties (only few of them are shown on the figure).

In this diagram, the (sub-)features are not independent.

A decision in the task model (e.g., selecting or removing

a feature) may impact both the task model itself and the

framework model. The corresponding constraint propaga-

tion reduces the set of possible configurations both in the

problem and in the solution space. Thus, we have enriched

the feature diagrams by adding internal constraints to cope

with relations local to a model. Constraints across models

are related to model transformations (see next section).

So far, we have identified three kinds of constraints.

Choosing one feature may imply or exclude to select an

other specific one. In other cases, the choice of one feature

only suggests to use an other one; this corresponds to de-

fault cases. For instance, if Counting is the current task, it

implies a high detection precision to accurately recognize

the objects to count. The corresponding features appear as

blue in figure 3(a). By contrast, intruders do not need to be

precisely characterized; thus Intrusion suggests low preci-

sion (but could cope with a high one).

On the framework side, we also used feature diagrams.

Figure 3(b) displays a highly simplified form of the cor-

responding diagram. The top level features mainly corre-

spond to the different steps of the processing pipeline (some

of them optional). The figure displays only a few sub-

features of the segmentation step. Similarly to the previous

diagram, we also introduce internal constraints. They have

the same form as before. For instance, edge segmentation

implies a thin image discretization, thus a low Grid step.

The corresponding features are filled in blue on figure 3(b).

4.3. Transformations

Many transformations can be represented as rules of the

same form as the previous constraints, but they relate fea-

tures across models. For example, Intrusion implies the ex-

istence of particular zones of interest such as doors. This is

an internal constraint which involves a Context feature (not

shown on figure 3(a)). The existence of such zones in turn

suggests to analyze only the matching parts of the images,

which is done by using masks during Segmentation. The
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Figure 3. Simplified feature models: video surveillance task specification and software framework

corresponding features on both diagrams are marked in red.

As an other example, the need for high precision in Count-

ing implies to use a low Grid step during Segmentation.

We wish to use similar formalisms for internal con-

straints and transformation rules. Presently, both are written

as text. We still have to decide on a formalism which should

be expressive enough and preferably verifiable. OCL or sys-

tems like ALLOY are worth exploring. Moreover, transfor-

mation rules must be executable, which suggests to think

of transformation engines (imperative ones such as KER-

META or more declarative like ATL) or even inference rule

engines as in Artificial Intelligence. An other alternative is

to use a constraint solver to derive a correct and optimal

configuration. It makes it possible to specify more global

constraints and can be efficient in some situations, although

the drawback is an increased complexity. Moreover, means

to efficiently translate specification rules into concrete fea-

tures are still an open issue [18]. In all cases, meta-models

of transformations are to be elaborated.

We suspect that the ideal representation could be a mix-

ture of imperative and rule-based techniques. In a previous

work, we proposed artificial intelligence techniques, called

Program Supervision, to control the scheduling and the ex-

ecution of vision chains [17]. This experience could be

adapted to drive model transformations.

5. Conclusion and Future Work

In video surveillance, task requirements as well as soft-

ware component assembly are complex to handle. The chal-

lenge is to cope with the many—functional as well as non-

functional—causes of variability on both sides. Hence, we

first decided to separate these two concerns. We then ap-

plied domain engineering to identify the reusable elements

on both sides. This led to two feature models, one for

task requirement and the other for software components, en-

riched with intra- and inter-models constraints.

To manipulate these models, we are developing a generic

feature diagram editor using ECLIPSE meta-modeling facil-

ities (EMF, ECORE, GMF...). At this time, we have a first

prototype that allowed us to represent both models. How-

ever, the current tool only supports natural language con-

straints, but we have experimented the KERMETA [1] work-

bench to implement some model to model transformations.

A concrete objective is to provide a graphic tool to assist

the full specification and design of complete video surveil-

lance processing chains. The tool should allow a designer

to: (i) select the needed features from the task model, (ii)

enforce validity constraints, (iii) automatically generate a

specialized framework model corresponding to the speci-

fications, (iv) instantiate this framework model under de-



signer’s control to obtain the final processing chain, (v) au-

tomatically generate the glue code to put components to-

gether. Control during execution will be the matter of other

techniques such as Program Supervision.

A number of scientific and technical issues are yet to be

solved. First, we need to choose a formal way to represent

internal constraints in feature models. Our intend is to rely

on existing formalisms that provide manipulation and veri-

fication means. Second, after variability modeling, the next

key point is to decide how to express the model to model

transformations. This involves to define a model of trans-

formations and a description language, to verify or ensure

that transformations fulfill internal constraints, and to im-

plement the transformations themselves. We also plan to

use existing tools, preferably available within ECLIPSE.

In the long term, we may consider other representa-

tions, particularly for software components. Although fea-

ture models conveniently represent variability concerns, it

would be suitable to make them compatible with standard

component models [16]. Concerning model transforma-

tions, we wish to combine imperative and rule-based ap-

proaches, taking advantage of our previous work on Pro-

gram Supervision that proposes a dynamic model of the

framework [10]. It also includes all the work flow aspects

necessary at execution time. Such a model could comple-

ment the static configuration obtained through model en-

gineering, adding a run-time dimension. The artificial in-

telligence mechanisms that it involves could also complete

dynamic adaptation approaches such as the DIVA one [11].

To conclude, our approach is based on a twofold separa-

tion. The first one distinguishes between the general video

surveillance domain and particular applications, the second

between task specification and component design. The first

deals with variability, the second with model transforma-

tion. Although preliminary, our first results show that cur-

rent model-driven engineering techniques can facilitate the

specification and design of complex real life applications.

In return, we expect that the confrontation may raise new

issues to enrich the MDE paradigm.
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[2] A. Avanzi, F. Brémond, C. Tornieri, and M. Thonnat. De-

sign and assessment of an intelligent activity monitoring

platform. EURASIP Journal on Applied Signal Processing,

14(8):2359–2374, 2005.

[3] D. S. Batory. Feature models, grammars, and propositional

formulas. In J. H. Obbink and K. Pohl, editors, SPLC, vol-

ume 3714 of LNCS, pages 7–20. Springer, 2005.

[4] K. Czarnecki and U. Eisenecker. Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, 2000.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Con-

figuration through Specialization and Multilevel Configura-

tion of Feature Models. Software Process: Improvement and

Practice, 10(2):143–169, 2005.

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-

son. Feature-Oriented Domain Analysis (FODA) Feasibility

Study. Technical Report CMU/SEI-90-TR-21, Nov. 1990.

[7] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.

Form: A feature-oriented reuse method with domain-

specific reference architectures. Annals of Software Engi-

neering, 5(1):143–168, 1998.

[8] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The

Model Driven Architecture–Practice and Promise. Addison-

Wesley , April 2003.

[9] C. W. Krueger. New methods in software product line de-

velopment. In 10th Int. Software Product Line Conf., pages

95–102, Los Alamitos, CA, USA, 2006. IEEE Computer So-

ciety.

[10] S. Moisan. Knowledge representation for program reuse. In

Proc. European Conference of Artificial Intelligence, Lyon,

France, July 2002.

[11] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Sol-
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