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Generalization is common in object-oriented modelling. It would be useful in many situations also as a language mechanism, reverse inheritance, but there have been only few detailed proposals for that. This paper defines reverse inheritance as a true inverse of ordinary inheritance, without changing anything else in the language that is extended. Eiffel is perhaps the most suitable language for that purpose because of its flexible inheritance principles. Moreover, there exists good previous work on Eiffel, on which we have built. We describe the most important aspects of our extension, whose details proved to be more difficult than we had assumed. It would be easier if some modifications were made to Eiffel's ordinary inheritance, or if one designed a new language.

Introduction

Generalization is widely used in object-oriented (OO) modelling and design, but it is not available on the programming level in any widely used language or system. We propose to extend object-oriented languages with a new relationship, reverse inheritance (RI) or exheritance, which is an inverse of ordinary inheritance (OI). Reverse inheritance allows non-destructive generalization, just like ordinary inheritance allows non-destructive specialization. This is not a completely new idea, but it has been very little treated in the literature. Of course, we are building on applicable previous research (see Section 2).

Clearly, if the source code can be modified, it is always possible to add a direct superclass (parent in Eiffel terminology) to an existing class. This is a common refactoring operation, but it may introduce many side effects and affect the robustness of the existing classes. Further, it is very undesirable or even impossible in many cases to modify existing classes, e.g. from standard libraries. The situation is particularly difficult when one needs to combine two or more large class hierarchies from different sources.

None of the previous proposals for reverse inheritance that we know has been implemented. This time we wanted to allow RI to be tried out in practice, and therefore designed an extension to an existing industrial-strength language, instead of a nice, formally defined toy language. Such an exercise gives better possibilities to weigh the potential benefits of reverse inheritance against its costs (added language complexity).

Eiffel is a particularly interesting and suitable language to extend with RI, because of its well thought-out design principles. Most importantly, its flexible and clean implementation of multiple inheritance with explicit clauses for adaptation allows us to propose a solution that is both integrated and expressive enough. Because no implementation of the new, significantly changed version of Eiffel [START_REF] Meyer | Eiffel: The Language[END_REF], ECMA International [2006]) existed yet, we based our extensions on the stable old version often known as Eiffel 3 [START_REF] Meyer | Eiffel: The Language[END_REF]). We use mostly the terminology of Eiffel literature, except the term 'method' instead of 'routine'. We'll try to explain those Eiffel terms and concepts that could be too alien to many readers, when using them the first time.

To give a taste of RI, Figure 1 is a small example. Suppose that we have two classes RECTANGLE and CIRCLE designed independently from each other. It is noted later that some of their features can be factored into a common parent class, which is named FIGURE. We do not explain all details here, but the example should be understandable; the new keyword foster denotes a class defined using RI. For reference purposes, we have added line numbers, which are not part of the code. The keyword all specifies that all features (the common superconcept of attribute and method in Eiffel) with the same name and signature in both CIRCLE and RECTANGLE will be exherited to FIGURE; this means location and draw. However, they will become abstract (deferred in Eiffel) by default. For programmers using these three classes, the example is fully equivalent to standard Eiffel code in which FIGURE would be defined first and the others as its direct subclasses (heirs in Eiffel).

We will present the main features of our approach in the rest of this paper. Section 2 gives a brief overview of previous literature, whereas in Section 3 we address the main principles to be followed. We continue in Section 4 giving the fundamentals of our approach. Sections 5 and 6 illustrate the use of RI in the two main situations: adding a superclass at the top level of the hierarchy, and inserting a class between two or more classes in the hierarchy. Finally we conclude and set a perspective for future research in Section 7.

We already have a quite comprehensive proof-of-concept implementation of our RI extension for Eiffel, by a transformation to standard Eiffel. Space does not permit us to describe it in this paper, but we refer interested readers to the website https://nyx.unice.fr/projects/transformer . Unfortunately, some of our adaptations cannot be done with such a transformation approach, but would need the Eiffel compiler itself to be modified.

Previous research

The earliest article we have found that discusses a concrete generalization mechanism is [START_REF] Schrefl | Object Class Definition by Generalization Using Upward Inheritance[END_REF], which uses the term 'upward inheritance'. Its purpose is enabling the integration of different OO databases into a multidatabase system, or building a homogeneous global view of heterogeneous systems. The paper [START_REF] Qutaishat | Extending OMT to support bottom-up design modelling in a heterogeneous distrubuted database environment[END_REF] has a similar purpose. Generalization is much more important in database integration than in "ordinary" programming, because the homogenization of the underlying databases is usually out of the question. It is also easier, because the gen-eralization classes live on a different layer of the system than the actual database classes. On the other hand, there is the additional problem that one real-world object (instance) may well be represented in several databases.

Our goal is essentially different from the above, namely allowing classes to be defined either by specialization (OI), generalization (RI), or a combination of both, within the same context. To our knowledge, the first paper proposing such an approach and mechanism is [START_REF] Pedersen | Extending ordinary inheritance schemes to include generalization[END_REF]. We consider it a seminal paper, although it is somewhat simplistic or even erroneous on some points.

A significant step forward was made in the paper [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF], which presents a detailed proposal for adding reverse inheritance into Eiffel. It also discusses many problems both on the conceptual level and in the implementation. We have adopted the most important terms from there, in particular 'foster class'. However, we could not see a reason for speaking about reverse type inheritance, because inheritance is always a relationship between classes in Eiffel and most other OOPLs.

One surprisingly missing aspect in both [START_REF] Pedersen | Extending ordinary inheritance schemes to include generalization[END_REF] and [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF] is the possibility of a class being defined by a combination of simultaneous ordinary and reverse inheritance, i.e., inserted into the inheritance hierarchy between a superclass (parent) and its subclasses (heirs). We would expect that to be more common in practice than defining a foster class as a root class.

The workshop paper [START_REF] Sakkinen | Exheritance -Class Generalization Revived[END_REF] was written unaware of [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF], so the new term 'exheritance' was coined there. It is quite optimistic about RI and suggests several new ideas. All of those are not included in our Eiffel extension, but could be relevant if we did not want to stay fully downward compatible with standard Eiffel (see Rule 1 in Section 3).

The workshop paper [START_REF] Chirilȃ | A Reverse Inheritance Relationship for Improving Reusability and Evolution: The Point of View of Feature Factorization[END_REF] discusses the application of RI to Java, including implementation aspects. Adding RI to a single-inheritance language had not been treated in earlier papers. It is both much simpler and much less powerful than with multiple inheritance, but not trivial. Our first example (Figure 1) did not need multiple ordinary inheritance.

Since 2005, we have cooperated and tried to combine our different viewpoints on reverse inheritance. The current paper builds on the earlier work, especially [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF] and [START_REF] Sakkinen | Exheritance -Class Generalization Revived[END_REF], with essential improvements on several points. Because we are also implementing our approach, we needed to be more thorough than the earlier papers.

Main principles

Before going further in the description of reverse inheritance it is important to state the main principles of our approach. The rules are presented in an approximate order of importance. We do not claim them to be self-evident; there can be approaches based on different principles.

Firstly, since we are designing an extension to an existing language, it is important that classes and programs which do not use the extension will not be affected.

Rule 1: Genuine Extension Eiffel classes and programs that do not exploit reverse inheritance must not need any modifications, and their semantics must not change.

Secondly, it is very important that after a class has been defined using RI, it can be used just as any ordinary class. Otherwise, foster classes would be far less useful, and the additional language complexity caused by RI would certainly not pay off.

Rule 2: Full Class Status

After a foster class has been defined, it must be usable in all respects as if it were an ordinary class.

In particular, a foster class can be used as a parent in ordinary inheritance and as an heir in further reverse inheritance, Thirdly, in OI the semantics of a given class is not affected if a new class is defined as its direct or indirect subclass (descendant in Eiffel), or if some existing descendant is modified. In contrast, any modifications to a superclass (ancestor in Eiffel) affect all its subclasses, and can even make some existing descendants illegal unless their definitions are changed also. We want RI to be a mirror image of OI in this respect, i.e., the dependencies between classes to be the opposite of what they are in RI (see [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF]).

Rule 3: Invariant Class Structure and Behaviour

Introducing a foster class as a parent C of one or several classes C 1 , . . . , C n using reverse inheritance must not modify the structure and behaviour of C 1 , . . . , C n .

Fourthly, the reverse inheritance relationship is intended to be the exact inverse of ordinary inheritance. This means that it should be as completely interchangeable with ordinary inheritance as possible. In the new version of Eiffel (ECMA International [2006]) this would imply also that conforming and non-conforming reverse inheritance relationships must be distinguished.

Rule 4: Equivalence with Ordinary Inheritance

Declaring a reverse inheritance relationship from class A to class B should be equivalent to declaring an ordinary inheritance relationship from class B to class A.

Of course, this does not mean that the syntactic definitions of the two classes would be the same in both cases.

As a consequence of this rule, it would be good if all adaptation capabilities provided for RI had their counterparts in pure Eiffel language. However, we actually wish to have some adaptations that cannot be exactly translated to OI (see Section 4). On the other hand, we did not consider it worthwhile to implement all possible complications of Eiffel OI also in RI; Rule 7 is an example of that.

Fifthly, we want reverse inheritance to leave the existing inheritance hierarchy as intact as possible.

Rule 5: Minimal Change of Inheritance Hierarchy

Introducing a foster class must neither delete direct inheritance relationships (parent-heir relationships) nor create any inheritance relationships (ancestor-descendant relationships) between previously existing classes.

Note that RI may well create new inheritance paths between existing classes, but only for existing ancestor-descendant pairs (see Section 6). The paper [START_REF] Sakkinen | Exheritance -Class Generalization Revived[END_REF] suggested that it could be possible to define also new parent-heir relationships, and even equivalence relationships, between existing classes (if they are feasible). However, that would change the semantics of many programs even if they do not use RI, because Eiffel has language constructs whose effect depends on the dynamic type of a variable, e.g., the assignment attempt.

Sixthly, we need to define which features are candidates to be exherited in reverse inheritance. The following rule is essentially a consequence of the previous rules and the adaptation possibilities of OI in Eiffel extended for RI (as just mentioned).

Rule 6: Exheritable Features

The features f 1 , . . . , f n of the respective, different classes C 1 , . . . , C n are exheritable together to a feature in a common foster class if there exists a common signature to which the signatures of all of them conform, possibly after some adaptations. Each of the features f 1 , . . . , f n can be either immediate or inherited.

In pure Eiffel these features could be similarly factored out to a common parent, but any extended adaptations (see above) would require new or modified methods in the heir classes. Some common special cases are simpler than the general case: In single RI, all features are trivially exheritable. In multiple RI, all f i may already have the same signature, or one of them may have a signature to which all others can be made to conform. We will explain the possible adaptations in Section 4.

Lastly, we want to avoid the complexity of allowing one feature in a foster class to correspond to several features in the same exherited class, although this would be a direct equivalent of repeated inheritance with renaming.

Rule 7: No Repeated Exheritance

Two different features of the same class must not be exherited to the same feature in a foster class.

The definition of the semantics of reverse inheritance in the following sections, on both the conceptual level and the concrete language level, relies on the above seven rules.

Basics of our approach

Where needed to avoid ambiguities, we will call the proposed extended language 'RI-Eiffel' in distinction to pure Eiffel. Details in the concrete syntax used in our code examples are not important, and the syntax may be slightly modified in the future.

Following the paper [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF], a class defined using a RI relationship is called a foster class and is preceded by the keyword foster in order to point out the special semantics of this class with respect to normal Eiffel classes. In fact, a foster class also requires special implementation (see [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF]). In a new language with both OI and RI, the 'foster' keyword would be needed no more than a 'heir' or 'subclass' keyword.

A foster class may be effective (concrete) or marked as deferred (abstract) like any other class. It is a fully-fledged class in all respects; in particular, further classes can be derived from it by both OI and RI. Otherwise reverse inheritance would hardly be useful and interesting.

In order to reverse-inherit or exherit from one or several classes we use a clause exherit in a foster class, in the same way as we use a clause inherit in order to reuse and to extend the behaviour of one or several classes. We did not take the keyword adopt from [START_REF] Lawson | The Potential for Reverse Type Inheritance in Eiffel[END_REF], because we have introduced adapt and adapted (see later), and wanted to avoid confusion.

The set of exheritable features is defined by Rule 6 in Section 3. Because it is not always desired to exherit all of them, the set of really exherited features can be further restricted by using some rather intuitive keywords. The keyword all in Figure 1 is actually redundant, because we take it as the default.

In ordinary inheritance, also the implementation of every feature is copied to the heir class by default, but in Eiffel it is also possible to copy only its signature, i.e., make it deferred, using the clause undefine. A reasonable approach for exheritance is exactly the reverse: the default is that a feature is deferred in the foster class. Therefore, the keyword undefine is not needed in RI. When the implementation of a feature should be moved (or copied) to the foster class, that is specified explicitly by the clause moveup. We invented this keyword, because 'move' is probably a rather common identifier in programs.

The strongest reason for the above default is that usually it is not even possible to copy the body of a method from a heir class. That would require all other features accessed by the method to be exherited also, but in multiple RI they may not be even exheritable [START_REF] Sakkinen | Exheritance -Class Generalization Revived[END_REF]). It seemed best to us to have the same default also for attributes.

If an exherited feature is a method, a body can be written in the foster class just as in an ordinary class. In that case, it seems consistent with OI to require a redefine clause for each exherited class in which the feature is effective (either as a method or as an attribute).

In Figure 1 the features of the exherited classes that should be unified in the foster class have the same name. In general, it is very likely that some corresponding features have different names, and in converse that some features with the same name should not be unified. That has been recognized in all previous papers, and was also taken into account in Rule 6 (Section 3). It is therefore necessary that we allow renaming in an exherit clause by rename subclauses; this facility exists for OI in standard Eiffel. Examples of that will appear in later sections.

We already mentioned above the use of redefine in Eiffel to announce the reimplementation (overriding) of methods. The same keyword -a bit unfortunately -is used also to announce the redefinition (redeclaration) of method signatures and attribute types. We allow such redefinitions also in RI, as might be deduced from Rule 6. Since type/signature redefinitions in OI in Eiffel are covariant, they must be the inverse in RI. This means that the type of an attribute, as well as the the type of a parameter and the result of a method, in the foster class must be a common ancestor of the types of the corresponding entities in the exherited classes.

In multiple RI, the type/signature of an exherited feature must be redefined in most cases in the foster class. The exceptions are cases where the signature is exactly the same in all exherited classes (ECs) and it is not changed in the foster class. If the signatures in all other ECs conform to the common signature in a subset of the ECs, we could take the latter as the default for the foster class, but for the sake of clarity we require a redefine clause for the other ECs. -Note that even a feature that is to be deferred in the foster class needs a redefine clause if its signature is changed.

It is a speciality of Eiffel that a method which has no parameters and returns a result can be redefined as an attribute in a descendant class. The opposite is not allowed, because assignment to an attribute has no counterpart with a method. This implies for RI that a feature from the exherited classes can always be redefined as a method in the foster class, but it can be redefined as an attribute only if it is an attribute in all exherited classes.

Because the exherited classes often have not been developed in the same context, it is possible that even the number of parameters, their scales or the scale of the result or an attribute is not the same for features that represent the same thing (see [START_REF] Schrefl | Object Class Definition by Generalization Using Upward Inheritance[END_REF] for more). It should be possible to do some adaptations to take into account these aspects and then unify the adapted features in RI. Such adaptations do not exist in Eiffel, because they are not needed in OI.

Adapting a feature must not change the exherited class or its objects, according to our Rule 3. Therefore, the conversion is made on the fly, when the feature is accessed through a variable whose type is the foster class. This is one special characteristic of foster classes: in standard Eiffel the type of the referencing variable does not affect the behaviour of a feature, except that it may affect the dynamic binding if repeated inheritance is involved. Note that adaptation makes sense independently of whether the feature is deferred, moved or (re)defined in the foster class.

We introduce two new keywords for expressing adaptation. In the exherit clause, for every exherited class the features to be adapted must be listed after the keyword adapt. After all these clauses, for every feature that needs adaptation from at least one heir class, the adaptations must be specified after the keyword adapted. Each adaptation subclause must specify the name(s) of the heir class(es) to which it applies, and then the adaptation itself.

For methods, the adaptation must specify by expressions, first the actual parameters to be submitted to the method of the heir class, and second the result to be returned to the caller. Formal parameters of the foster class method can be used in both expressions, and the result from the heir class method in the latter one. Features of the foster class can also be used, at their state before or after the invocation of the heir class method, respectively. For attributes, the adaptation must specify two conversion expressions, from the heir class representation to the foster class representation and vice versa.

We omit describing the complete syntax for adaptation expressions here. It is important to note that they must not cause side effects, as a corollary of Rule 3.

Adding a root class as a parent

The simplest cases of RI are those where the foster class is on the top of the hierarchy, i.e., it has no explicit parent. It will then implicitly have the universal root class ANY (which corresponds to Object in many other languages) as parent, but we can ignore it, except in the rare case that some exherited class has renamed, redefined or undefined some feature inherited from ANY. Therefore, there is no interference caused by the combined use of OI and RI in the same class. In order to illustrate such an RI relationship, but a non-trivial one, we enhance slightly the example of Figure 1 (Section 1). Figure 2 contains only the code of the foster class.

We assume only one change in the exherited classes from Figure 1: class RECTANGLE has a method named display instead of draw. However, it has the same meaning as draw in class CIRCLE, and thus these two features should be exherited together. To achieve this, display is renamed as draw in the exheritance. By default, the feature becomes deferred in class FIGURE, and so the class itself has to be declared as deferred (line 01 ).

The attribute location is exherited automatically because it satisfies Rule 6 from Section 3. However, to keep it as an attribute and not a deferred feature in the foster class, it must be either explicitly moved from one exherited class or redefined. Here we choose the latter alternative (line 10 ): for some reason, we want it to be of type GEN POINT, which must be an ancestor Let us assume next that the class POINT has the attributes x and y of type REAL. and that the scale of these attributes is in millimetres within an object of type RECTANGLE, while in class CIRCLE it is in centimetres. We decide to handle it in millimetres also in class FIGURE, and therefore we need the adapt clause for CIRCLE. In the later adapted clause (lines 14 to 16 ), we present a tentative syntax for the adaptation of an attribute. The to subclause specifies the conversion needed for writing (assigning to) the attribute through a variable of type FIGURE, and the from subclause the conversion needed for reading it.

Figure 3 is a class diagram of this situation. In this and later diagrams we use "RI-UML", where reverse inheritance is denoted by dashed lines and downward pointing triangle arrowheads (upward might actually be a better choice).

Renaming and redefinition in OI exist already in standard Eiffel, but adaptation in our sense has no counterpart in OI (see Section 4). The word 'adaptation' is used in a wider sense in Eiffel specifications: it includes renaming, redefinition and undefinition. In this small example we have no adaptation of methods; it would not even be relevant for draw, because it has neither a result nor parameters. 

Adding a class with both reverse and ordinary inheritance

Here we study situations in which a foster class is defined "in the middle" of an inheritance hierarchy, i.e., using both ordinary and reverse inheritance. Because RI must not create new inheritance relationships between existing classes (Rule 5, Section 3), every class that the new foster class inherits from must already be a common ancestor of all classes being exherited. -Such a foster class we will call 'amphibious', using a metaphor from biology: the features of these classes come partly from above ("the land") and partly from below ("the water") in the hierarchy. When needed, we call other foster classes 'non-amphibious'.

In the simplest case, the exherited classes have a common parent and the foster class is inserted between the parent and its original heirs. We present a slightly more complex case, which is a continuation of our previous example (Fig. 3).

The classes CIRCLE and RECTANGLE have no method for moving the objects. Suppose that they are kept as such, but the heir classes MOVABLE CIRCLE and MOVABLE RECTANGLE that have a move method are added. Later one wants to define MOVABLE FIGURE as their common parent, which exherits at least the move method. It is quite natural that this new class is also an heir of FIGURE, and therefore inherits all its features.

Figure 4 gives the code of the new foster class (the new heir classes are trivial), and Figure 5 shows the augmented class diagram. To prevent some possible confusions, we have changed the RI relationships of Figure 3 into equivalent OI relationships; this is possible according to Rule 4 (Section 3).

The adaptation of the attribute location in class CIRCLE (Figure 2) makes this example trickier. The implementation of that attribute is moved to the amphibious class MOVABLE FIGURE from CIRCLE. Therefore no scale conversion must be performed when location in a CIRCLE object is accessed through a reference of type MOVABLE FIGURE. However, the inverse con- version must be performed when a MOVABLE RECTANGLE object is accessed through a reference of that type. The case would be different if the implementation of location were moved from MOVABLE RECTANGLE or simply inherited from FIGURE.

In Eiffel terminology, those features of a class that are not inherited from its parent(s) are called immediate features. In contrast, a foster class cannot have immediate features, because all its features are exherited from its heir(s) (even those that are also inherited). Thus it makes sense to classify them into amphibious (those that are both inherited and exherited) and non-amphibious features. In the rest of this section, we discuss only the amphibious ones, because the existence of a parent class is irrelevant to the others.

In the sequel, we will use the abbreviation 'PC' for the existing parent class(es). We assume for simplicity that there is only one PC. Thus, for each amphibious feature in the FC, there exists a PC version, an FC version, and a version in each EC. We must study what relationships are possible between these versions, and what are sensible default relationships.

The type (or signature in the case of a method) of the FC version can always be the same as that of the PC version, because all EC versions already conform to it. Therefore, we choose this as the most natural default type for the FC version. If all EC versions have the same type, that type is likewise trivially possible also for the FC version. In general, the FC version can have any type that conforms to the type in PC and to which the types in all ECs conform. In particular, if the feature has retained its original type in any EC, it cannot be changed in the FC either.

The possibilities for the implementation of the FC version are slightly more complicated. While the implementation of a method is a body, here we consider the implementation of an attribute to be simply the fact of being an attribute (in contrast to deferred or a parameterless method), and the implementation of a deferred (abstract) feature to be empty.

The implementation in the FC can be the same as in the PC, except if it is a method body and the signature is redefined; then the body must also be redefined, as required in standard Eiffel. If the feature is an attribute in the PC, it must be an attribute also in all ECs and in the FC, again by the rules of standard Eiffel. Otherwise, it can be an attribute in the FC only if it is so also in all ECs, but it can always be an effective (implemented) method or deferred. However, exheriting the body of a method from an EC is usually impossible, as explained in Section 4. -All in all, it is most natural that also the default implementation for the FC version is inherited from the PC.

If an amphibious feature is effective in the PC and redefined (i.e., reimplemented) in the FC, a redefine clause is required in the inheritance by standard Eiffel rules. For consistency, we require the clause likewise if the feature is moved from an EC.

In Figure 4, the attribute location of the PC (FIGURE ) has retained its name in the ECs, although its type has been redefined. Therefore, it will by default retain that name also in the FC. The name of the inherited method draw has been changed to display in MOVABLE RECTANGLE, and therefore we require it to be explicitly renamed in the exheritance. This is consistent with standard Eiffel and makes things clear, although the correspondence between EC and FC features would, in this case, be unambiguous even without explicit renaming.

In other situations, renaming in Eiffel can cause an inherited feature to be replicated; this happens with repeated inheritance. For instance, if a common heir of CIRCLE and RECTANGLE is defined without renaming, it will have the two distinct methods draw and display.

Eiffel allows also the inverse of the previous situation, namely that two features from the same parent class are unified into one feature in an heir class. Likewise, two features from different parents can be unified in multiple inheritance. We will not discuss these complications in this paper.

Conclusion and Perspectives

This paper proceeded from previous proposals to introduce a generalization relationship, reverse inheritance (RI), to object-oriented programming, in particular to the Eiffel language. Its main goal is to improve the nondestructive reuse of classes by adding new abstraction levels in the middle or on top of a class hierarchy, whereas ordinary inheritance (OI) is devoted to extending the hierarchy at the bottom.

Reverse inheritance is an almost exact inverse of ordinary inheritance. In the design of this new relationship we gave particular attention to its orthogonal integration with all other language constructs, and we also strove to keep the traditional language flavour and code readability of Eiffel. We gave preference to robustness and simplicity over expressiveness of the adaptation mechanism. In our work, we have covered virtually the whole Eiffel language. Unfortunately, the paper length limitation forced us to omit here even some very interesting aspects, such as pre-and postconditions and genericity. We intend to cover those issues in forthcoming papers.

We think that RI can have several useful application possibilities besides those already mentioned in Section 1. One example is interface inheritance, which is often recommended in theoretical papers, but not offered by any well-known language. In our approach, it can be achieved simply by exheriting all public features of a class as abstract (deferred). Another example is bridging the gap between subobject-oriented (as in C++) and attributeoriented (as in Eiffel) multiple inheritance: any set of attributes of a class can be made into a subobject by exheriting them into the same foster class.

Introducing and using RI in an object-oriented language can also have negative effects. One is that it may decrease the readability of code: with OI you don't know the descendants of a class, and with RI you don't know even all its ancestors, as Peter Grogono remarked at the ECOOP 2002 Inheritance Workshop [START_REF] Black | Proceedings of the Inheritance Workshop at ECOOP 2002[END_REF]). Also, the set of features that a parent class inherits in RI is not as straightforward as the set of features that a child class inherits in OI (see Section 3). Fortunately, such problems can be handled quite well by modern programming environments.

Some people who have commented on our work have claimed that reverse inheritance makes separate compilation impossible. That could indeed be a drawback in adding RI to some other languages, but in Eiffel the separate compilation of classes is not generally possible anyway.

Another negative effect is that RI makes a language larger and more complex. That disadvantage can be minimised if a language is originally designed with RI, or at least RI is designed to be as completely as possible a mirror image of OI. Because this paper proposes an extension to an existing language, we have striven to achieve the latter goal (see Section 3).

In the design of RI it did not appear convenient to keep the syntax so similar to that for OI as we had originally done. We could also not maintain complete symmetry between OI and RI. That was because RI clearly requires stronger adaptations between parents (superclasses) and heirs (subclasses) than are offered for OI in Eiffel or other well-known languages.

Eiffel was a good target for introducing RI, but we intend to look also on other languages and propose adapted solutions for reverse inheritance. That should be rather simple but nevertheless interesting for single-inheritance languages such as C# or Java. It would be very interesting for C++, but probably too difficult because the language is already very complicated, especially its mechanisms of multiple inheritance. A large part of the advantages of RI concern typing, and therefore it would be far less useful for dynamically typed languages such as Smalltalk and CLOS.
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