
HAL Id: hal-00415767
https://hal.science/hal-00415767v1

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composing Feature Models
Mathieu Acher, Ph. Collet, Philippe Lahire, Robert France

To cite this version:
Mathieu Acher, Ph. Collet, Philippe Lahire, Robert France. Composing Feature Models. 2nd Inter-
national Conference on Software Language Engineering (SLE’09), Oct 2009, Denver, United States.
pp.62-81. �hal-00415767�

https://hal.science/hal-00415767v1
https://hal.archives-ouvertes.fr


Composing Feature Models⋆

Mathieu Acher1, Philippe Collet1, Philippe Lahire1, and Robert France2

1 University of Nice Sophia Antipolis,
I3S Laboratory (CNRS UMR 6070),

06903 Sophia Antipolis Cedex, France
{acher,collet,lahire}@i3s.unice.fr

2 Computer Science Department,
Colorado State University,

Fort Collins, CO 80523, USA
france@cs.colostate.edu

Abstract. Feature modeling is a widely used technique in Software
Product Line development. Feature models allow stakeholders to de-
scribe domain concepts in terms of commonalities and differences within
a family of software systems. Developing a complex monolithic feature
model can require significant effort and restrict the reusability of a set of
features already modeled. We advocate using modeling techniques that
support separating and composing concerns to better manage the com-
plexity of developing large feature models. In this paper, we propose a
set of composition operators dedicated to feature models. These com-
position operators enable the development of large feature models by
composing smaller feature models which address well-defined concerns.
The operators are notably distinguished by their documented capabilities
to preserve some significant properties.

1 Introduction

Clements et al. define a software product line (SPL) as "a set of software-
intensive systems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way" [1]. SPL engineering
involves managing common and variable features of the family during differ-
ent development phases (requirements, architecture, implementation), to ensure
that family instances are correctly configured and derived [2]. In this context,
Model-Driven Engineering is gaining more attention as a provider of techniques
and tools that can be used to manage the complexity of SPL development.

In model-based development of SPLs, feature models (FMs) [3,4] are widely
used to capture SPL requirements in terms of common and variable features.
From an early stage (e.g. requirements elicitation) to components and platform
modeling, FMs can be applied to any kind of artefacts (code, documentation,
models) and at any level of abstraction. As a result, FMs can play a central role
in managing variability and product derivation of SPLs (e.g., see [5, 6, 7]).

⋆ This work was partially funded by the French ANR TL FAROS project.



Like other model-based approaches, SPL engineering now faces major scal-
ability problems and FMs with thousands of features are not uncommon [8, 9].
Creating and maintaining such large FMs can then be a very complex activ-
ity [10,11,12,13,14,15]. This problem indicates a need for tools that developers
can use to better manage complexity. One way that this can be done is to provide
the means to separate the concerns or the business domains in an SPL. Our work
focuses on an approach that puts FMs at the center of SPL management. The
separation of concerns approach we propose enables stakeholders to manage and
maintain FMs that are specific to a business domain, a technological platform
or a crosscutting concern.

In this paper, we propose generic composition operators to compose FMs
in order to produce a new FM. The proposed operators have been determined
through a classification of possible manipulations when composing elements of
two FMs. This classification is inspired by the similar distinctions made when
composing models (introduction, merging, modification, extension) [16]. The
proposed insert operator supports different ways of inserting features from a
crosscutting FM into a base FM. Depending on the inserted and targeted fea-
ture nodes, we determine whether the insertion preserves the set of configurations
determined by the input FMs. This preservation property is called the general-
ization property. We also propose a merge operator that is capable of combining
matching features in two input FMs. This operator is defined using the insert
operator and similar properties are also determined.

The remainder of this paper is organized as follows. Section 2 describes the
motivation for separating and composing FMs through an example. Section 3 sets
out the rationale behind the design of the proposed composition operators and
discusses properties that are used to characterize the provided operators. Section
4 and Section 5 detail the insert and merge operators and illustrate their use on
the example presented in Section 2. Section 6 discusses related work. Section 7
describes future work and concludes this paper.

2 Motivation

The plethora of feature definitions [17] suggests that FMs can be used at different
stages of the SPL development, from high-level requirements to code implemen-
tation. In this paper, FMs are considered from a general perspective in that FMs
are not restricted to a specific development phase. As a result, a FM can just as
well describe a family of software programs, a family of requirements or a family
of models.

2.1 Feature Model

FMs organize a hierarchy of features while explicitly specifying the variabil-
ity [18]. Features of a FM are nodes of a tree represented by strings and related
by various types of edges [19]. The edges are used to progressively decompose
features into more detailed subfeatures. (The tree structure starts from the root



feature, which is then the parent of its child features and so on.) Some mech-
anisms are also used to express variabilities in a FM. Hence, a group of child
features can form an And -, Xor -, or Or -groups. Features in an And -group can
be either mandatory or optional subfeatures of the parent feature. There are
some rules to determine whether a FM is well-formed or not. For example, there
cannot be an And, Or or Xor -group with only a single child. In Fig. 1, the con-
cept of person is represented as a FM, whose root feature is Person. Information
associated to a person includes housing, transport and telephone, which are manda-
tory features. The transport feature consists of either a car or an other kind of
transport. These child features are mutually exclusive and thus are organized in
a Xor-group. The housing feature is composed of any combination of an address,
a street name or a street number feature.

Since their original definition by Kang et al. [3], several FM notations have
been proposed [19]. The FM language used throughout this paper supports stan-
dard structures previously described, but we do not consider directed acyclic
graph structures and do not deal with constraints defined across features, whether
they are internal or between several FMs. Nevertheless, taking into account con-
straints on FM is part of our future work (see Section 7).

Fig. 1. A feature model representing the concept of person

A FM is a representation of a family and describes the set of valid feature
combinations. Every member of a family is thus represented by a unique com-
bination of features3. In the remainder of the paper, a combination of selected
features is called a configuration of a FM. A configuration is valid if all features
contained in the configuration and the deselection of all other features is allowed
by the FM. The validity of a configuration is determined by the semantics of FM
that prevents the derivation of illegal configurations. A FM is a characterization
of a set of valid configurations.

The semantics of a FM can be expressed in terms of the following rules: i)
if a feature is selected, its parent must also be selected. The root feature is thus

3 A member of a family can be an “instance”, a “product”, a “program”, etc. All these
terms are equivalent. Their uses depend on the kind of family represented.



always included in any configuration; ii) If a parent is selected, all the mandatory
features of its And group are selected; iii) If a parent is selected, exactly one
feature of its Xor-group must be selected; iv) If a parent is selected, at least one
feature of its Or-group must be selected (it is also possible to select more than
one feature in its Or-group). A valid configuration of the FM depicted in Fig. 1
follows:
{Person, housing, telephone, transport, address, streetName, areaCode, car}

2.2 A running Example

We use the following example to illustrate the FM composition operators de-
scribed in this paper. The example is complex enough to illustrate composition
needs.

In Fig. 2, the concept of person is designed from a general perspective and
described as a FM. It acts as a base or primary model that may not provide all
the elements required by an application or system of a person, that is, it may
be augmented with other features describing different aspects of a person.

We explain how this base model can be composed incrementally with other
FMs describing different aspects of features in the base model. These other FMs
are called aspects. Let us take a first aspect called Service Provided, which deals
with the services that may be offered to a person and another aspect called
Transport, which addresses the kinds of transport that may be used by a person.
These two aspects are orthogonal to the concept of person. Furthermore, they
are not particularly applied to the concept of person and thus can be composed
with other base models, e.g., representing an hotel or a nursing home.

Economical 

aspect

Living environment 

aspect

Service Provided

aspect

General perspective

Transport 

aspect

+

Integrated view

Fig. 2. Integrating several feature models



Additionally, the concept of person is enriched using two other aspects. The
first aspect describes features that provide information about the living envi-
ronment of a person while the second aspect describes features that defined its
economic characteristics. These aspects may be considered as different view-
points that represent the concept of person from the perspective of stakeholder’s
interests. Fig. 2 shows the four aspects to be composed with the base FM de-
picted in Fig. 1. The Service Provided and Transport aspects are orthogonal to
the concept of person whereas the Economical and Living Environment aspects
are additional facets of the concept of person.

2.3 Requirements

The example presented above highlights the need for compositional operators
that can i) add information (e.g. subset features of a FM) to an existing fea-
ture, ii) refine some features with more detailed information, and iii) merge the
contents of several features. The operators should work at the feature level to
enable a modeler to compose only part of a FM with another FM. This should
also enable reuse of part of an input FM when creating a larger composed FM.

Additionally one may need to reuse more than one part of a FM or the same
part several times. One should also be able to preselect some of the features of
one aspect before the composition is performed. The running example shown in
Fig. 2 illustrates a sequence of introduction and merging of features.

These requirements mean that composing two models can correspond to a
wide range of situations, from the single use of one operator on the root of two
models to be merged, to multiple uses of one or several operators on various
features of these aspects. In addition, taking into account the expressiveness of
FMs, there are several ways to introduce one feature into another one or to
merge them.

Previous work has pointed out that dealing with large, monolithic FMs is
problematic, in particular, FM maintenance is a difficult process [11, 12, 10]. As
in our running example, an appealing approach is rather to use multiple FMs
during the SPL development. A first challenge is to allow different stakeholders
or software suppliers, at different stages of the software development, to focus
on their expertise and integrate their specific concerns. Another challenge is
to manage the evolution of FMs [13, 14, 15]. In order to ensure that software
products are well maintained, some relevant properties of the models have to be
preserved during time.

The primary issue of all this work is to define some compositional mecha-
nisms. But, to the best of our knowledge, they do not i) provide a set of com-
position operators, ii) define the semantics of these operators according to the
expressed configurations, iii) propose a systematic technique to implement them.

3 Rationale

In order to meet the requirements above, we first identify some relevant semantic
properties regarding composition operators. Then we discuss our main design



choices regarding the proposed operators. These operators aim to compose two
concerns represented in two FMs. We then distinguish the aspect concern from
the base concern. The result of the composition is described according to the set
of configurations of the base concern.

3.1 Characterizing the Result of a Compositional Operator

Let f and f ′ be FMs and JfK and Jf ′K denote their respective set of configura-
tions. Let op be the operator which transforms a base FM f into f ′ using an
aspect FM g. The semantics of the operator op is expressed in terms of the re-
lationship between the configuration sets of the input models (f and g) and the
resulting model f ′ (i.e. in terms of the relationship between the configuration
sets of f , f ′ and g).

In [14], the authors distinguish and classify four FM adaptations4:

a refactoring : no new configurations are added and no existing configurations
are removed : JfK = Jf ′K;

a specialization : some existing configurations are removed and no new con-
figurations are added : Jf ′K ⊂ JfK ;

a generalization : new configurations are added and no existing configurations
removed : JfK ⊂ Jf ′K ;

an arbitrary edit : a change that is not a refactoring, a specialization or a
generalization.

The classification proposed in [14] covers all the changes a designer can pro-
duce on a FM and the formalization provided in [14] is a sound basis for reasoning
about these changes. We rely on these four categories of FM adaptations in order
to characterize the semantics of the insert and merge operators (see Section 4
and 5).

3.2 Main Design Choices

The composition of an aspect and a base concern may correspond either to
the single use of the two proposed compositional operators (insert or merge),
or to any combination of these two operators. Any of the two compositional
operators ensure that the result of a successful composition is a well-formed FM
(see Section 2).
Scope of an operator. An operator specifies what feature(s) g of the aspect
concern is to be composed with features in the base concern, and where (i.e.
which feature in the base model f) it is going to be inserted or merged with5.
All features of the aspect concern not included in the hierarchy starting with g

are not involved in the composition process and are not included in its result.

4 The author use the term “edits” because the focus seems to be on local edits on
FM. An example of edit given in the paper is “moving a feature from one branch to
another”.

5 To choose the root feature is equivalent to consider the whole FM.



An aspect concern is either strongly or loosely related to the base concern. It
can participate to the description of the same concept but can consider another
facet of the information (another viewpoint), or its purpose is orthogonal to the
concept described in the base concern. For example, the concern dealing with
the economical information of a person corresponds to the first case whereas
the kind of transport that may be offered in general (i.e. not only to a person)
corresponds to the second case.

Let us now address how to compose FMs g with f and let us emphasize
why both insert and merge are needed. The insert operator makes it possible
to specify any applicable FM operators (i.e. And-, Xor-, or Or-groups) to com-
pose g and f . It is more suited to the case of loosely connected aspects. Merge
determines the FM operator to be used and it corresponds to the composition
of two views of the same concept. Merge is higher level and we show that it may
be implemented thanks to the insert operator (see Section 4 and 5).
Renaming. When two features are merged, two typical cases may occur: two
features with the same name (resp. different names) in both the base and as-
pect model may not address the same meaning (resp. correspond to the same
meaning). We provide an operator rename that allows the user to align the two
FMs before composition. For the sake of brevity the renaming operator is not
detailed in this paper.
Limits. We might have included more operators as it is proposed in several
approaches coming from the Aspect-Oriented Modeling community [20]. Mainly
they deal with two other kinds of operators : replace and delete. We choose not
to do so but not for the same reasons. Instead of proposing a new operator for
deleting features in the base model6, we propose that i) the semantics of merge
may rely either on the semantics of the intersection (to only keep the common
features) or union (to keep all features) and ii) more generally an operator may
perform some deletion according to its semantics and to guarantee that the
resulting FM is well-formed. We consider replace only as a special case of merge
with some possible renamings before composition.

4 Insert Operator

The insert operator aims at introducing newly created elements into any base
element or inserting elements from the aspect model into the base model. For
example, a stakeholder can extend the transport feature associated to a Person
(left part of Fig. 3(a)) by including the urban transport information, represented
in an aspect FM (right part of Fig. 3(a)).

The dotted arrow indicates that the feature urbanTransport is inserted below
the feature transport; it does not indicate how the feature tree will be inserted
(e.g. which variability information will be associated to the feature tree). The
stakeholder needs syntactic mechanisms to define precisely how the insertion is
achieved.

6 according to what had been said at the beginning of the section, there is no need to
use such operators for the aspect concern.



(a) Insertion of the Urban transport aspect (b) A possible resulting FM

Fig. 3. Example of insertion of FM

4.1 Syntactic Definition

The insert operator is syntactically defined as follows:

insert (aspectFeature: Feature, joinpointFeature: Feature, operator: Operator)

It takes three arguments: the feature to be inserted (a feature in the aspect
model), the targeted feature (a feature in the base model) where the insertion
needs to be done, and the operator (e.g. Xor -group) specified by the user. The
precondition of the insert operator requires that the intersection between the set
of features of the base FM and the one of the aspect FM is empty. This condition
preserves the well-formed property of the composed FM which states that each
feature’s name is unique.

The insert’s parameters allow the stakeholder to control the insertion ad-
dressing the three following issues:

Where will the aspect FM be inserted into the base FM? The joinpointFeature

is a feature of the base FM and describes where the aspectFeature should
be inserted into the base FM.

What feature(s) of the aspect FM will be inserted into the base FM? The
aspectFeature feature is inserted and comes with its child features. If the
aspectFeature feature is the root of an aspect FM, the aspect FM is en-
tirely inserted into the base FM. Otherwise only the subtree starting at
aspectFeature is inserted.

How will the insertion be done? What are the effects on the properties of
the composed model? According to the third argument operator (e.g. Xor -
group) and the group (e.g. Or) of joinpointFeature in the base FM , it can
change the group of the aspectFeature to be inserted. The remainder of this
section defines the semantics and the rules to implement it.



4.2 Semantics

The semantics of the insert operator is represented by the relationship that exists
between the new composed model and the base/primary model, so that it refers
to the properties preserved or not by the composed model according to its set
of configurations. The insert operator should respect one (or more) properties
defined in Section 3.1 (generalization, specialization, refactoring or none of these)
considering the composed model and the base model. A stakeholder can thus
anticipate the changes to the base model while applying the insertion.

Intuitively, if an aspect model is added somewhere in a base model Base, the
set of configurations of Base should grow. The new version of Base which results
from applying the insert operation can produce a generalization: new configu-
rations are added and no existing configurations are removed. But the situation
corresponding to an arbitrary edit may also happen depending on the operator
that is passed as parameter of insert : some new configurations are added while
some others are removed. The refinement of a FM can indeed alter the existing
configurations such as they become deprecated. According to their definition
(see Section 3.1), specialization and refactoring are not possible because they
correspond to situations that are not compatible with the meaning of an inser-
tion. This simply follows the rationale behind the insert operator, which is to
add details and to populate the base model with additional information. In the
remainder of this section, Base FM corresponds to the (sub-)tree of the base FM
whose root is joinpointFeature while Aspect FM corresponds to the (sub-)tree
of the aspect FM whose root is aspectFeature.

More formally the semantics of insert is defined as follows:

– The set of configurations of the FM after insertion (Result) is at least the
set of configurations of Base FM. This can be expressed as follows:

JBaseK ⊂ JResultK (I1)

– or the set of configurations of Result is at least the set of configurations of
the cross product of Base and Aspect. This can be expressed as follows:

JBaseK ⊗ JAspectK ⊆ JResultK (I2)

where the cross product is defined as (A and B being a set of sets):

A ⊗ B = {a ∪ b | a ∈ A, b ∈ B}

The two relations (I1) and (I2) define the semantics. The former states that
Result FM is a generalization of Base FM. The latter ensures that each config-
uration of Base FM is supplemented by the features of Aspect FM. The insert
operator may, in some situations, respect i) only one of the relation (i.e. (I1) or
(I2)) or ii) both of them (i.e. (I1) and (I2)). A supporting tool can easily ex-
ploit this information to produce appropriate warnings when an insertion only
preserves one relation and thus assist modelers in reasoning during composition.

As an example, let us consider the set of configurations of the base FM
included in the left part of Fig. 3(a), JBaseK,



JBaseK = {{Person, transport, car} , {Person, transport, other}}

the set of configurations of the aspect FM included in the right part of Fig.
3(a), JAspectK,

JAspectK = {{urbanTransport, bike} , {urbanTransport, twoWheeledV ehicle}}

and the set of configurations of the composed FM corresponding to an inser-
tion using the Xor operator is described in Fig. 3(b), JResultK:

JResultK = {{Person, transport, car} ,

{Person, transport, other} ,

{Person, transport, urbanTransport, bike} ,

{Person, transport, urbanTransport, twoWheeledV ehicle}}

The relationships between JBaseK, JAspectK and JResultK respect only the
relation (I1). As a result, the composed FM of Fig. 3(b) is a generalization of
the base FM from the left part of Fig. 3(a).

4.3 Rules

In this subsection, we describe rules associated with an insertion. They define
when and how the operator passed as an argument preserves (or not) the previ-
ously described properties on the base FM. The rules are given on a base model
called Base, which has a root feature B and one or several children B1, B2, ...,
Bn. The model to be inserted has a root feature A and its child features are A1,
A2, ..., An and is called Aspect.

(a) Base FM (b) Aspect
FM

(c) One possible resulting FM

Fig. 4. Rule for insertion of FM

Let us consider the insertion of Aspect (Fig. 4(b)) into the Base (Fig. 4(a)).
If the operator passed to insert is an “And with the mandatory status”, the
feature A is inserted as a child feature of B with the mandatory status (Fig.
4(c)). For this example, the sets of configurations of Base, Aspect, and Result

are:



JBaseK = {{B, B1, B2} , {B, B2}}
JAspectK = {{A, A1} , {A}}
JResultK = {{B, A,B1, B2, A1} , {B, A,B2, A1} , {B, A,B1, B2} , {B, A,B2}}

Consequently, the relation (I1) does not hold. For instance, {B, B1, B2} is not a
member of JResultK. Nevertheless, the relation (I2) is satisfied and the resulting
FM is an arbitrary edit to the Base FM. On the contrary, if the stakeholder
wants to preserve the (I1) property, the feature A should be inserted as a child
feature of B with the optional status.

Overview of the table of rules. The result of an insertion of a given feature only
depends on i) the operator passed as argument of insert and ii) the operator
associated to the feature where the insertion is made. All combinations are given
in Table 1. We distinguish the cases where no FM operator is associated to a
feature of the base FM (it is a leaf) and those where there is either And, Or or
Xor operators. Insert may accept the following operators : And with mandatory
(resp. optional) sub-features, Or and Xor. The table summarizes the properties
that are verified by Result FM for each combination. When “=” is set, this means
that the set of configurations of Result FM is strictly equal to JBaseK⊗JAspectK.

Note that the insertion of one single feature with an Or or Xor operator into
a leaf feature is forbidden, as it would generate badly-formed FMs. Nevertheless,
this is possible when insertion deals with a set of features of the aspect model
(i.e. parameter aspectFeature is a set and not a single feature).

Base / Operator And-Mandatory And-Optional Xor Or

Leaf = I2 I1 and I2 I1 I1 and I2

And = I2 I2 and I1 I1 I1 and I2

Xor = I2 I1 and I2 I1 I1 and I2

Or = I2 I1 and I2 I1 I1 and I2

Table 1. Insertion rules

5 Merge Operator

When two FMs share several features and are different views of an aspect of a
system, it is necessary to merge the overlapping parts of the two FMs to obtain
a single model that presents an integrated view of the system.

Let us consider the example of a base FM (left part of Fig. 5(a)). The root
feature is the Person feature which has a child feature transport with two alterna-
tives features car and other. The aspect FM (right part of Fig. 5(a)) describes the
concept of Person from another perspective. In that case, a person has also the
feature meansOfTransport but the set of alternatives is structured in an Or-group,
addressing also additional features such as bike, publicService and twoWheeledVe-

hicle. The merge operator can then be used to unify the two viewpoints from
the FMs. A mapping can be specified by the stakeholder (e.g. to relate the



feature transport of the base FM and the feature meansOfTransport of the aspect
FM). More important, the merged FM should verify some properties such as
the preservation of configurations. This requires to solve some of the variability
issues in each FM. For example, in Fig. 5(a), features car and other cannot be
concurrently selected in the Base FM whereas the selection of both of them is
allowed by the Aspect FM.

(a) Base and Aspect FMs to be merged

(b) Merged FM

Fig. 5. Merging of two FMs

5.1 Syntactic Definition

The merge operator is syntactically defined as follows:

merge (aspectFeature: Feature, baseFeature: Feature, mode: Mode)

It takes three arguments: the feature to be merged (a feature of the aspect
model), the feature in the base model where the merge is done, and the mode
specified by the user. This mode indicates how the merge has to be done in terms
of union or intersection of configurations (see below).

Like for the insert operator, the merge’s parameters allow the stakeholder to
answer the three same questions:

Where are the features of the aspect FM and the base FM such as the two FMs
match? To merge FMs we thus need to first identify match points (similar
to joinpoints in aspect terminology). The stakeholder can thus specify the



feature aspectFeature of the aspect FM and the feature baseFeature of the
base FM. They are not necessary the root of the FMs.

What are the features of the aspect FM and base FM that will appear in
the merged model? Two FMs are merged by applying the operator recur-
sively to their subtrees, starting from the match points (aspectFeature and
baseFeature). If two features have been merged, the whole process proceeds
with their children features. If not, they are inserted as separate child fea-
tures. The variability information associated to features in the merged model
should also be set.

How features are merged by the operator? It uses a name-based matching: two
features match if and only if they have the same name. If so, they are merged
to form a new feature. Features with different names can be bound to each
other thanks to an explicit renaming (see Section 3). Finally, a set of rules
resolves possible variability mismatches between features of the two FMs
according to the mode (i.e. the third argument of the merge operator).

5.2 Semantics

Like for the operator insert, the semantics of merge is defined according to the
relationship which exists between the FM resulting from the merging and the two
input FMs. It is based on the union or the intersection of the two configuration
sets.

Union: When transport is merged with meansOfTransport (see Fig. 5(a)), original
information from the base model must be preserved while adding information
from the aspect model. The set of configurations of the base and aspect FMs
should then be preserved in the merged FM.

The union of two FMs, Base and Aspect, is a new FM where each
configuration that is valid either in Base or Aspect, is also valid.

More formally, the result of a merge in the union mode has the following
properties:

– The set of configurations of the FM after merging (Result) is at least the
set of configurations of Base FM (i.e. Result FM is a generalization or a
refactoring of Base FM). This can be expressed as follows:

JBaseK ⊆ JResultK (M1)

– The set of configurations of Result is at least the set of configurations of the
Aspect FM (i.e. Result FM is a generalization or a refactoring of Aspect

FM). This can be expressed as follows:

JAspectK ⊆ JResultK (M2)



Note that if the relations (M1) and (M2) are met, the following relationship
holds:

JBaseK ∪ JAspectK ⊆ JResultK

This means, the merged FM may allow some configurations that are not
included in the set of configurations of the base or in the one of the aspect FMs.
In order to restrict these configurations, we propose to reinforce the constraints
on the merged FM with an additional property (see (M3)). It states that the
set of configurations of Result is at least the set of configurations of the cross
product of Base and Aspect. This can be expressed as follows:

JBaseK ⊗ JAspectK ⊆ JResultK (M3)

(M3) can hold concurrently with (M1) and (M2), individually or not at all.

Intersection When transport is merged with meansOfTransport (see Fig. 5(a)),
only common information of the base model and the aspect model is retained:

The intersection of two FMs, Base and Aspect, is a new FM where
each configuration that is valid both in Base and Aspect, is also valid.

In the intersection mode, the relationship between the merged FM Result,
the base FM Base and the aspect FM Aspect can be expressed as follows:

JBaseK
⋂

JAspectK = JResultK (M4)

Besides, if the following condition holds:

JBaseK
⋂

JAspectK = ∅ (M5)

the FM Result then defines no configuration at all and can be considered as an
inconsistent or an unsatisfiable FM [8].

5.3 Merging Rules

We now describe rules for merging FMs. These rules aim at resolving variabil-
ities in each FM such as the expected properties are met. For example, in Fig.
5(a), features car and other do not exhibit the same variability as they belong to a
Xor-group in the base FM whereas they belong to an Or-group in the aspect FM.
Not surprisingly, the sets of configurations of the base FM and the aspect FM
are not the same, and some configurations are valid in the base FM but not valid
in the aspect FM. For example, {Person,meansOfTransport, car, housing} is
only valid in the aspect FM (since the feature housing is included in all its config-
urations). Yet, the merged FM should be able to express the set of configurations
of both FMs.

To tackle this issue, we propose i) to make an explicit difference between
common and non common features of the two FMs and ii) to (re-)use the insert



Base / Aspect And-Mandatory And-Optional Xor Or

And-Mandatory And-Mandatory And-Optional Or Or
And-Optional And-Optional And-Optional And-Optional And-Optional
Xor Or And-Optional Xor Or
Or Or And-Optional Or Or

Table 2. Merge in union mode - relations (M1) and (M2) are satisfied.

operator at each step of the merge. As the common features of the two FMs
can belong to a different group, a new variability operator has to be chosen in
accordance with the intended semantics properties (i.e. merge in the union or
intersection mode). We thus propose to organize rules to compute the variability
operator into predominance tables. Tables 2 and 3 make the assumption that
the same set of features are shared by the base and aspect FMs.

Base / Aspect And-Mandatory And-Optional Xor Or

And-Mandatory And-Mandatory And-Mandatory And-Mandatory And-Mandatory
And-Optional And-Mandatory And-Optional Xor Or
Xor And-Mandatory Xor Xor Xor
Or And-mandatory Or Xor Or

Table 3. Merge in intersection mode - relation (M4) is satisfied.

Fig. 6. Merging example

In Fig. 6, features car and other are child features of transport. They belong
either to a Xor-group in Base FM or to an Or-group in Aspect FM. In this case,
the predominant operator is an Or-group, that is, the features car and other can



be both selected at the same time (i.e. (M1) is respected), or car and other can
be selected alone (i.e. (M2) is respected). As a result, the relations (M1) and
(M2) truly hold for the merged FM depicted in the left bottom part of Fig. 6.
Moreover, the relation (M3) holds too.

Merging in the intersection mode the features car and other of the aspect FM
(which belong to an Or-group) with the features car and other of the base FM
(which belong to a Xor-group) gives the predominant operator Xor (see right
bottom part of Fig. 6). The relation (M4) truly holds.

Algorithm 1 Merging algorithm

merge (aspectFeature: Feature, baseFeature: Feature, mode: Mode)
begin

if ¬matching(aspectFeature, baseFeature) then “error” fi

new := newFM (newFeature (baseFeature.getName() ))
predominanceOp := computeOperator (baseFeature, aspectFeature, mode)
base := extractChild (baseFeature)
aspect := extractChild (aspectFeature)
foreach N ∈ (base

T

aspect) do

res := merge (aspectFeature :: N, baseFeature :: N, mode) / ∗ recursively ∗ /
stackFeatures.push (res) / ∗ pushes the merged feature ∗ /

od

/ ∗ insert the set of features of the stack ∗ /
insertmulti (stackFeatures, new, predominanceOp)
/ ∗ following loops are not executed in the intersection mode ∗ /
foreach N ∈ (base � (base

T

aspect)) do

insert (N, new.getRoot(), predominanceOp)
od

foreach N ∈ (aspect � (base
T

aspect)) do

insert (N, new.getRoot(), predominanceOp)
od

return new
end

We define an algorithm for the merge that implements the principles above
(see Algorithm 1). As an illustration, let us consider the merge of the Base
Model and the Aspect Model depicted in top of Fig. 6. The merge operator
is used with the first parameter “transport feature” of the base FM, the second
parameter “transport feature” of the aspect FM and the third parameter being
the union mode.

Algorithm for the merge First, a new FM is created with one single feature
called “transport”, which becomes its root, and acts as a temporary FM where
the features of the base and aspect FMs will be incrementally inserted. The
predominant operator is computed using the predominance table correspond-
ing to the mode. In the example, we obtain an Or -group with the union table
(see bottom left part of Fig. 6). The common features of the two FMs (i.e. car

and other) are merged recursively. Then, they are inserted all together with the
predominant operator. At this stage, the connection between the transport root



feature of the temporary FM and its group of children car and other is an Or-
group. The next step is to insert the non common features urbanTransport and
publicService with the Or-operator into the root feature of the temporary FM,
transport. The insertion of a feature with an Or-operator into a feature which is
connected to its group of children by an Or-group respects (I1) and (I2). As a
result, urbanTransport and publicService also belong to an Or-group.

In the intersection mode, the algorithm is executed when the condition (M5)
does not hold. Only the set of common features are considered. In the example,
only the features car and other are merged. The result is depicted in bottom right
part of Fig. 6. The predominant operator is the Xor-group.

6 Related work

Several previous works consider some forms of composition for FMs. Alves et al.
motivate the need to manage the evolution of FMs (or more generally of an SPL)
and extend the notion of refactoring to FMs [13]. The authors provide a catalog
of sound FM refactorings, which has been verified in Alloy by automatically
checking properties of resulting FMs [21]. Although their work is focused on
refactoring single FMs, they also suggest to use these rules to merge FMs. Our
proposal goes further in this direction by providing mechanisms to implement
the merge and by clarifying the semantics (as in [14], our terminology is to
consider the unidirectional refactoring as a generalization and a bidirectional
refactoring as a refactoring). Segura et al. provide a catalogue of visual rules
to describe how to merge FMs [15]. The authors emphasize the need to provide
a formal semantics to their approach. To the best of our knowledge, their rules
implement the merge in the union mode while the the merge in the intersection is
not taken into account. Schobbens et al. identify three operations to merge FMs
– intersection, union (a.k.a. disjunction) or reduced product of two FMs [19] but
do not provide mechanisms to implement the merging. Czarnecki et al. propose
to construct FM from propositional formulas and suggest to use their algorithm
to merge FMs, but without further detail [22]. Computing the intersection or
union at the propositional logic level is not without problems. It is necessary
to generate a FM from the new propositional formula and a major issue is
then to take additional structuring information into account. In [23], a feature is
represented by a FST (Feature Structure Tree), roughly a stripped-down abstract
syntax tree. The authors propose to use superimposition to compose features. A
FM is a “hierarchy of features with variability” [18] and can be seen as a FST
plus variability. As a result, the superimposition mechanism has to be adapted
to resolve variabilities mismatch.

In SPL engineering, reusable software assets must be composed to derive
specific products according to a particular set of features. An approach is to
use FMs to specify the variability and then to relate FMs to architectural or
design models (e.g. UML models) [6, 24, 7, 5]. A configuration of the FM can
correspond to the removal or the activation of some elements of a model [5, 6].
Another option is to associate each feature to some model artefacts which are



then inserted in a primary design model [7] or composed together [25,6,24]. Our
work focuses strictly on the composition of the variability models, i.e. FMs. Our
proposal is not incompatible with the approaches described as the composed FM
can be related to other models and thus be used during the derivation process.

Aspect-Oriented Modeling (AOM) allows developers to isolate and address
separately several aspects of a system by providing techniques to achieve separa-
tion and composition of concerns [20]. Existing AOM approaches notably focused
on the composition of UML models such as UML class diagrams (e.g. [26]) or
UML state and sequence diagrams (e.g. [27]). To the best of our knowledge, no
existing approach proposes to compose FMs.

7 Conclusion and Future Work

In this paper, we proposed two main operators to compose feature models (FMs).
Each operator is described by stating where it is applied, what features will be
composed and how the composition is made. Each composition is defined by
rules that formally describe the structure of the resulting FM. Depending on the
composed and the targeted features, some properties regarding the expressed
set of configurations are made explicit for each operator. A first insert operator
enables developers to insert features from a crosscutting FM into a base FM.
Each insertion can then be characterized by its ability to preserve or not the set
of configurations expressed by the base FM. Building on this operator, the pro-
posed merge operator makes possible to put together features from two separated
FMs, when none of the two clearly crosscuts the other. The result is also char-
acterized through the set of expressed configurations, and is parameterized to
enable developers to choose between union or intersection of the configurations.

The two operators cover different use cases but always ensure the well-
formedness of the resulting FM. When using the provided operators, developers
can choose to make insertion or merge while preserving the expression of the
original set of configurations. This enables them to compose FMs at a large
scale. On the contrary, when the need to make more important changes appears,
developers can then use all presented forms of insertion and merge, while being
aware of whether the original semantics of the base FM is preserved or not.

Future work aims at tackling current restrictions and at getting validation
of the scalability and usability of the proposed operators. These operators are
currently under validation with the construction and usage of a large SPL which
is dedicated to medical imaging services on the grid. The services are part of a
service-oriented architecture in which data-intensive workflows are built to con-
duct numerous computations on very large set of images [28, 29]. This SPL is
decomposed into several FMs, which are then to be composed using the pro-
posed operators. Moreover, some of the designed FM are planned to be reused
in another SPL that deals with video surveillance systems [30]. Some features
related to QoS and imaging are likely to be common. The two case studies and
SPLs are intended to be complementary and yet different to determine in what
sense the merging operators can actually help to scale feature modeling (from



the users’ perspective). They can also help to determine whether an arbitrarily
decomposed FM can be relevant to all stakeholders or not. Another interest is to
quantify the amount of information needed to apply merging operators in order
to assess their easiness of use. To achieve these goals, we will raise the limitation
on the hierarchy regularity of the composed FMs. Currently the considered FM
cannot include any constraints between features, e.g. selecting a feature con-
strains that another one must be or not be selected. Taking into account such
constraints will oblige us to tackle issues on how to reuse consistency checking
in a modular way. But as a result, this should also solve some of the scalability
issues that FM checking techniques currently face [8, 9].

References

1. Clements, P., Northrop, L.M.: Software Product Lines : Practices and Patterns.
Addison-Wesley Professional (August 2001)

2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute (November 1990)

4. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional (June 2000)

5. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Generative Programming and Component
Engineering. Volume 3676/2005 of LNCS. (2005) 422–437

6. Sanchez, P., Loughran, N., Fuentes, L., Garcia, A.: Engineering languages for
specifying Product-Derivation processes in software product lines. In: Software
Language Engineering (SLE). (2008) 188–207

7. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: SPLC ’07: Proceedings of the 11th Inter-
national Software Product Line Conference, IEEE (2007) 233–242

8. Batory, D., Benavides, D., Ruiz-Cortés, A.: Automated analysis of feature models:
Challenges ahead. Communications of the ACM December (2006)

9. Mendonca, M., Wasowski, A., Czarnecki, K., Cowan, D.: Efficient compilation
techniques for large scale feature models. In: GPCE ’08: Proceedings of the 7th
international conference on Generative programming and component engineering,
ACM (2008) 13–22

10. Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to man-
aging highly complex product families. Requir. Eng. 12(2) (2007) 57–75

11. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2) (2005) 143–169

12. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model
multiple product lines for software supply chains. In: SPLC ’08: Proceedings of the
2008 12th International Software Product Line Conference, IEEE (2008) 12–21

13. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring
product lines. In: GPCE ’06: Proceedings of the 5th international conference on
Generative programming and component engineering, ACM (2006) 201–210

14. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models.
In: Proceedings of the 31th International Conference on Software Engineering
(ICSE’09), IEEE Computer Society (May 2009)



15. Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of fea-
ture models using graph transformations. Post-proceedings of the Second Summer
School on Generative and Transformational Techniques in Software Engineering
5235 (2008) 489–505

16. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel,
J.M.: Introducing Variability into Aspect-Oriented Modeling Approaches. In:
ACM/IEEE 10th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS). LNCS, Nashville, USA (October 2007) 498–513

17. Classen, A., Heymans, P., Schobbens, P. In: What’s in a Feature : A Require-
ments Engineering Perspective. Fundamental Approaches to Software Engineering
(FASE) (2008) 16–30

18. Czarnecki, K., Kim, C.H.P., Kalleberg, K.T.: Feature models are views on ontolo-
gies. In: SPLC ’06: Proceedings of the 10th International on Software Product
Line Conference, IEEE Computer Society (2006) 41–51

19. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Comput. Netw. 51(2) (2007) 456–479

20. Aspect-Oriented Modeling Workshop Series: http://www.aspect-modeling.org/
21. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in alloy. In:

Proceedings of First Alloy Workshop. (2006) 71–80
22. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.

In: SPLC’07: Proceedings of the 11th International Software Product Line Confer-
ence. (2007) 23–34

23. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebra for features and feature
composition. In: AMAST’08: Proceedings of the 12th international conference on
Algebraic Methodology and Software Technology, Springer-Verlag (2008) 36–50

24. Perrouin, G., Klein, J., Guelfi, N., Jézéquel, J.M.: Reconciling automation and
flexibility in product derivation. In: SPLC ’08: Proceedings of the 2008 12th In-
ternational Software Product Line Conference, IEEE (2008) 339–348

25. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F., eds.: MoDELS. Volume 4735 of
Lecture Notes in Computer Science., Springer (2007) 151–165

26. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class models.
Transactions on Aspect-Oriented Software Development 3880 (2006) 75–105

27. Kienzle, J., Al Abed, W., Jacques, K.: Aspect-oriented multi-view modeling.
In: AOSD ’09: Proceedings of the 8th ACM international conference on Aspect-
oriented software development, New York, NY, USA, ACM (2009) 87–98

28. Acher, M., Collet, P., Lahire, P.: Issues in Managing Variability of Medical Imaging
Grid Services. In Olabarriaga, S., Lingrand, D., Montagnat, J., eds.: MICCAI-Grid
Workshop (MICCAI-Grid), New York, NY, USA (September 2008)

29. Acher, M., Collet, P., Lahire, P., Montagnat, J.: Imaging Services on the Grid as a
Product Line: Requirements and Architecture. In: Service-Oriented Architectures
and Software Product Lines - Putting Both Together (SOAPL 2008), associated
workshop issue of SPLC’08, IEEE (September 2008)

30. Acher, M., Lahire, P., Moisan, S., Rigault, J.P.: Tackling High Variability in Video
Surveillance Systems through a Model Transformation Approach. In: MiSE ’09:
Proceedings of the International Workshop on Modeling in Software Engineering
at ICSE’09, Vancouver, Canada, IEEE Computer Society (May 2009)

http://www.aspect-modeling.org/

	Composing Feature Models
	Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France

