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A Few More Functions That Are Not APN Infinitely Often

We consider exceptional APN functions on F 2 m , which by definition are functions that are APN on infinitely many extensions of F 2 m . Our main result is that polynomial functions of odd degree are not exceptional, provided the degree is not a Gold number (2 k + 1) or a Kasami-Welch number (4 k -2 k + 1). We also have partial results on functions of even degree, and functions that have degree 2 k + 1.

Introduction

Let L = F q with q = 2 n for some positive integer n. A function f : L -→ L is said to be almost perfect nonlinear (APN) on L if the number of solutions 1 in L of the equation f (x + a) + f (x) = b is at most 2, for all a, b ∈ L, a = 0. Equivalently, f is APN if the set {f (x + a) + f (x) : x ∈ L} has size at least 2 n-1 for each a ∈ L * . Because L has characteristic 2, the number of solutions to the above equation must be an even number, for any function f on L.

This kind of function is very useful in cryptography because of its good resistance to differential cryptanalysis as was proved by Nyberg in [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF].

The best known examples of APN functions are the Gold functions x 2 k +1 and the Kasami-Welch functions x 4 k -2 k +1 . These functions are defined over F 2 , and are APN on any field F 2 m where gcd(k, m) = 1.

If f is APN on L, then f is APN on any subfield of L as well. We will consider going in the opposite direction. Recall that every function f : L -→ L can be expressed as a polynomial with coefficients in L, and this expression is unique if the degree is less than q. We can "extend" f to an extension field of L by using the same unique polynomial formula to define a function on the extension field. With this understanding, we will consider functions f which are APN on L, and we ask whether f can be APN on an extension field of L. More specifically, we consider functions that are APN on infinitely many extensions of L. We call a function f : L -→ L exceptional if f is APN on L and is also APN on infinitely many extension fields of L. The Gold and Kasami-Welch functions are exceptional.

We make the following conjecture.

Conjecture: Up to equivalence, the Gold and Kasami-Welch functions are the only exceptional APN functions.

Equivalence here refers to CCZ equivalence; for a definition and discussion of this see [START_REF] Budaghyan | New classes of almost bent and almost perfect nonlinear polynomials[END_REF] for example.

We will prove some cases of this conjecture. It was proved in Hernando-McGuire [START_REF] Hernando | Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF] that the conjecture is true among the class of monomial functions. Some cases for f of small degree have been proved by Rodier [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement non-linéaires[END_REF].

We define

φ(x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y)(x + z)(y + z)
which is a polynomial in F q [x, y, z]. This polynomial defines a surface X in the three dimensional affine space A 3 . If X is absolutely irreducible (or has an absolutely irreducible component defined over F q ) then f is not APN on F q n for all n sufficiently large. As shown in [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement non-linéaires[END_REF], this follows from the Lang-Weil bound for surfaces, which guarantees many F q n -rational points on the surface for all n sufficiently large.

Let X denote the projective closure of X in the three dimensional projective space P 3 . If H is a another projective hypersurface in P 3 , the idea of this paper is to apply the following lemma. Lemma 1.1 If X ∩ H is a reduced (no repeated component) absolutely irreducible curve, then X is absolutely irreducible.

Proof: If X is not absolutely irreducible then every irreducible component of X intersects H in a variety of dimension at least 1 (see Shafarevich [7, Chap. I, 6.2, Corollary 5]). So X ∩ H is reduced or reducible.

⊔ ⊓

In particular, we will apply this when H is a hyperplane. In Section 2 we study functions whose degree is not a Gold number (2 k + 1) or a Kasami-Welch number (4 k -2 k + 1). In Section 3 we study functions whose degree is a Gold number -this case is more subtle.

The equation of X is the homogenization of φ(x, y, z) = 0, which is φ(x, y, z, t) = 0 say. If f (x) = d j=0 a j x j write this as φ(x, y, z, t) = d j=3 a j φ j (x, y, z)t d-j where φ j (x, y, z) = x j + y j + z j + (x + y + z) j (x + y)(x + z)(y + z) is homogeneous of degree j -3. We will later consider the intersection of X with the hyperplane z = 0, and this intersection is a curve in a two dimensional projective space with equation φ(x, y, 0, t) = 0. An affine equation of this surface X is φ(x, y, z, 1) = φ(x, y, z) = 0. A fact we will use is that if

f (x) = x 2 k +1 then φ(x, y, z) = α∈F 2 k -F 2 (x + αy + (α + 1)z). (1) 
This can be shown by elementary manipulations (see Janwa, Wilson, [START_REF] Janwa | Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes, Applied Algebra[END_REF]Theorem 4]).

Our definition of exceptional APN functions is motivated by the definition of exceptional permutation polynomials. A permutation polynomial f : F q -→ F q is said to be exceptional if f is a permutation polynomial on infinitely many extensions of F q . One technique for proving that a polynomial is not exceptional is to prove that the curve φ(x, y) = (f (y)f (x))/(yx) has an absolutely irreducible factor over F q . Then the Weil bound applied to this factor guarantees many F q n -rational points on the curve for all n sufficiently large. In particular there are points with x = y, which means that f cannot be a permutation.

The authors thank the referee for relevant suggestions.

Degree not Gold or Kasami-Welch

If the degree of f is not a Gold number 2 k + 1, or a Kasami-Welch number 4 k -2 k + 1, then we will apply results of Rodier [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement non-linéaires[END_REF] and Hernando-McGuire [START_REF] Hernando | Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF] to prove our results.

Lemma 2.1 Let H be a projective hypersurface. If X ∩ H has a reduced absolutely irreducible component defined over F q then X has an absolutely irreducible component defined over F q .

Proof: Let Y H be a reduced absolutely irreducible component of X ∩ H defined over F q . Let Y be an absolutely irreducible component of X that contains Y H . Suppose for the sake of contradiction that Y is not defined over F q . Then Y is defined over F q t for some t. Let σ be a generator for the Galois group Gal(F q t /F q ) of F q t over F q . Then σ(Y ) is an absolutely irreducible component of X that is distinct from Y . However, σ(Y

) ⊇ σ(Y H ) = Y H , which implies that Y H is contained in two distinct absolutely irreducible components of X. This means that a double copy of Y H is a component of X, which contradicts the assumption that Y H is reduced. ⊔ ⊓ Lemma 2.
2 Let H be the hyperplane at infinity. Let d be the degree of f . Then X ∩ H is not reduced if d is even, and X ∩ H is reduced if d is odd and f is not a Gold or Kasami-Welch monomial function.

Proof: Let φ d (x, y, z) denote the φ corresponding to the function x d . In X ∩ H we may assume φ = φ d .

If d is odd then the singularities of X ∩ H were classified by Janwa-Wilson [START_REF] Janwa | Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes, Applied Algebra[END_REF]. They show that the singularities are isolated (the coordinates must be (d -1)-th roots of unity) and so the dimension of the singular locus of X ∩ H is 0.

Suppose d is even and write d = 2 j e where e is odd. In X ∩ H we have

(x + y)(x + z)(y + z)φ d (x, y, z) = x d + y d + z d + (x + y + z) d = (x e + y e + z e + (x + y + z) e ) 2 j = ((x + y)(x + z)(y + z)φ e (x, y, z)) 2 j .
Therefore

φ d (x, y, z) = φ e (x, y, z) 2 j ((x + y)(x + z)(y + z)) 2 j -1
and is not reduced.

⊔ ⊓

Here is the main result of this section.

Theorem 2.3 If the degree of the polynomial function f is odd and not a Gold or a Kasami-Welch number then f is not APN over F q n for all n sufficiently large.

Proof: By Lemma 2.2, X ∩ H is reduced. Furthermore, we know by [START_REF] Hernando | Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF] that X ∩ H has an absolutely irreducible component defined over F q , which is also reduced. Thus, by Lemma 2.1, we obtain that X has an absolutely irreducible component defined over F q . As discussed in the introduction, this enables us to conclude that f is not APN on F q n for all n sufficiently large.

⊔ ⊓

In the even degree case, we can state the result when half of the degree is odd, with an extra minor condition.

Theorem 2.4 If the degree of the polynomial function f is 2e with e odd, and if f contains a term of odd degree, then f is not APN over F q n for all n sufficiently large.

Proof: As shown in the proof of Lemma 2.2 in the particular case where d = 2 j e with e odd and j = 1, we can write

φ d (x, y, z) = φ e (x, y, z) 2 (x + y)(x + z)(y + z).
Hence, x + y = 0 is the equation of a reduced component of the curve X ∞ = X ∩ H with equation φ d = 0 where H is the hyperplane at infinity. The only absolutely irreducible component X 0 of the surface X containing the line x + y = 0 in H is reduced and defined over F q . We have to show that this component doesn't contain the plane x + y = 0.

The function x + y doesn't divide φ(x, y, z) if and only if the function (x + y) 2 doesn't divide f (x) + f (y) + f (z) + f (x + y + z). Let x r be a term of odd degree of the function f . We show easily that (x + y) 2 doesn't divide x r + y r + z r + (x + y + z) r by using the change of variables s = x + y which gives:

x r + y r + z r + (x + y + z) r = s(x r-1 + z r-1 ) + s 2 P where P is a polynomial. Hence X has an absolutely irreducible component defined over F q and then f is not APN on F q n for all n sufficiently large.

⊔ ⊓

Remark: This theorem is false if 2e is replaced by 4e in the statement. A counterexample is x 12 + cx 3 , where c ∈ F 4 satisfies c 2 + c + 1 = 0, which is APN on F 4 n for any n which is not divisible by 3, since it is CCZ-equivalent to x 3 . Indeed this function is defined over F 4 , and is equal to L • f , where f (x) = x 3 and L(x) = x 4 + cx. Certainly L is F 4 -linear, and it is not hard to show that L is bijective on F 4 n if and only if n is not divisible by 3. The graph of

x 3 is {(x, x 3 ) | x ∈ F 4 n } and it is transformed in the graph of x 12 + cx 3 which is {(x, x 12 + cx 3 ) | x ∈ F 4 n
} by the linear permutation Id × L where Id is the identity function. So when n is not divisible by 3, L • f is APN on F 4 n because f is APN. This example shows in particular that our conjecture has to be stated up to CCZ-equivalence.

Gold Degree

Suppose the degree of f is a Gold number d = 2 k + 1. Set d to be this value for this section. Then the degree of φ is d -3 = 2 k -2.

First Case

We will prove the absolute irreducibility for a certain type of f .

Theorem 3.1 Suppose f (x) = x d + g(x) where deg(g) ≤ 2 k-1 + 1 . Let g(x) = 2 k-1 +1
j=0 a j x j . Suppose moreover that there exists a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible. Then φ(x, y, z) is absolutely irreducible.

Proof: We must show that φ(x, y, z) is absolutely irreducible. Suppose φ(x, y, z) = P (x, y, z)Q(x, y, z). Write each polynomial as a sum of homogeneous parts:

d j=3 a j φ j (x, y, z) = (P s + P s-1 + • • • + P 0 )(Q t + Q t-1 + • • • + Q 0 ) (2)
where P j , Q j are homogeneous of degree j. Then from (1) we get

P s Q t = α∈F 2 k -F 2 (x + αy + (α + 1)z).
In particular this implies that P s and Q t are relatively prime as the product is made of distinct irreducible factors.

The homogeneous terms in (2) of degree strictly less than d -3 and strictly greater than 2 k-1 -2 are 0, by the assumed bound on the degree of g. Equating terms of degree s + t -1 in the equation (2) gives P s Q t-1 + P s-1 Q t = 0. Hence P s divides P s-1 Q t which implies P s divides P s-1 because gcd(P s , Q t ) = 1, and we conclude P s-1 = 0 as deg P s-1 < deg P s . Then we also get Q t-1 = 0. Similarly, P s-2 = 0 = Q t-2 , P s-3 = 0 = Q t-3 , and so on until we get the equation

P s Q 0 + P s-t Q t = 0
where we suppose wlog that s ≥ t. (Note that when s ≥ t, one gets from s + t = d-3 that s ≥ (d-3)/2 and t ≤ (d-3)/2, and the bound on deg(g) is chosen: deg(g) < t+3 ≤ 2 k-1 +2.) This equation implies P s divides P s-t Q t , which implies P s divides P s-t , which implies P s-t = 0. Since P s = 0 we must have Q 0 = 0.

We now have shown that Q = Q t is homogeneous. In particular, this means that φ j (x, y, z) is divisible by x + αy + (α + 1)z for some α ∈ F 2 k -F 2 and for all j such that a j = 0. We are done if there exists such a j with φ j (x, y, z) irreducible.

⊔ ⊓

Remark:

The hypothesis that there should exist a j with φ j (x, y, z) is absolutely irreducible is not a strong hypothesis. This is true in many cases (see the next remarks). However, some hypothesis is needed, because the theorem is false without it. One counterexample is with g(x) = x 5 and k ≥ 4 and even.

Remark: It is known that φ j is irreducible in the following cases (see [START_REF] Janwa | Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2)[END_REF]):

• j ≡ 3 (mod 4);

• j ≡ 5 (mod 8) and j > 13.

Remark: The theorem is true with the weaker hypothesis that there exists a nonzero coefficient a j such that φ j (x, y, z) is prime to φ d (recall d = 2 k +1). This is the case for

• j = 2 r + 1 is a Gold exponent with r prime to k;

• j is a Kasami exponent (see [START_REF] Janwa | Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes, Applied Algebra[END_REF]Theorem 5]);

• j = 2 j e with e odd and e is in one of the previous cases.

Example: This applies to x 33 +g(x) where g(x) is any polynomial of degree ≤ 17.

Remark: The proof did not use the fact that f is APN. This is simply a result about polynomials.

Remark: The bound deg(g) ≤ 2 k-1 + 1 is best possible, in the sense that there is an example with deg(g) = 2 k-1 + 2 in Rodier [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement non-linéaires[END_REF] where φ is not absolutely irreducible. The counterexample has k = 3, and f (x) = x 9 + ax 6 + a 2 x 3 . We discuss this in the next section.

On the Boundary of the First Case

As we said in the previous section, when f (x) = x 2 k +1 + g(x) with deg(g) = 2 k-1 + 2, it is false that φ is always absolutely irreducible. However, the polynomial φ corresponding to the counterexample f (x) = x 9 + ax 6 + a 2 x 3 where a ∈ F q factors into two irreducible factors over F q . We generalize this to the following theorem.

Theorem 3.2 Let q = 2 n . Suppose f (x) = x d + g(x) where g(x) ∈ F q [x]
and deg(g) = 2 k-1 + 2. Let k be odd and relatively prime to n. If g(x) does not have the form ax 2 k-1 +2 + a 2 x 3 then φ is absolutely irreducible, while if g(x) does have the form ax 2 k-1 +2 + a 2 x 3 then either φ is irreducible or φ splits into two absolutely irreducible factors which are both defined over F q .

Proof: Suppose φ(x, y, z) = P (x, y, z)Q(x, y, z) and let

g(x) = 2 k-1 +2 j=0 a j x j .
Write each polynomial as a sum of homogeneous parts:

d j=3 a j φ j (x, y, z) = (P s + P s-1 + • • • + P 0 )(Q t + Q t-1 + • • • + Q 0 ).
Then

P s Q t = α∈F 2 k -F 2 (x + αy + (1 + α)z).
In particular this means P s and Q t are relatively prime as in the previous theorem. We suppose wlog that s ≥ t, which implies s ≥ 2 k-1 -1. Comparing each degree gives

P s-1 = 0 = Q t-1 , P s-2 = 0 = Q t-2
, and so on until we get the equation of degree s + 1

P s Q 1 + P s-t+1 Q t = 0 which implies P s-t+1 = 0 = Q 1 . If s = t then s ≥ 2 k-1 .
Note then that a s+3 φ s+3 = 0. The equation of degree s is

P s Q 0 + P s-t Q t = a s+3 φ s+3 = 0.
This means that P s-t = 0, so Q 0 = 0. We now have shown that Q = Q t is homogeneous. In particular, this means that φ(x, y, z) is divisible by x + αy + (1 + α)z for some α ∈ F 2 k -F 2 , which is impossible. Indeed, since the leading coefficient of g is not 0, the polynomial φ 2 k-1 +2 occurs in φ; as φ 2 k-1 +2 = φ 2 2 k-2 +1 (x + y)(y + z)(z + x), this polynomial is prime to φ, because if x + αy + (1 + α)z occurs in the two polynomials φ 2 k-1 +2 and φ 2 k +1 , then α would be an element of

F 2 k ∩ F 2 k-2 = F 2 because k is odd.
Suppose next that s = t = 2 k-1 -1 in which case the degree s equation is

P s Q 0 + P 0 Q s = a s+3 φ s+3 . If Q 0 = 0, then φ(x, y, z) = d j=3 a j φ j (x, y, z) = (P s + P 0 )Q t which implies that φ(x, y, z) = a d φ d (x, y, z) + a 2 k-1 +2 φ 2 k-1 +2 (x, y, z) = P s Q t + P 0 Q t
and P 0 = 0, since g = 0. So one has φ 2 k-1 +2 divides φ d (x, y, z) which is impossible as

φ 2 k-1 +2 = φ 2 2 k-2 +1 (x + y)(y + z)(z + x).
We may assume then that P 0 = Q 0 , and we have φ 2 k-1 +2 = 0. Then we have φ(x, y, z) = (P

s + P 0 )(Q s + Q 0 ) = P s Q s + P 0 (P s + Q s ) + P 2 0 . (3) 
Note that this implies a j = 0 for all j except j = 3 and j = s + 3. This means

f (x) = x d + a s+3 x s+3 + a 3 x 3 .
So if f (x) does not have this form, this shows that φ is absolutely irreducible.

If on the contrary φ splits as (P s + P 0 )(Q s + Q 0 ), the factors P s + P 0 and Q s + Q 0 are irreducible, as can be shown by using the same argument.

Assume from now on that f (x) = x d + a s+3 x s+3 + a 3 x 3 and that (3) holds. Then a 3 = P 2 0 , so clearly P 0 = √ a 3 is defined over F q . We claim that P s and Q s are actually defined over F 2 . We know from (1) that P s Q s is defined over F 2 . Also P 0 (P s + Q s ) = a s+3 φ s+3 , so P s + Q s = (a s+3 / √ a 3 )φ s+3 . On the one hand, P s + Q s is defined over F 2 k by (1). On the other hand, since φ s+3 is defined over F 2 we may say that P s + Q s is defined over F q . Because (k, n) = 1 we may conclude that P s + Q s is defined over F 2 . Note that the leading coefficient of P s + Q s is 1, so a 2 s+3 = a 3 . Whence if this condition is not true, then φ is absolutely irreducible.

Let σ denote the Galois automorphism x → x 2 . Then P s Q s = σ(P s Q s ) = σ(P s )σ(Q s ), and P s + Q s = σ(P s + Q s ) = σ(P s ) + σ(Q s ). This means σ either fixes both P s and Q s , in which case we are done, or else σ interchanges them. In the latter case, σ 2 fixes both P s and Q s , so they are defined over F 4 . Because they are certainly defined over F 2 k by (1), and k is odd, they are defined over

F 2 k ∩ F 4 = F 2 .
Finally, we have now shown that X either is irreducible, or splits into two absolutely irreducible factors defined over F q . ⊔ ⊓

Using the Hyperplane y = z

We study the intersection of φ(x, y, z) = 0 with the hyperplane y = z.

Lemma 3.3 φ(x, y, y) is always a square.

Proof: It suffices to prove the result for f (x) = x d . This is equivalent to proving that φ d (x, 1, 1) is a square. This is equivalent to showing that its derivative with respect to x is identically 0. This is again equivalent to showing that the partial derivative with respect to x of φ d (x, y, 1), evaluated at y = 1, is 0. In Lemma 4.1 of [START_REF] Rodier | Bornes sur le degré des polynômes presque parfaitement non-linéaires[END_REF] Rodier proves that y + z divides the partial derivative of φ d (x, y, z) with respect to x, which is exactly what is required.

⊔ ⊓ Lemma 3.4 Let H be the hyperplane y = z. If X ∩ H is the square of an absolutely irreducible component defined over F q then X is absolutely irreducible.

Proof: We claim that for any nonsingular point P ∈ X ∩ H, the tangent plane to the curve X ∩ H at P is H. The equation of the tangent plane is (xx 0 )φ ′

x (P ) + (yy 0 )φ ′ y (P ) + (zz 0 )φ ′ z (P ) = 0 where P = (x 0 , y 0 , z 0 ). Since P ∈ H we have y 0 = z 0 . It is straightforward to show that φ ′ x (P ) = 0 and φ ′ y (P ) = φ ′ z (P ), so this equation becomes In order to find examples of where we can apply this Corollary, if we write φ(x, y, y) = (x + y) 2 k -2 + h(x, y) 2 then to apply this result we want to show that (x + y) 2 k-1 -1 + h(x, y) is irreducible. The degree of h is smaller than 2 k-1 -1. Letting t = x + y we want an example of h with t 2 k-1 -1 + h(x, x + t) is irreducible.

Example: Choose any h so that h(x, x + t) is a monomial, and then t 2 k-1 -1 + h(x, x + t) is irreducible.

Corollary 3 . 1

 31 (y + z)φ ′ y (P ) = 0.But y + z = 0 is the equation of H.⊔ ⊓ If f (x) = x d + g(x), and d = 2 k + 1 is a Gold exponent, and φ(x, y, y) is the square of an irreducible, then X is absolutely irreducible.Note that any term x d in g(x) where d is even will drop out when we calculate φ(x, y, y), because if d = 2e thenφ d (x, y, z) = x d + y d + z d + (x + y + z) d (x + y)(x + z)(y + z) = (x e + y e + z e + (x + y + z) e ) 2 (x + y)(x + z)(y + z) = φ e (x,y, z)(x e + y e + z e + (x + y + z) e ) = 0 on H because the right factor vanishes on H.
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