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Abstract

We consider exceptional APN functions on F2m , which by definition are
functions that are APN on infinitely many extensions of F2m . Our main
result is that polynomial functions of odd degree are not exceptional,
provided the degree is not a Gold number (2k + 1) or a Kasami-Welch
number (4k −2k +1). We also have partial results on functions of even
degree, and functions that have degree 2k + 1.

1 Introduction

Let L = Fq with q = 2n for some positive integer n. A function f : L −→ L
is said to be almost perfect nonlinear (APN) on L if the number of solutions
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in L of the equation
f(x + a) + f(x) = b

is at most 2, for all a, b ∈ L, a 6= 0. Equivalently, f is APN if the set
{f(x + a) + f(x) : x ∈ L} has size at least 2n−1 for each a ∈ L∗. Because L
has characteristic 2, the number of solutions to the above equation must be
an even number, for any function f on L.

This kind of function is very useful in cryptography because of its good
resistance to differential cryptanalysis as was proved by Nyberg in [5].

The best known examples of APN functions are the Gold functions x2k+1

and the Kasami-Welch functions x4k
−2k+1. These functions are defined over

F2, and are APN on any field F2m where gcd(k,m) = 1.
If f is APN on L, then f is APN on any subfield of L as well. We

will consider going in the opposite direction. Recall that every function
f : L −→ L can be expressed as a polynomial with coefficients in L, and
this expression is unique if the degree is less than q. We can “extend” f
to an extension field of L by using the same unique polynomial formula to
define a function on the extension field. With this understanding, we will
consider functions f which are APN on L, and we ask whether f can be APN
on an extension field of L. More specifically, we consider functions that are
APN on infinitely many extensions of L. We call a function f : L −→ L
exceptional if f is APN on L and is also APN on infinitely many extension
fields of L. The Gold and Kasami-Welch functions are exceptional.

We make the following conjecture.

Conjecture: Up to equivalence, the Gold and Kasami-Welch functions
are the only exceptional APN functions.

Equivalence here refers to CCZ equivalence; for a definition and discus-
sion of this see [1] for example.

We will prove some cases of this conjecture. It was proved in Hernando-
McGuire [2] that the conjecture is true among the class of monomial func-
tions. Some cases for f of small degree have been proved by Rodier [6].

We define

φ(x, y, z) =
f(x) + f(y) + f(z) + f(x + y + z)

(x + y)(x + z)(y + z)

which is a polynomial in Fq[x, y, z]. This polynomial defines a surface X in
the three dimensional affine space A

3.
If X is absolutely irreducible (or has an absolutely irreducible component

defined over Fq) then f is not APN on Fqn for all n sufficiently large. As
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shown in [6], this follows from the Lang-Weil bound for surfaces, which
guarantees many Fqn-rational points on the surface for all n sufficiently
large.

Let X denote the projective closure of X in the three dimensional pro-
jective space P

3. If H is a another projective hypersurface in P
3, the idea of

this paper is to apply the following lemma.

Lemma 1.1 If X ∩ H is a reduced (no repeated component) absolutely ir-
reducible curve, then X is absolutely irreducible.

Proof: If X is not absolutely irreducible then every irreducible compo-
nent of X intersects H in a variety of dimension at least 1 (see Shafarevich
[7, Chap. I, 6.2, Corollary 5]). So X ∩ H is reduced or reducible.

⊔⊓

In particular, we will apply this when H is a hyperplane. In Section 2
we study functions whose degree is not a Gold number (2k +1) or a Kasami-
Welch number (4k − 2k + 1). In Section 3 we study functions whose degree
is a Gold number - this case is more subtle.

The equation of X is the homogenization of φ(x, y, z) = 0, which is
φ(x, y, z, t) = 0 say. If f(x) =

∑d
j=0

ajx
j write this as

φ(x, y, z, t) =

d∑

j=3

ajφj(x, y, z)td−j

where

φj(x, y, z) =
xj + yj + zj + (x + y + z)j

(x + y)(x + z)(y + z)

is homogeneous of degree j − 3. We will later consider the intersection of X
with the hyperplane z = 0, and this intersection is a curve in a two dimen-
sional projective space with equation φ(x, y, 0, t) = 0. An affine equation of
this surface X is φ(x, y, z, 1) = φ(x, y, z) = 0.

A fact we will use is that if f(x) = x2k+1 then

φ(x, y, z) =
∏

α∈F
2k−F2

(x + αy + (α + 1)z). (1)

This can be shown by elementary manipulations (see Janwa, Wilson, [3,
Theorem 4]).
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Our definition of exceptional APN functions is motivated by the defi-
nition of exceptional permutation polynomials. A permutation polynomial
f : Fq −→ Fq is said to be exceptional if f is a permutation polynomial on in-
finitely many extensions of Fq. One technique for proving that a polynomial
is not exceptional is to prove that the curve φ(x, y) = (f(y)− f(x))/(y − x)
has an absolutely irreducible factor over Fq. Then the Weil bound applied
to this factor guarantees many Fqn-rational points on the curve for all n
sufficiently large. In particular there are points with x 6= y, which means
that f cannot be a permutation.

The authors thank the referee for relevant suggestions.

2 Degree not Gold or Kasami-Welch

If the degree of f is not a Gold number 2k + 1, or a Kasami-Welch number
4k − 2k + 1, then we will apply results of Rodier [6] and Hernando-McGuire
[2] to prove our results.

Lemma 2.1 Let H be a projective hypersurface. If X ∩ H has a reduced
absolutely irreducible component defined over Fq then X has an absolutely
irreducible component defined over Fq.

Proof: Let YH be a reduced absolutely irreducible component of X ∩ H
defined over Fq. Let Y be an absolutely irreducible component of X that
contains YH . Suppose for the sake of contradiction that Y is not defined over
Fq. Then Y is defined over Fqt for some t. Let σ be a generator for the Galois
group Gal(Fqt/Fq) of Fqt over Fq. Then σ(Y ) is an absolutely irreducible
component of X that is distinct from Y . However, σ(Y ) ⊇ σ(YH) = YH ,
which implies that YH is contained in two distinct absolutely irreducible
components of X . This means that a double copy of YH is a component of
X , which contradicts the assumption that YH is reduced. ⊔⊓

Lemma 2.2 Let H be the hyperplane at infinity. Let d be the degree of f .
Then X ∩ H is not reduced if d is even, and X ∩ H is reduced if d is odd
and f is not a Gold or Kasami-Welch monomial function.

Proof: Let φd(x, y, z) denote the φ corresponding to the function xd. In
X ∩ H we may assume φ = φd.

If d is odd then the singularities of X ∩ H were classified by Janwa-
Wilson [3]. They show that the singularities are isolated (the coordinates
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must be (d−1)-th roots of unity) and so the dimension of the singular locus
of X ∩ H is 0.

Suppose d is even and write d = 2je where e is odd. In X ∩ H we have

(x + y)(x + z)(y + z)φd(x, y, z) = xd + yd + zd + (x + y + z)d

= (xe + ye + ze + (x + y + z)e)2
j

= ((x + y)(x + z)(y + z)φe(x, y, z))2
j

.

Therefore

φd(x, y, z) = φe(x, y, z)2
j

((x + y)(x + z)(y + z))2
j
−1

and is not reduced. ⊔⊓

Here is the main result of this section.

Theorem 2.3 If the degree of the polynomial function f is odd and not
a Gold or a Kasami-Welch number then f is not APN over Fqn for all n
sufficiently large.

Proof: By Lemma 2.2, X ∩ H is reduced. Furthermore, we know by [2]
that X ∩H has an absolutely irreducible component defined over Fq, which
is also reduced. Thus, by Lemma 2.1, we obtain that X has an absolutely
irreducible component defined over Fq. As discussed in the introduction,
this enables us to conclude that f is not APN on Fqn for all n sufficiently
large. ⊔⊓

In the even degree case, we can state the result when half of the degree
is odd, with an extra minor condition.

Theorem 2.4 If the degree of the polynomial function f is 2e with e odd,
and if f contains a term of odd degree, then f is not APN over Fqn for all
n sufficiently large.

Proof: As shown in the proof of Lemma 2.2 in the particular case where
d = 2je with e odd and j = 1, we can write

φd(x, y, z) = φe(x, y, z)2(x + y)(x + z)(y + z).

Hence, x + y = 0 is the equation of a reduced component of the curve
X∞ = X ∩ H with equation φd = 0 where H is the hyperplane at infinity.
The only absolutely irreducible component X0 of the surface X containing

5



the line x + y = 0 in H is reduced and defined over Fq. We have to show
that this component doesn’t contain the plane x + y = 0.

The function x + y doesn’t divide φ(x, y, z) if and only if the function
(x + y)2 doesn’t divide f(x) + f(y) + f(z) + f(x + y + z). Let xr be a term
of odd degree of the function f . We show easily that (x+ y)2 doesn’t divide
xr + yr + zr + (x + y + z)r by using the change of variables s = x + y which
gives:

xr + yr + zr + (x + y + z)r = s(xr−1 + zr−1) + s2P

where P is a polynomial.
Hence X has an absolutely irreducible component defined over Fq and

then f is not APN on Fqn for all n sufficiently large.
⊔⊓

Remark: This theorem is false if 2e is replaced by 4e in the statement. A
counterexample is x12 + cx3, where c ∈ F4 satisfies c2 + c + 1 = 0, which is
APN on F4n for any n which is not divisible by 3, since it is CCZ-equivalent
to x3. Indeed this function is defined over F4, and is equal to L ◦ f , where
f(x) = x3 and L(x) = x4 + cx. Certainly L is F4-linear, and it is not hard
to show that L is bijective on F4n if and only if n is not divisible by 3.
The graph of x3 is {(x, x3) | x ∈ F4n} and it is transformed in the graph
of x12 + cx3 which is {(x, x12 + cx3) | x ∈ F4n} by the linear permutation
Id × L where Id is the identity function. So when n is not divisible by 3,
L ◦ f is APN on F4n because f is APN. This example shows in particular
that our conjecture has to be stated up to CCZ-equivalence.

3 Gold Degree

Suppose the degree of f is a Gold number d = 2k + 1. Set d to be this value
for this section. Then the degree of φ is d − 3 = 2k − 2.

3.1 First Case

We will prove the absolute irreducibility for a certain type of f .

Theorem 3.1 Suppose f(x) = xd + g(x) where deg(g) ≤ 2k−1 + 1 . Let

g(x) =
∑

2k−1+1

j=0
ajx

j. Suppose moreover that there exists a nonzero coeffi-
cient aj of g such that φj(x, y, z) is absolutely irreducible. Then φ(x, y, z) is
absolutely irreducible.
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Proof: We must show that φ(x, y, z) is absolutely irreducible. Suppose
φ(x, y, z) = P (x, y, z)Q(x, y, z). Write each polynomial as a sum of homo-
geneous parts:

d∑

j=3

ajφj(x, y, z) = (Ps + Ps−1 + · · · + P0)(Qt + Qt−1 + · · · + Q0) (2)

where Pj , Qj are homogeneous of degree j. Then from (1) we get

PsQt =
∏

α∈F
2k−F2

(x + αy + (α + 1)z).

In particular this implies that Ps and Qt are relatively prime as the product
is made of distinct irreducible factors.

The homogeneous terms in (2) of degree strictly less than d − 3 and
strictly greater than 2k−1 − 2 are 0, by the assumed bound on the degree of
g. Equating terms of degree s + t − 1 in the equation (2) gives PsQt−1 +
Ps−1Qt = 0. Hence Ps divides Ps−1Qt which implies Ps divides Ps−1 because
gcd(Ps, Qt) = 1, and we conclude Ps−1 = 0 as deg Ps−1 < deg Ps. Then we
also get Qt−1 = 0. Similarly, Ps−2 = 0 = Qt−2, Ps−3 = 0 = Qt−3, and so on
until we get the equation

PsQ0 + Ps−tQt = 0

where we suppose wlog that s ≥ t. (Note that when s ≥ t, one gets from
s+t = d−3 that s ≥ (d−3)/2 and t ≤ (d−3)/2, and the bound on deg(g) is
chosen: deg(g) < t+3 ≤ 2k−1+2.) This equation implies Ps divides Ps−tQt,
which implies Ps divides Ps−t, which implies Ps−t = 0. Since Ps 6= 0 we must
have Q0 = 0.

We now have shown that Q = Qt is homogeneous. In particular, this
means that φj(x, y, z) is divisible by x+αy +(α+1)z for some α ∈ F2k −F2

and for all j such that aj 6= 0. We are done if there exists such a j with
φj(x, y, z) irreducible.

⊔⊓

Remark: The hypothesis that there should exist a j with φj(x, y, z) is
absolutely irreducible is not a strong hypothesis. This is true in many cases
(see the next remarks). However, some hypothesis is needed, because the
theorem is false without it. One counterexample is with g(x) = x5 and k ≥ 4
and even.
Remark: It is known that φj is irreducible in the following cases (see [4]):
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• j ≡ 3 (mod 4);

• j ≡ 5 (mod 8) and j > 13.

Remark: The theorem is true with the weaker hypothesis that there exists
a nonzero coefficient aj such that φj(x, y, z) is prime to φd (recall d = 2k+1).
This is the case for

• j = 2r + 1 is a Gold exponent with r prime to k;

• j is a Kasami exponent (see [3, Theorem 5]);

• j = 2je with e odd and e is in one of the previous cases.

Example: This applies to x33+g(x) where g(x) is any polynomial of degree
≤ 17.
Remark: The proof did not use the fact that f is APN. This is simply a
result about polynomials.
Remark: The bound deg(g) ≤ 2k−1 + 1 is best possible, in the sense that
there is an example with deg(g) = 2k−1 + 2 in Rodier [6] where φ is not
absolutely irreducible. The counterexample has k = 3, and f(x) = x9 +
ax6 + a2x3. We discuss this in the next section.

3.2 On the Boundary of the First Case

As we said in the previous section, when f(x) = x2k+1 + g(x) with deg(g) =
2k−1 + 2, it is false that φ is always absolutely irreducible. However, the
polynomial φ corresponding to the counterexample f(x) = x9 + ax6 + a2x3

where a ∈ Fq factors into two irreducible factors over Fq. We generalize this
to the following theorem.

Theorem 3.2 Let q = 2n. Suppose f(x) = xd + g(x) where g(x) ∈ Fq[x]
and deg(g) = 2k−1 + 2. Let k be odd and relatively prime to n. If g(x) does

not have the form ax2k−1+2 + a2x3 then φ is absolutely irreducible, while if
g(x) does have the form ax2k−1+2 + a2x3 then either φ is irreducible or φ
splits into two absolutely irreducible factors which are both defined over Fq.

Proof: Suppose φ(x, y, z) = P (x, y, z)Q(x, y, z) and let

g(x) =
2k−1+2∑

j=0

ajx
j.
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Write each polynomial as a sum of homogeneous parts:

d∑

j=3

ajφj(x, y, z) = (Ps + Ps−1 + · · · + P0)(Qt + Qt−1 + · · · + Q0).

Then

PsQt =
∏

α∈F
2k−F2

(x + αy + (1 + α)z).

In particular this means Ps and Qt are relatively prime as in the previous
theorem. We suppose wlog that s ≥ t, which implies s ≥ 2k−1−1. Compar-
ing each degree gives Ps−1 = 0 = Qt−1, Ps−2 = 0 = Qt−2, and so on until
we get the equation of degree s + 1

PsQ1 + Ps−t+1Qt = 0

which implies Ps−t+1 = 0 = Q1. If s 6= t then s ≥ 2k−1. Note then that
as+3φs+3 = 0. The equation of degree s is

PsQ0 + Ps−tQt = as+3φs+3 = 0.

This means that Ps−t = 0, so Q0 = 0. We now have shown that Q = Qt

is homogeneous. In particular, this means that φ(x, y, z) is divisible by
x + αy + (1 + α)z for some α ∈ F2k − F2, which is impossible. Indeed,
since the leading coefficient of g is not 0, the polynomial φ2k−1+2 occurs in
φ; as φ2k−1+2 = φ2

2k−2+1
(x + y)(y + z)(z + x), this polynomial is prime to

φ, because if x + αy + (1 + α)z occurs in the two polynomials φ2k−1+2 and
φ2k+1, then α would be an element of F2k ∩ F2k−2 = F2 because k is odd.

Suppose next that s = t = 2k−1 − 1 in which case the degree s equation
is

PsQ0 + P0Qs = as+3φs+3.

If Q0 = 0, then

φ(x, y, z) =

d∑

j=3

ajφj(x, y, z) = (Ps + P0)Qt

which implies that

φ(x, y, z) = adφd(x, y, z) + a2k−1+2φ2k−1+2(x, y, z) = PsQt + P0Qt
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and P0 6= 0, since g 6= 0. So one has φ2k−1+2 divides φd(x, y, z) which is
impossible as

φ2k−1+2 = φ2

2k−2+1
(x + y)(y + z)(z + x).

We may assume then that P0 = Q0, and we have φ2k−1+2 = 0. Then we
have

φ(x, y, z) = (Ps + P0)(Qs + Q0) = PsQs + P0(Ps + Qs) + P 2
0 . (3)

Note that this implies aj = 0 for all j except j = 3 and j = s + 3. This
means

f(x) = xd + as+3x
s+3 + a3x

3.

So if f(x) does not have this form, this shows that φ is absolutely irreducible.
If on the contrary φ splits as (Ps +P0)(Qs +Q0), the factors Ps +P0 and

Qs + Q0 are irreducible, as can be shown by using the same argument.
Assume from now on that f(x) = xd + as+3x

s+3 + a3x
3 and that (3)

holds. Then a3 = P 2
0 , so clearly P0 =

√
a3 is defined over Fq. We claim that

Ps and Qs are actually defined over F2.
We know from (1) that PsQs is defined over F2.
Also P0(Ps + Qs) = as+3φs+3, so Ps + Qs = (as+3/

√
a3)φs+3. On the

one hand, Ps +Qs is defined over F2k by (1). On the other hand, since φs+3

is defined over F2 we may say that Ps + Qs is defined over Fq. Because
(k, n) = 1 we may conclude that Ps + Qs is defined over F2. Note that the
leading coefficient of Ps + Qs is 1, so a2

s+3 = a3. Whence if this condition is
not true, then φ is absolutely irreducible.

Let σ denote the Galois automorphism x 7→ x2. Then PsQs = σ(PsQs) =
σ(Ps)σ(Qs), and Ps + Qs = σ(Ps + Qs) = σ(Ps) + σ(Qs). This means σ
either fixes both Ps and Qs, in which case we are done, or else σ interchanges
them. In the latter case, σ2 fixes both Ps and Qs, so they are defined over
F4. Because they are certainly defined over F2k by (1), and k is odd, they
are defined over F2k ∩ F4 = F2.

Finally, we have now shown that X either is irreducible, or splits into
two absolutely irreducible factors defined over Fq. ⊔⊓

3.3 Using the Hyperplane y = z

We study the intersection of φ(x, y, z) = 0 with the hyperplane y = z.
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Lemma 3.3 φ(x, y, y) is always a square.

Proof: It suffices to prove the result for f(x) = xd. This is equivalent
to proving that φd(x, 1, 1) is a square. This is equivalent to showing that
its derivative with respect to x is identically 0. This is again equivalent to
showing that the partial derivative with respect to x of φd(x, y, 1), evaluated
at y = 1, is 0. In Lemma 4.1 of [6] Rodier proves that y + z divides the
partial derivative of φd(x, y, z) with respect to x, which is exactly what is
required. ⊔⊓

Lemma 3.4 Let H be the hyperplane y = z. If X ∩ H is the square of
an absolutely irreducible component defined over Fq then X is absolutely
irreducible.

Proof: We claim that for any nonsingular point P ∈ X ∩H, the tangent
plane to the curve X ∩ H at P is H. The equation of the tangent plane is

(x − x0)φ
′

x(P ) + (y − y0)φ
′

y(P ) + (z − z0)φ
′

z(P ) = 0

where P = (x0, y0, z0). Since P ∈ H we have y0 = z0. It is straightforward
to show that φ′

x(P ) = 0 and φ′

y(P ) = φ′

z(P ), so this equation becomes

(y + z)φ′

y(P ) = 0.

But y + z = 0 is the equation of H. ⊔⊓

Corollary 3.1 If f(x) = xd + g(x), and d = 2k +1 is a Gold exponent, and
φ(x, y, y) is the square of an irreducible, then X is absolutely irreducible.

Note that any term xd in g(x) where d is even will drop out when we
calculate φ(x, y, y), because if d = 2e then

φd(x, y, z) =
xd + yd + zd + (x + y + z)d

(x + y)(x + z)(y + z)

=
(xe + ye + ze + (x + y + z)e)2

(x + y)(x + z)(y + z)

= φe(x, y, z)(xe + ye + ze + (x + y + z)e)

= 0 on H

because the right factor vanishes on H.
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In order to find examples of where we can apply this Corollary, if we
write

φ(x, y, y) = (x + y)2
k
−2 + h(x, y)2

then to apply this result we want to show that

(x + y)2
k−1

−1 + h(x, y)

is irreducible. The degree of h is smaller than 2k−1 − 1. Letting t = x + y
we want an example of h with t2

k−1
−1 + h(x, x + t) is irreducible.

Example: Choose any h so that h(x, x + t) is a monomial, and then

t2
k−1

−1 + h(x, x + t) is irreducible.
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