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ABSTRACT

We investigate the problem of probing the local spatial dtrte of the magnetic field of
the interstellar medium using multi-frequency polarizedp® of the synchrotron emission
at radio wavelengths. We focus in this paper on the threesdgional reconstruction of the
largest scales of the magnetic field, relying on the intedeglolarization (due to differential
Faraday rotation) of the emitting medium as a function otwtenagnetic frequency. We
argue that multi-band spectroscopy in the radio wavelengliveloped in the context of high-
redshift extragalactic HI lines, can be a very useful probéhe 3D magnetic field structure
of our Galaxy when combined with a Maximum A Posteriori restouction technique.

When starting from a fair approximation of the magnetic fielé are able to recover
the true one by using a linearized version of the correspanidiverse problem. The spectral
analysis of this problem allows us to specify the best samgptrategy in electromagnetic fre-
quency and predicts a spatially anisotropic distributibpasterior errors. The reconstruction
method is illustrated for reference fields extracted frorlistic magneto-hydrodynamical

simulations.
1 INTRODUCTION

The problem of studying the magnetic field structure of our
Galaxy using measurements of the synchrotron emissiongdf hi
energy electrons in the Galactic magnetic field is an old one
(Ginzburg & SyrovatsKil 1965; Ruzmaikin etlal. 1988; Beclabt
M). The fact that the emitting medium is itself magnetize
induces a differential Faraday rotation of the differentission
planes transverse to the line of sight, resulting in a wetiviam de-
polarization effect of the integrated emission that depesitbngly
on the electromagnetic frequency. This effect, describete first
place by Burn[(1966) in the case of a constant magnetic filsl, h
been further studied in semi-analytically for given fuonatl forms
of the magnetic field; it has also been studied from the sidils
point of view in some asymptotic regimes (see e.g H
). In the present work, we want to consider the more am-
bitious problem of using this depolarization effect, tdgatwith
the solenoidal character of the magnetic fieldyegoonstructthe
magnetic field structure from a set of polarized maps of the sy
chrotron emission of an ionized medium at different eleotg-
netic frequencies. With the upcoming prospect of detailadtiv
band spectroscopy in the radio wavelenglmmm
Furlanetto & Briggs 2004), developed in the context of Gedac

and high-redshift extragalactic HI lines, this type of istigation
should become possible.

A statistical inference of the measurement of the Galac-
tic magnetic field correlator as a function of scale from fult
frequency polarization measurements has already beerssicc

fully achieved by Vogt & EnRlin[(2005) in the case of the Fara-

day rotation of the polarized light from background objdzyshe
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intra-cluster magnetized plasma. In this case, there isepoldr-
ization effect due to differential Faraday rotation, ane telation-
ship between the measured polarization at a given frequandy
the polarization of light in the source plane is linear in tloagitu-
dinal) magnetic field strength. The linearity of the problerakes
the statistical analysis tractable in the former case. énctise that
we investigate, the emitting and the rotating medium areséme,
which results in depolarization effects of the emitted tigiiore-
over, the synchrotron emissivity itself depends non-liyean the
field strength transverse to the line of sight. The reconstra of
the magnetic field structure from the polarization data this case
a non-linear inverse problem. Finally, we must note thatidress
the full problem of reconstruction of the magnetic field frohe
depolarized synchrotron emission we need in principle kedge
of both the thermal electron spatial distributien and the spa-
tial distribution of cosmic ray electrons,, when, in comparison,
the inference of the magnetic energy spectrum from theiootat
measures of background sources only requires knowledgleeof t
thermal electron distribution.

In a first attempt at reconstructing the magnetic field, amd fo
the sake of clarity, we make the assumption that the fluadnstof
the thermal and cosmic ray electrons can be neglected cexhpar
to the fluctuations in the magnetic field itself. This assuomtif
physically unrealistic, allows us to show the specific infice of
the magnetic field statistical properties on the quality haf te-
construction. In the first sections, we thus consider thetelaic
distributions (both thermal and relativistic) as constand discuss
the reconstruction of the magnetic field using only the legdiou-
pling coefficient in the equation of radiative transfer. e t(thin
medium, strong rotativity) limit that we assume for this wothis
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leading term is the usual Faraday term, responsible fordtagion
of the plane of polarization. We will assume that the Faractay
efficient is dominated by the thermal electrons, which isasoa-
able assumption in non-relativistic astrophysical plasnfénally,
in sectiorl#, we relax the unrealistic assumption of a conster-
mal electrons density, and show that our method can stilseed to
reconstructed the magnetic field when the electronic deiss#tpa-

tially varying butknown a priori using simulated data sets from a

magneto-hydrodynamical (MHD) simulation.

This paper is organized as follows: in sectldn 2 we discuss

the fonctional dependence of the polarization of the systcbn
emission and its variation with electro-magnetic freqyeoi the
underlying magnetic field. We present a discretized versfahis
functional dependence that will be useful in the contexthef ite-
construction from discrete polarization data. In sediiloe3nves-
tigate the reconstruction of the magnetic field from simadanulti-
frequency polarized data, when the functional dependencie
magnetic field has been linearized around a "mean” field.ngki
advantage of the linear nature of this approximate probleargive
a strategy for choosing the best electromagnetic freqesrafiob-
servation, and investigate the statistical anisotropyefrhagnetic
field reconstruction errors. Finally, in sectigh 4, we irtigete the
validity of the linearization procedure used in the precgdection,
as a function of the quality of our prior knowledge of the metgm
field structure. We show how the approximate, linearizealis®
problem investigated in this work could be used as a builtdingk
of the fully non-linear reconstruction problem. We emphaghat
any gradient-based non-linear minimization algorithm bande-
composed into linear sub-problems, thus justifying thelytf the
linearized problem. In this context, we investigate how ¢badi-
tioning of the linearized problem varies with the propestad the
reference magnetic field around which the problem is being li
earized. In particular it is illustrated on a realistic refece field
from a MHD simulation. Finally, using the same MHD simulatio

data, we show that our method can deal with a non-constagi ele

tronic density, provided it is known a priori. In sectigh 5 wum-
marize the main results of the paper, recalling the main kiyimg
assumptions used to derive them (notably the assumed-keleen
tronic density hypothesis) and discuss how this assumgtoid
be possibly alleviated by additional data (e.g., ftee-free) or by
using second-order coupling terms involving the circulalapza-
tion in the case of relativistic sources (§de C). We conchrdeow
the different results of the paper could be used to tackldtithe
non-linear reconstruction of the magnetic field.

2 POLARIZED EMISSION

Our objective is to recover the magnetic field given obseped
larization maps at different wavelengths. We tackle tHipdsed
problem by means of an inverse problem approa 1)1
which involves recovering the magnetic field that gives appa-
tion consistent with the observations while obeying someiarip
properties. These priors are strict constraints, sucti a3 = 0,
to insure that the sought field is physically meaningful andg:
ularization to lever the degeneracies of the inverse probidile
avoiding artifacts due to noise amplification. We first dettie di-
rect model of the polarization given the magnetic field anghth
introduce the inverse problem approach in a Bayesian framew

2.1 Direct model

We only consider here the Faraday rotation in the transfeatsan,
and neglect all other coupling terms. In this case, the feaesjua-
tion of the Stokes parameters of linear polarizatigh U) can be
integrated formally. We assume here that the density ottreles
is constant, or that its fluctuations are only important calescthat
are not considered here.

Consider a slab of ionized magnetized medium of width
which is emitting synchrotron radiation. The polarized ssion,
as a function of frequency, integrated over the line of sitjen
readsm&:

PEQ—i—iU:/e(r)ein(r)dz, 1)

with @ andU are the usual Stokes paramete(s) the synchronton
emissivity which obeys:

() = Ans(v) |BL ()T v T @
andy (r) the sum of the Faraday rotation and the primordial orien-
tation:

K [° /
Y(r) = w/2 + arctan (B, /B:) + o] /Z neB.dz',  (3)

wherer = (z,y,2) = (x.,2) is the coordinate in the slab, is
the frequency, an® = (B., By, B-) = (B, B.) is the magnetic
field. In equation[(B)K reads:

3
e @)

8712 m2ceo

while, in equation[(R)A is given by

e (ra) () ()
A= r r ,
16 meg mec \ 2w m3 c* 12 12
where Ey is the energy scale of the relativistic electron spectrum,
me and ¢e. stand for the mass and the charge of the electnon,
andn, are the thermal and relativistic electron densities suggos
constant, while the exponentstands for the spectral index of the
cosmic ray electrons; is the speed of lightso is the electric per-
mittivity and T" is the Euler gamma function. The lengths are in
kilo-parsec (kpc) and so the density in kpg the magnetic fields
in micro-GaussG) and the frequencies in giga-Hertz (GHz). Re-
expressing the intrinsic polarization phase in terms ofgrsvef the
magnetic field components, we get the following expressiotife
polarization:

_ 0 2-=3
P(xl,y):Ay_:y?_l/ ne(x1,2) (Bz—&—B;) 4 (x1,%)
x (B2 — B} +2iB, By) (x1,2)

: 0
Xexp(Q;QK/ (neBz)(xL,z”)dz”> dz. (5)

As real data come in discrete form, let us discretize thisesgion
by replacing all integrals with sums, assuming a regulasrditza-
tion grid that will be defined more precisely below. Equat@
then reads

— y=3
P(xyi,v)= Ahv= T Z ne(x1,2) (Bf + Bg) I (x1,2)

z

x (B2 — B} +2iB. By) (x1,2)

x exp<2il/[2(h 3 0u(z - 2) (ne Bz)(xhz')) .
(6)

2!
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Herefdy is the Heaviside functiordg (z) = 1 for x > 0 and O
elsewhere), andl the discretization length along Equation[() is
formally a function ofB = {(B., By, B-)}, where we use bold
symbols to represent the discretized vector fieldsaigla triple

index spanning the magnetized volume on a regular cubic mesh

with cell sizeh.

The solution to the inverse problem will be obtained by means

of minimization of some merit function (as explained in whalt
lows), we therefore need to compute the partial derivatdfethe
polarization with respect to the magnetic field. Let us fitsine
pute the derivatives with respect to the transverse compsraf
the field:
OP(x1,v)
9Bz (r')

X{1;7B3+727B B, +i

X exp< KhZQH

withr = (x.,2), ¥ = (x,2") andép Dirac’s delta function.
The derivative with respect t8, follows closely, with the square
bracket term becoming:

14y
2

—op(r— ) An () hv 7 (B2 + B35 ()

(- 1) B B, + 2B )

—2') (ne B2)(x, Z")> ; @)

B -1= 7323 ti(y 4)3,3%2133] (8)

which corresponds to /2 rotation in the plane perpendicular to

the LOS. We see that in both cases the phase term is unaffected

since it is only a function of the longitudinal magnetic fieldm-
ponentB.. Finally let us compute the derivative with respect to

B.:
OP(x,,v . _ 43
33&7&’)) = Jdp(xL — Xl)QZKAhQV =

=3 2 2 . /
T (B — B, +2iB. By) (X, 2)

X E Ny XL7

xOu (2’ — z)exp <

B. + B})

2iKh

> Ou(2” z)(neBz)(xl,z")> . 9)

We note that here the phase term, not the emissivity laysn, tisr
involved. The case = 3 is detailed in Appendik’A and leads to a
simplification of the above equations.

2.2 Maximum A Posteriori formulation
From the direct model, we can express the observed data as:
dm :P((xl7 )m,B)Jrem, (20)

with m an index which spans the mixed frequency position-on-the-
sky cube,(x1,v)n the corresponding coordinateB, the actual
magnetic field ane,,, an error term which accounts for noise and
model approximations. Using vector notation, equafio) @ pli-
fiesto:d = P(B) + e with d = {d,, } the vector collecting all the
observationsP(B) = {P((x.,v)m,B)} ande = {e,}. Our
inverse problem is to recover the magnetic field vecRyrgiven
some noisy measurements of the polarizatidnPue to the un-
known errors in equatio (10) and to possible strict degmsies
of the direct model, there is not a unique magnetic field thelty
a polarization consistent with the observations. We tloeechieed
some means to select a unique solution and, hopefulljpektone
given the data.

Probabilities provide a consistent framework to define such
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a solution; we thus define the sought magnetic field as beiag th
most likely given the observations. It is the one which maxzes
the posterior probability:

Buap = argmax P(B|d) (11)
B

and which is termed as thmaximum a posterioffiMAP) solution
(see e.g. Pichon & Thiébdut 1998). By Bayes’ theor®(B|d) =
P(d|B)P(B)/P(d), and sinceP(d) does not depend on the
sought parameteiB, this amounts to maximizin@(d|B) P(B).
The termP(d|B) is the likelihood of the data given the model,
while the termP(B) accounts for any priori knowledge about
the magnetic field. We can anticipate two types of priorstH@®
strict constraint that, to be physically meaningful, thédfishould
be solenoidalVB = 0; (ii) some so-calledegularization con-
straint to overcome the ill-conditioning of the inverse lgeam and
to enforce the unicity of the solution. Without loss of geality, we
state that the probabilities writes:

P(d|B) = K1 exp(—— (B )) (12)
P(B) = { k2 exp(—3 R(B;p)) , if VB-: 0, 13
0 otherwise.

where the factors; andx2 do not depend o8 and x accounts
for parameters to tune the regularization. Finally, taking log-
probabilities and discarding constants, the maximum aepiast
magnetic field writes:

Buap = arg min Q(B), (14)
B,VB=0
with:
9(B) = L(B) + R(B;p), (15)

which is the objective function. Before going into the distaif the
expressions of(B) and R(B; 1) we can already note that the
solution Byap will depend on the datel and on the regulariza-
tion parameters. The value ofu can be chosen, e.g., to provide
the best bias-variance compromise on the sought sol

[1990; Golub et &l. 2000).

2.2.1 Likelihood

Assuming Gaussian statistics for the noise and model ertioes
likelihood of the data is the so-called and writes:

L(B)=(d-P(B))" -C; - (d-P(B)  (16)

with C,, the covariance matrix of the errors. There is a slight issue
here because we are dealing with complex values. Since eampl
numbers are just pairs of reals, complex valued vectors asdh
P(B) ande can beflattenedinto ordinary real vectors (with dou-
bled size) to use standard linear algebra notation. Thishistis
assumed in equatiof {[16). Under these conventions, theianea
matrix of the errors write€,, = (e - e') with T to denote trans-
position.

2.2.2 Regularization

The regularization ternR (B; 1) implements loose constraints to
avoid over-fitting the data and enforce local unicity of tb&ugon
(see sectiofi 4]13). Requiring that the magnetic field be asgmo
as possible (while being consistent with the data) matcheset
requirements and is supported by physics since the madiedtic
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should have no discontinuities. To simplify further consgdigns,
we choose the following particular expression of the regzédion
'R to favor the smoothness of the field:

R = s A B o s Y K[ |B2,
k

which scales as the integrated norm of the spatial Laplaufidine
field to the powekx/4. For a periodic field, this generic smoothing
penalty is diagonal in Fourier space. In addition, if the eld8 is
Gaussian and scale invariant, themay be chosen to be the power
law index of the power spectrumﬁﬁ of the field. In this case,
choosing the specific value of the hyperparametee- 1/|B|§:1,
the MAP solution correspond to the minimal variance Wierler fi
tered data.

17

2.2.3 ImposingvB = 0

For simplicity, we assume here that the magnetic field is imult
periodic, with periodL in all three directions. We may then rewrite
the magnetic field as:

B=F'. (BMGM + BLQeLQ) =II-B, (18)

whereF~! = FT/N;%” andF is the forward DFT operatore( =
k/|k|, e11, er2) form a spherical basis in Fourier space, while
BM, i=1,2 are the projections over that basis of the Fourier-com
ponentB = F - B of the field. Equation({18) defines the projector
IMI=F"'.(eL ®e.)- F.Such afield satisfies by construction

k-B=0, whichimplies V-B=0. (19)

In fact, there is a slight complication at the Nyquist freqcies

where only one component of the field is free, see appéndix B.
Note that the divergence free condition could also be imghose

by other means (see e.g. Nocedal & Wright 2006). For instance

adding a quadratic penalty term Ii@r(VB)f to the total penalty

Q(B). We however found that, in practice, the projedidied to

a better conditioned reconstruction problem.

2.3 Implementation

Given equationd(16) anf{[L7) the objective function writes
Q=P-d)"-C;"- (P—d)+u |A*'B|*.  (20)

To minimize Q(B), we used a variable metric limited memory
optimization method with BFGS updatés_(Nockdal 1980) dalle
VMLM and implemented in OptimPaldThiebauf 2002). Finding
the optimal solution, equatiofi_{l14), involves computing tradi-
ent of equation[{20) with respect . Now differentiating equa-
tion (18) with respect to a magnetic field components we get

o’ oP
9B, oB, |

wheredP /0B, for i = x,y, z are given by equationE](7) ar[d (9).
Similarly, differentiating equatio (17) with respectBoyields

OR

0B;
The VMLM algorithm is a quasi-Newton method which proceeds
by solving successive linear problems. Let us therefore dos-

sider in the next section a linearized version of our inversblem,

=2Re |(P—-d)'-C;!

(21)

= F1 - Bylk|™. (22)

L OptimPack is freely available athttp://wwes obs. univ-
I'yonl. fr/1abo/ perso/eric.thiebaut/optinpack.htn .

which may correspond to a physically motivated problem when
good first guess for the magnetic field is known.

Note finally that equation§17) anid (9) imply thay? /0B; =
0 at B, = B, = 0. Note also that if Bz, By, B-) is a solution
to equation[{(b), so i$—B., — By, B.). Consequently we expect
that they? will be strongly multivalued as a function @. The
smoothing penalty should in part prevent a pixel-by-pixgl @f
thex andy component. It remains nonetheless to be shown that the
zero divergence condition is sufficient to avoid flipping fletd in
regions bound by zeros of these two components, if suchnegio
exist. Addressing these issues will be the topic of anothpep

3 LINEARIZATION

Let us first consider the situation when a fairly good guess fo
the overall magnetic fieldBy, is known, on the basis, say of
a first large scale investigation, or via some modelling & th
field as a function of the underlying density (
[KachelrieR et al. 2007). Let us then seek the departure ftosn t
guess. It is then legitimate to assuBBe= B, + B, with, possi-
bly (if the prime guess is accurate enougiy/|Bo| < 1, so that
equation[(b) becomes:

_(oP
0

where the tensodP /9B, is given by its components, equations
(@, (@) and[(®), whilesP = P — P(By). Now equation[(2B) is
likely to be a much better behaved equation as the lineadtyamts
convexity of the objective function, hence the formal utyicf the
solution.

In this paper, we will address two linear problems in turre on
of academic interest, to understand the properties of therse
problem at hand, while the second one should allow us to carry
realistic reconstructions, in the regime when a fair rafeedfield is
known. Specifically, we will first assume that the (noise fréata
is in the image of OP /0B) :

d =P = (0P/0B)g, - 0B +e,

(23)

linear problem (1),

while for the second problem (the so called Gauss-Newtornoapp
imation)

d=PpL =P — P(By) +e, pseudo linear problem (II).

We investigate the linear problem in this section and theigse
linear problem in sectidnl 4.

3.1 Linear reconstruction

Let us illustrate our method on a problem of realistic scaléss

first simulation is carried on & grid (N, = 64) with N, = 64
frequencies. The reference fiel8h, is chosen constant and set to

1 uG everywhere for each component, the power spectrum of the
perturbation fieldB has a power law index = 2 and its RMS

is 0.01. Data are simulated linearly (see secfidn 3) and are noised
with a SNR= 20. Figure[1 illustrates the quality of the reconstruc-
tion. Thetop panelrepresents the and z components along the
LOS (z direction) or transversey(direction) for a given pixel. As

2 For instance a magnetic loop close to thaxis (whereB,, andB,, ~ 0)
and its mirror image by symmetry along theaxis have the samg? and
almost zero gradient.

(© 0000 RAS, MNRASDOO, 000—-000
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Figure 1. Top: input (solid line9 and recovereddashed linesz andz components of the field along a LOBff) and along the, transverse directiorright).
The y component and the direction are not plotted since very close to theomponent and thg direction. One can see that thecomponent is better
reconstructed than the or y components which is consistant with the variance measurenaad the global conditioning of the problem (see seéfi@i. 3
The reconstruction is carried o = 64 grid with N, = 64 frequency channel. The data are generated linearly (séersg&} with a SNR= 20. Bottom
left: maps of| B| for a transverse section after smoothing of the fields. Teemgimages represents the input field while the superposie edntours show
the recovered ondBottom right: power spectra of the input fielgdlid line) and the recovered onerfsses As expected, the recovered power spectrum is
damped at higher frequencies because of the regularizatitiustrate this we added the power spectrum of a recoatstn with SNR=200.

the results for they component and the direction are similar to covered onedrossek Finally, figure[2 represents the field lines
the x component and thg direction, they are not plotted. Here,  of the input field fop) and the recovered onédtton). These fig-
the solid linesstand for the input field and thgashed linegor the ures show that, if the frequencies are correctly samplegiggetion
recovered one. It is clear that the two fields are very sinalzd [B:2), the linear inverse problem (1) recovers qualitativeell the
that thez component is the best recovered (see se€fioh 3.3). The underlying field. The local and global properties of the fiedeh be
bottom left panekhows a map ofB| for a transverse section af-  reconstructed provided that the linearization remaing&lvahich
ter smoothing. The smoothing is made by convolving the figtdw  will be investigated in sectidd 4.

a four pixels full-width at half maximum (FWHM) gaussian.&h It is of interest to study the conditioning of the linear prob
green features represent the input field and the reconstruste lem for two reasons (i) to understand the spatial specteLife
is shown in the superposed white contours. Bo#tom right panel - of the solution; in particular the biases of the eigenvectirthe
shows the power spectra of the input fietl(d line) and the re- linearized problem which induces anisotropy in the distitn of

(© 0000 RAS, MNRASDOQ, 000-000
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Figure 2. Field lines of the inputléft) and the recoveredight) fields for a
642 reconstruction withV,, = 64 frequencies. The fields correspond to a
reconstruction with a SNR of 200.

errors around the solution; (ii) to constrain the best samgstrat-
egy in order to recoveB. Eventually it will also have an impact on
our ability to carry out the non linear reconstruction.

The requirements to set up a good conditioning of the global
inverse problem can be formulated in steps. First a negeseadi-
tion is to make a proper choice of the (electromagnetic)ueagy
sampling, which can be achieved by looking at a smaller sailpr
lem on a given LOS; however, this optimal sampling does nat wa
rant a good global conditioning; we therefore investigheedual-
ity of the global linear reconstruction by looking at diféet ele-
ments of the reconstruction covariance matrix in (spafiauency
space. In particular, we will show that the quality of theaestruc-
tion is anisotropic and depends on the components of the #&ld
which is confirmed by looking at the eigenvectors of the ciavare
matrix for a low dimensional problem.

3.2 Conditioning of a line of sight and frequency sampling

One can see easily that in the relation between polarizatiwh
magnetic field (equatiol5)), each line of sight is indeardbf
the other. The link between them is provided by the soleraiota:
dition. In this subsection we will not consider this conaiitiand the
matrix (0P /0B)s, becomes block-diagonal. Moreover, the three
components can be separated leading to three differentcestr
(0P/0B.), (0P/0B,) and (0P/0B.). The field B, is taken
constant and its modulus set BuG. In this case, all blocks are
the same and the study of the conditioning is reduced to thay st
of threeN, x N, matrices with/V,, the number of frequencies and
N, the number of pixels in the direction.

Numerical investigations show that the conditioning of
(0P /0B,,) depends mainly on the rati§ hn. B./v* leading to
the conclusion that the conditioning is dominated by theoexn-
tial term of equation[{7). It follows thatdP /0B, ) has the same
behavior agoP /9B, ) since the exponential terms are the same in
both equationd{7) anfl(8), which is confirmed numerically.

Recall that since in this section the reference field is amose
constant, so i#3; therefore the best sampling for the frequencies is
to haver,, % — u;fl constant, that is a constant step for the squared
wavelength; henceX2 = \3 + (n — 1) AN withn = 1,..., N,
the index of the frequency/wavelength. So that the compkgo-e
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nential becomes
eQiKne B, hm/\i/c2

_ eQiK’ne B hmk%/c262iKne B, hm (n—l)AA2/c2

(24)

with m = 1,..., N, the pixel index along the line of sight. The
value of AX? must be chosen in such a way that the frequency de-
pendent complex exponentials are uniformly sampled on dhe c
plex circle. Hences n. B, h Ny (n— 1) AX?/¢* must be a multi-

ple of  for anyn. With L = h N, the maximum probed depth and
taking the smallest multiple, this yields:

71'02

T KnB. L’

With this particular choice, the matrice$oP/0B,) and
(0P /0B,) take the following form:

AN? (25)

(n—1m\ *
KneB.L

. Ny—m
o —airmen \ Vr
X (e_me Nr ) . (26)

where = 2 K n. B. h \j andC,,, is a different constant in the

—1
z andy directions. If the factof A\ + (n — 1)7 /(K neB-L)) =
is set to 1, the matrix is a unitary Vandermond matrix and ats-c
ditioning is 1 (Cordova et &l. 1990).
Accounting for this factor impairs the conditioning buttiags
close to unity. The elements of the last mat(i&P /0B..) are just
geometrical series of the elements(6P /0B ). Thus, they read:

(0P /0By /y)nm = Capye™™™” (,\3 "

(n—1m\ *
KneB.L

(0= DN+ 1= m) )

(9P /0B.)

n,m = CzeNri/G ()\g +
. —2im
1—exp(—iB(Ny +1—m))exp ( N

r

1 —exp (—iﬂ exp(—%(n - 1)))

where(C', is yet another constant. At this stage, there is only one

free parameter left, the first frequendy. The conditioning of

(0P /0B,,,) being always close to unity, the value & must

be chosen in order to minimize the conditioning(6P /0B..).
Figure3 top pane) represents the conditioning (9P /0B..)

as a function of\, for different grid sizes. The curves are very simi-

lar in shape and the best conditioning is represented byethdats.

In thebottom panethe wavelength providing the best conditioning

for (OP/0B.) is plotted as a function of the grid size. It appears

that Ao oc /N, and the precision on\, is not really important

since the minimum of the curves are not really marked. Thase p

ticular choices of\, give a conditioning ofl .29 for (9P /9B, ),

whatever grid size.

3.3 Conditioning of Cyiap and a posteriori variances

Let us now investigate the a posteriori variances of diffespatial
frequencies of the reconstructed field. This covarianceimean
be written as

Cumap = (AT -Ct 'A+C§1)_17 (27)

where A (0P/0By) - II with II the projector that can-
cels the divergence (cf. equation(18)) a@y;' and Cg'
us F~diag(|k|*)F are the a priori covariance matrices of the
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150 [T T T[T T[T T[T T[T T[T TTTT] k. To check this method, the same variances were also computed
by the iterative VMLM method. One can check that:

3 ] . ] ] .
:?63 (Bin — Bou) - (Bin — Bou)) = Caiar,  (30)

0323 wheret denotes conjugate transpositidB;, andB,.; stand re-

spectively for the input field and the reconstructed one iarieo
space. As expected, the higher the number of iterationg|tser
the two estimates of the variance.

Figure[4 represent the evolution of the a posteriori vagaofodif-
ferent spatial frequencidsfor the different components of the field
in different directions (along a LOS or transverse to it) darec-
tion of the SNR. The size of the box I8, = 16 and the number
of frequencies isV, = 16. Figure[® shows the evolution of the
a posteriori variances of the same frequencies as of flgubeit4,
as a function of the spectral index, of the sought field (for a
SNR= 20). As expected, the variance decreases as the index in-
creases. In Figufd 4 the SNR is defined as

100

Cz

50

_I.|I|I|I|I|I|I|I|I|I|I|I|I|I|I|
-|'|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I

ol

2 4 6 SNR = RMS(data)/on, (31)

Ao (m) with o2 standing for the noise variance. The results forfeand
10.0— i i B. fields in thex direction are not plotted because there are exactly
the same as those in thedirection. First note that the variances,
i o2 for the B, component of the field are much smaller in ampli-
6. Ao-n 172 — tude relative to the other components. ForBigandB,, fields, at
i a low SNR, the Wiener prior is important in the reconstructier-
plaining the separation of the three curves correspondirthree
different scales. In Fourier spadgg = pg ' diag(|k|~*) with o
i the spectral index of the power spectrum of the input fieldhéf
Lo | [ regularization dominate€viap ~ |k]~, which corresponds to
10.0 20. 50. the values on the figures when the SNR is low.
N, For the transverse frequencidm{tom panels the behaviour
of the variances is well understood. At low SNR, the Wienéormpr
Figure 3. Top conditioning,C, of (9P /dB.) as a function of\o for dominates the reconstruction for ti, andB, components but
different grid sizes. The red dots represent the best doniigs. Bottom not for theB. one. Increasing the SNR implies increasing the rel-
o giving the best conditioning as a function of the grid siXg, It appears ative weight of the data compared to the prior. So equafiah (2
that Ao o< /Ny becomes
Cuar ~ (AT C;'-A)"!, whenSNR— 0.  (32)
noise and the signal respecti@iy{ere we seeriap, the Fourier e assume a Gaussian white noi€k, = o2 I with I the identity
transform of Cviap as we want to understand the relative error matrix, equation[{32) becomes
in the amplitude of the spatial modes Bf. Because of the po-
tential high dimensionality of our problem, the covariamaatrix, Cuap ~ on(AT - A)H, (33)
Cuap is not computed'diregtly. We chqse instegd to gompute the 4 Cuap x o2 or given equation(31)Caar o SNR~2 which
_selected va_Iues by solving f& the following equation with a con- is the slope of these curves. Finally, note that there is nmnsstry
jugate gradient method (CGM. Shewchuk 1994: Nocedal & Wrigh breaking between the andy directions and between theandy
m): components of the field or between the sine and cosine modes in
WMAP . B = Bref. (28) CMAP'
. . . Now, consider the: andy components of the field along a LOS
Here, Wuar = Cy/lyp and the solutionB, found by the CGM is (top panel3. At low SNR, the Wiener prior still dominate, provid-
ing the same value as in the transverse direction. Thenattie@nce

Ao (m)

B = Cuap - Brer. (29) decreases as SNR but reaches a threshold and stagnate. Itis clear
The reference fieldB..t, is equal tol or +i for the choserk fre- on the figures that there is a symmetry breaking betweem tved
quency and its oppositek in order to have a real field, aridelse- they components of the field and a separation between the sine and
where. The elemeni8,. andB_. of the solution are combinations ~ COsine modes. At first it may be surprising that the variameash
of the covariance dk and—k and the variance df. It allows us to a threshold since the frequencies have been chosen to prthad

determine the a posteriori variance of the chosen spatiglgncy best possible conditioning f¢tP /9B, along a LOS (see section
[B:2). In fact this is a consequence of the solenoidal canditRe-

call that for the global inverse problem, the relevant Iimeadel
3 Throughout this section (unless stated otherwise) we asshata is is A = (0P /0By) - IT, whereIl is the projector given by equa-

given by minus the powerspectrum index of the sought magfietd, and tion m)- This projector changes. the mat(&P/@Bo) gnq adds
chooseus = 1/P(k = 1), which corresponds to the minimum variance  Off-diagonal terms to the block diagonal matrix consideirethe
solution. previous subsection. In effect, the solenoidal conditiegrddes
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Figure 4. A posteriori variance of different spatial frequencles (1, 2, 3) for the different components of the field in different diienot (along a LOS or
transverse to it) as a function of the SNR. The size of the 8d%.i= 16 and the number of frequency ¥, = 16. Thetop panelsorrespond to the variation

of az for three different values df. while thebottom panelsorrespond to varying, . The cosine modetlfick line) and sine modedashed ling are both
shown. All variances decrease with increasing SNR as eag@eatthough at different rate, see the main text. Note tifierdint amplitude inr% for thebottom
right panelwhich shows that th@& . component of the field is better recovered compared to ther attmponents. This reflects the anisotropy of the model
A which induces anisotropic reconstruction errors.

the global conditioning relative to the one LOS problem (teaall though the frequencies were chosen optimally. Fifilire 6siiswvs
that without it we have an ill posed problem). In turn this ohes that at realistic SNR, the global conditioning remains tmchand
the eigen structure af'map and therefore its projection in Fourier  could be improved, e.g. for the purpose of numerical corermcg,
space. by artificially increasing the hyperparametey. Note finally that

Indeed, let us compute directly the whole mat@ix;ap for a even though the global conditioning increases with the SIKR,

smaller, more tractabl&/, = 8 constant reference magnetic field variances all decrease, as expected.
with N, = 8 frequencies sampled following the procedure defined

in sectior 3. Figure[® shows the global conditioning of the co-

variance matrixCuap as a function of the SNR. One can see that 3.4 Eigenspace analysis

the mixing of the LOS has a significant effect on conditioniexen . .
d g o In order to understand the plateau on figure 4, let us alsdcexpl

itly diagonalizeWyiap for the smaller above-described, = 8
4 As expected the curves of the variance as a function of the BNRd problem with a SNR= 20. The corresponding spectrum is plotted
previously are recovered exactly with this direct caldatat on figure T bottom rightpanel. The global conditioning 3V yiap
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Figure 5. Same as Figuilgl 4 but as a function of the spectral inderf 6B for a SNR= 20. As expected, the smoother the expected field, the largére

smaller the posterior variances.

is about10® (consistently with what was shown on Figlide 6 for
Cwmavp), but note importantly that there is a cluster of eigenvalue
followed by a gap. This gap is consistent with the platean sxe
figurel4. When increasing the SNR, one expects to filter ostdad
less eigen modes, and therefore to access more and moreezgigen
tors (corresponding to decreasing eigenvalues) in thenstac-
tion. However, when reaching the gap, although the SNR &sa®,
no more eigenvalues are available for a while. The lowenwige-
tors, encoding informations on higher frequencies, arewittin
reach, and the a posteriori variance of these frequencenate,
as seen in figurel 4. If the SNR increases further, these eijers/
(and therefore their associated eigenvectors) will be $hand
we expect that the? variances will decrease aﬁinThe modu-
lus of the first eigenvector (associated to the highest gajea) is
plotted on theop panelsn thez—y (left) andx — z (right) planes.
It is clear on these figures than theandy directions are isotropic
while the z one is anisotropic for this eigenvector. Moreover, the
component of the power spectra in thettom left paneshow that
the B. component clearly differ from the other two components.
However, all of the main eigenvectors do not behave in the
same way. Some of them clearly break the symmetry between the
andy directions or/and between theandy components leading to
the differences in the curves of figurke 4. Finally note thatrtain
eigenvectors are fairly high frequencies fields. So, thestgpiori
variances will be smaller for high frequencies than for lones,
which is reflected by thtop panelsof figure[4.

5 in other words, the plateau seen in the variance per mode tohpanels
reflects the fact that those modes have non zero contrilsufrom the low
signal to noise eigen modes (i.e. eigen mode8gf /> Cg - C '/ with
low eigen values, wher€ ;' = AT - C; ' - A).
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Figure 6. Global conditioning of the (a posteriori) covariance matri
Cumap as a function of the SNR. The higher the signal to noise, toemor
difficult the inversion, but the smaller the covariance at@asri. The 3D
matrix, A = (0P /0By)-II appears to be more poorly conditioned than its
1D counterpart even though the sampling in electromagfretigiency was
the same as in secti@n_B.2. It remains bounded and withirh rebdouble
precision calculation.

4 VALIDITY OF THE LINEAR APPROXIMATION

4.1 Linear and pseudo linear inversion

Let us first carry out a linear inversion of the same pertubdteld
dB, with RMS(6B) = 10~% G, while considering both the linear
() and the pseudo linear (I1) data sets (see segfion 3). Wk a@re
on aN, = 64 grid, with N,, = 64 frequencies, a constant refer-
ence field of module LG and SNR=20. Recall that for the linear
minimum variance solution, the hyperparameter= 1/P(k = 1)
(see section 2.2.2), while for the the pseudo linear datarsety be
tuned. Figur€Rop panelshows the input component for the in-
put field (solid line) along a given LOS and the output onéstted
line for the linear datajP; anddashed linefor the pseudo lin-
ear,0Pp1,) while thebottom paneshows the different power spec-
tra. As previously, the field recovered from linearized dats fits
quite well the input one. The recovered pseudo linear fidlaligh
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Figure 7. Top panelsmaps of the modulus of the field corresponding to the firstreigetor of Wy p in thez —y (left) andz — z (right) plans for a83
constant reference magnetic field with, = 8 frequencies sampled as explained in sedfioh 3.2 with a=SIR The first eigenvector appears to be isotropic
in x andy and anisotropic in the direction.Bottom left:power spectra of the three components of this eigenvectw.ahisotropy of the component is
clearly visible and in good agreement with the results foargectior 3.1 (figurEl1l) add 3.3 (figuk Bottom right:spectrum of the eigenvalues Wyap .

somewhat different from the linear one, remains fairly eltsthe
original field. The corresponding powers pectra are alsevalem
Figurel8 and confirm that the recovered field in setting (I§uan-
titatively redder.

4.2 Second order residuals

Let us now study the second order residuals to quantify the do
main of validity of the linearization. For this purpose, wégact

to the total polarization its zero and first order expans@olitain
(P—Po—(0P/0B)g 6B?) and we divide this quantity by the
first order term P — Py o< 6B). Figure[® represents the average
of this quantity as a function of RM8B). Here the perturbation
consist of a single frequency and single component field.sbiid
linesrepresent the results obtained witlBa component along the
LOS at the lowest mode, while tldashed linesorrespond to the
lowest transverse mode of tfie. component. Theark curvegep-

resent the real parf), of the polarization whildight onesstand for
the imaginary parl/ (see equatior{1)). At very low RM8B),
numerical noise dominate but decreases as the RMS increefses
ter reaching a minimum, note that the quantity plotted iaseeas
RMS(6B) sincecx §B?/6B and thusex §B. As expected, the
lower the RM36B), the better the linear approximation and the
better the reconstruction. Note also the significant annbitdif-
ference between thB. and B, components; we interpret this as
a difference between the second derivatives of the fieldchvir
turn, impairs the accuracy of the linearization for theomponent.
This should not be a limitation when carrying the non linear r
construction using a method such as VMLM, as the amplitude of
the subsequent changes in the magnetic field will be scaledeby
inverse second derivatives.
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Figure 8. Top: B along a LOS for the input fieldsplid line) and for
the recovered fields with linear dat@P 7, (dashed lingand pseudo linear
ones,dPp1, (dotted lind (see sectiofi]3)Bottom: power spectra of these
three fields. Note that the power spectrum of the reconstufield from
the pseudo linear data set is steeper.

4.3 Towards the non linear problem

Up to now, we have only considered the situation whBrewas
assumed to be constant. What happens to the conditioning whe
we add spatial frequencies By or/and overn.? It is easy to see
that adding transverse frequencies to ther they component of

B will not change the conditioning of a LOS. Indeed, accordimg
equations[([7) and(26), only the constagts,, are modified and
vary for each LOS, but remain constant along each of thenctwhi
has no effect on conditioning. On the contrary, if the motiatais
along a LOS(, /, is no longer constant, and varies for every pixel
along a LOS. However, given that the conditioning is doneddiy
the exponential terms in the Vandermond approximatiomeist’t
change dramatically. Hence the choice\gfand the sampling fre-
guency remain the same but the conditioning increasestlstigh
can reacts for (9P /9B, /, ) and40 for (0P /9B.).

The situation is a priori more dramatic for thecomponent of
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Figure 9. Average second order of the polarization divided by the dirder
as a function of RM®B). Here RM§J/B) is a single component and
single mode field. Results are for a the lowest longitudinatienfor thex
component (solid lines) and the lowest transverse modaéar tcomponent
(dashed lines)Dark curvesrepresent the real pa€ of the polarization
while light onesare for the imaginary paft (see equatiorf{1)).

the field or for the electronic density.. Indeed, the addition of a
transverse modulation has significant consequences, aaltreeof
B, (or/and n.) in equation[(2b) becomes different for each LOS.
Therefore, the value oA \? should in principle be different for
each LOS to conserve the best conditioning. In practice stis
plest to take the average Bf, (or/andn.) as a guess. However the
conditioning per LOS increases signicantly and the qualftthe
reconstruction should be affected.

However, it appears that the global conditioning®fiap does not
change dramatically compared to the constant reference/adle,
whatever the frequency and the amplitude of the added modula
tion. The solenoidal condition appears to be very effeclivdact,
the repetition of the spectral analysis carried in sedfigh $hows
that the main difference will be in the gap seen on fifire 7.iAgid
modulation on a constant field induces earlier, deeper gdfised
SNR, the number of useful eigenvalues for the reconstnuatis
creases with the modulation. The inversion can still beiedybut
will be more biased by the lack of resolved eigenmodes.

As a final illustration, figurd 10 shows an implementation
of the linear inversion on a more realistic reference fidhi,
which is extracted from a magneto-hydrodynamical simatati
(Kowal & Lazariahl 2007), perturbed by a power-law fluctuatio
with a power spectrum af = 2 and a relative amplitude dfo >
from a virtual data set of SNR=20. Note that for this moreistial
illustration the electronic density.. is not constanbut extracted
from the same simulation. Both the shape of the correctichitan
power-spectrum are well recovered for this relative amgét re-
flecting that although non constant model and electroniciten
impair the conditionning, reconstructions remain possibl

5 CONCLUSION AND PERSPECTIVES

We investigated the problem of reconstructing the three-
dimensional spatial structure of the magnetic field of amgyisienu-
lated patch of our Galaxy, using multi-frequency polaringabs of
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Figure 10. left top panel map of a slice (of widtl).047kpc) of input reference magnetic fielB; right top panel map of the same slice but for the known
electronic densityn,; left bottom panelthe input reference magnetic field, the input perturbatiod the recovered one along a LOS. The perturbation field
is a power-law fluctuation with a power spectrumoof= 2 and a relative amplitude dfo—2 from a virtual data set of SNR=2€ight bottom panelinput and

recovered power spectra of the perturbation field.

the synchrotron emission at radio wavelengths.

When starting from a fair approximation of the magnetic figle
were able to obtain a good estimate of the underlying field®y u
ing a linearized version of the inverse problem considenedo a
643 grid size. The spectral analysis of the strictly linear feab
(with a constant reference field, and the simulated datairedata
through a linearized model) allowed us to specify the best-sa
pling strategy in electromagnetic frequency, and predapatially
anisotropic distribution of posterior errors.

The best sampling strategy is in equih?; it follows from the
shape of(0P/9By) along one LOS, which can be approximately
recast into a unitary Vandermond matrix when this particaéan-
pling is used. The errors on the reconstruci&dand B, compo-
nents of the field are shown to be larger than the error orthe
component. This anisotropy can be traced back to the shape of

posterior covariance, and ultimately of the linearized elaghich
is highly anisotropic, as only the component of the field induces
Faraday rotation.

We considered in turn three more realistic cases: (i) a gseud
linear model (linear reconstruction of non-linearly siateld data),
(ii) a varying reference moddB,, and (iii) a varying reference
modelB, and a (known) varying electronic density.. We found
that for these reconstructions, the global conditioninghefmini-
mum variance solution remained tractable. Finally, we stigated
the case where the reference field is given by the outcome of
a magneto-hydrodynamical simulation, and is perturbed hy a
additional fluctuating component of known power spectrune W
showed that even in this case the linear reconstructionitgual
reasonable. This leads us to claim that a full non-lineasmetruc-
tion, based on a Gauss-Newton sequence of linear sub-prslaée
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varying reference field, should be achievable.

Possible extensions of this work, beyond the scope of this
paper, involve investigating systematically the degeriesaof the
non-linear inversion. It would be worthwhile to construpesific
estimators for the (possibly anisotropic) local power speuo of
the field (see e.g. Lazarian & Pogosyan 2006). Finally, frarmod-
elling point of view, one of the main limitations of the prese
method is that we had to assume known thermal and relativisti
electronic densities, in order to obtain a well posed invgmob-
lem from synchrotron emission data alone. However, we could
principle relax this assumption by adding extra data caistrg
the electronic densities (e.g..Hlata, se 03) or
emission measures of pulsars, and attempt a joint recatisiniof
the magnetic field and the electronic densities. Any priatisti-
cal information (e.g. extracted from MHD simulations) ofsgible
correlation betweed andn. could be used in this context. An-
other possibility would be to use the extra information giby the
circular polarization of synchrotron emission (see Appeifd);
this circular polarization, if negligible in the case of l@nergy
sources (like our Galaxy), is measurable in the case ofividat
tic radio sources (see elg. Jones & Qdell 1977), and openy/a wa
to constrain the electronic density together with the mégrireld
structure of the source.
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APPENDIX A: THE CASE v =3

For~ = 3, equation[(b) takes a particularly simple expression

P=A /_ v ng(2)(B2(z) — BZ (2) + 2iBz(2)By(2))

<2iK
X exp S
v

while equation[(B) simplifies to:

OP(x1,v)
0B (r')

Xexp(

Note that for this value of the two derivatives with respect to the
transverse magnetic field are thus related:
OP(x.,v) Z,(?P(xl, V)

OBy(r')  9B.(r)

/zo(neBz)(z")dz”) dz, (Al)

6p(r — v/ )2Ahy ™ 0y (') (Ba + iBy)(r')

2iKh " s
S 2Oz =) (neB.) (@' y ,z”)>(A2)

(A3)

APPENDIX B: SOLENOIDAL FIELDS WITH FIXED
POWER SPECTRUM.

The generation of solenoidal (divergence free) fields wixedi
power spectra up to the Nyquist frequency is a tricky probl€he
field must obey the three following conditions:

(i) fixed power spectrum?(k) oc k™,
(i) free divergenceV - B=0<k-B=0,
(iii) reality of the field: Bx = B_k~.

Given conditions (i) and (ii), the field is best generated auirer
space. Since the field is multi periodic and we may write

B=DBiiei1 + Biseis ) (B1)

wheree| = k/|k|, e11 and e > form a spherical basis in Fourier
space, WhiIeB’L,,', i=1,2 are the projection over that basis of the
Fourier componant of the field. The vectars; and e 5 are cho-
senin such away thaf | /o = —e_x1,2. The spherical basis is
direct fork and indirect for—k. In this representation, conditions
(i) and (iii) become,

BkLl/Q = _B:kll/% and BkH =0. (BZ)

So, the first step is to generate two complex fieltls, and B »
with the sought power spectrum and then apply equalioh (B2).
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Next, consider the frequencies that have no conjugatethiedre-
quencyk; = 0 (constant) and; = N, (Nyquist frequency) where
the index: represents the Cartesian coordinates. Let us défine
as the set of these two particular values, Fg. = [0, N,], and
F5 the set of all the other values, i.e. for a vector of dimens\agn
By =[-(N/2-1),—(N/2-2),...,—1,1,..N/2—2,N/2 - 1].
When the three componentslobelong toF1, the reality condition
of the field is merelyZm B = 0. After putting this imaginary part
to 0, the field can be projected into the Cartesian basis.

The difficulty arises when one or two components belong;td-or
example, consider the frequenky= (kz, ky, k.) with k, € Fi,
k, andk. € Fs. In this case, condition (iii) becomBi, = B_.
wherek = (kz, —ky, —k-) is the “opposite” ofk. The problem
is that in this caseew 11,2 # —e_g,,,, and the above discussed
method can no longer apply. Fortunately, the combinatiocoof
dition (i) and B« = B_j. leads to the following set:

k-B=0, and ka =0. (B3)

So, the trick is to put the faulty component@@nd to generate the
other two as previously but in 2D space. Nowkifp = (ky, k=),
we generateB = Bspe.iop, Whereejop = kap/|kop| and
e, op form a polar basis in Fourier space. As previously, the wscto

e op are chosen in such a way that,, 12p = —€_k,,12p. IN
this 2D representation, conditions (ii) and (iii) lead to:
Biyp, 120 = *BikQDL2D7 and BkQDmD = 0. (B4)

Here we have only one degree of freedom left, thus, for these f
quencies, we must generate one complex figldp with the de-
sired power spectrum, and then apply equatiod (B4). Whear
k. belongs taF, a similar procedure applies.

In the last case, two component belongHfa For examplek =
(kz, ky, k=) with k, € F>, ky andk. € Fi. In this case, condi-
tion (iii) become By, = B_;. wherek = (—ku,ky,k.) is the
‘opposite” of k. Again, ex11/2 # —e_g,,,, and the combina-
tion of condition (ii) andBx = B_j. leads to equation§ (B3).
Consequently, the same procedure follows for these fregijeen
After inverse Fourier transform, one can check that the fietdal,
solenoidal and with the right power spectrum up to the Nyidués
quency.

APPENDIX C: CIRCULAR POLARIZATION

Since the rotating term depends on the density field of thiezlae-
tronsn. in the medium, we cannot separate, with the Faraday ro-
tation only,n. from B.. One way to tackle this problem is to pick
up the next coupling term of the Stokes parameters in théc@jyt

thin medium, strong rotativity limit) assumption that delses our
medium. This next term is a factor of conversion betweersalied
circular polarization, that can be considered togetheh ttie syn-
chrotron emissivity of circular polarization (Jones & OdEd77).
Following the notations Mom%g), we write the $fan
equation of the polarization tensfi{s as follows:

Yot oy (2) = i(Tao (20050 —ba T (D)o (), (CD)
with I3 = UI jgf Ii t ZQV ,andFE,z(z) is an emissivity

term. In the assumption of a thin, strongly rotating mediwm can
retain only the rotating terms (the Hermitian part)lofs. Defining

T = ( ‘ fz’f 9 ir;zf ) we can show that the transfer equation

can be reexpressed in terms of fldg, V, U) “vector” as:

PR, Eq h Q
V=B || x|V (C2)
“lu Eu q U

The fact that this differential equation involves multgaltion by a
non-Abelian group element - in SO(3) - prevents us from wgith
formal solution to the equation in terms of exponentialswieer,
since we are in the end working on a discretized mesh, we ghn st
write a formal solution to the discrete problem in terms afi{é)
sums of (finite) rotations products as we will see below. Omgar-
tant point to notice, linked to the tensor nature of equdtdh is
the transformation law of these “vectors” under rotationhaf co-
ordinate axes in the plane perpendicular to the line of sighhis
respect, the vectofh, ¢, f) behaves the same way as the vector
(Q,V,U), i.e. the(Q,U)and (h, ) subvectors are rotated [y}
when the coordinate axes are rotatedy/byin the case of a homo-
geneous medium, this allows Sazonbv (1969) land Jones & Odell
d@) to choose the coordinate axes used to me&gwaed U so
that thel” Stokes parameter couples only {b (this is achieved
wheng is set to0). In this reference frame, the projection of the
(constant) magnetic field is aligned with the second coateiaxis.

In the case of a fluctuating magnetic field, such a scheme is not
possible anymore, and we need to rotate the coupling caaffii
(best expressed in the reference frame given by the locggro
tion of the magnetic field) in a common, constant, refereramé.
Thus, in an inhomogeneous medium, the equdiioh C2 in the com-
mon reference frame takes the form:

d Q Eq cos(2¢) h cos(21)) Q
d_ |4 = By - f X Vv ’
“lu —Egsin(2¢) —hsin(2¢) U

where(Q, U, V') are measured in the common reference frame, and
all other quantities are defined in the frame of the local netign
field. In the applications we will consider in this paper, tiota-

tion coefficients are dominated by the contribution of cafét(mal)
electrons of the medium. In this contex, f) take the following

form (Sazonav 1969):

gt ne BY g2 ne By

h= f=

CAmZm3 s mm2c2r?’

It is interesting to note that both the frequency dependeand
the dependence on the magnetic field are different in thelicaup
terms. We note thdi_ €3 involves the multiplication of theke®
“vector” by an element of a non-Abelian group (SO(3)), whick-
cludes finding a formal solution to this differential eqoati How-
ever, the linearity of the equation in the Stokes parametdians
us to write a formal solution in the discretized case in teofrgims
of products of rotations on the source terms. This equatareiy
similar to the rigid body type equations encountered in rageh
ics, with the (major) difference that it is linear. For sinejtly, we
will consider here a first-order discretization of the peshl(i.e. we
consider the different fields to be piecewise constant).sttetion
to the homogeneous Stokes transfer equation can be wriiten a

Q ns—1 Q
V | (2)= H exp(—AzM;) | V | (2=0),
U i=0 U

whereM; is the skew-symmetric matrix corresponding to the vec-
tor (h; cos(2v), fi, —hisin(21);)). This discretized solution en-
sures the exact conservation of the polarization degreberab-

(© 0000 RAS, MNRASDOO, 000—-000
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sence of internal sources. It corresponds to the simplestilpe
case of integration of an equation on the SO(3) Lie Group. (e.g

Celledoni & Owreh 2001). By linearity, we can find the diseret

solution to the transfer equation with sourdes](C3):

Q ny—lny—1 Eq; cos(21);)
V| (2)= Z H exp(—AzM,;) Ev; )
U i=0 j=i —FEq;sin(21;)

with ¢ = arctan(B./By) [. This expression generalizes equa-
tion (@) and can be used to infer the Frechet derivatives epth
larization field with respect to the magnetic field, as wasedion
sectior 2 from the integral solution. The source terms irftiume
attached to the local transverse magnetic field

(1977)):
yt1 ~—1

Fq=Cn.B,” v 7, By=-DnBBiv

F(cH
wheren, is the distribution of high-energy electrons in the medium,
and C and D are constants that depend on the energy distributi
of relativistic electrons. Note that in equatién {C#4),is weighted
differently in the expressions dfg and E'v, hence we can in prin-
ciple disentangleB from n,.. Here different assumptions can be
made, namely assuming either thatis related to the distribution
of thermal electrons.e, or that it is constant, or that it is related
to the magnetic field pressure locally ($ee Beck bfal. (26632
discussion of the different assumptions). Another possialth is

to add external constraints on either (coming for instance from
H. observations (seée Haffner eilal. 2003) or from dispersioa-me
surements of pulsars), or eventually on the relativisécbn dis-
tributionn, with diffuse gamma-ray measurements.

6 Beware that this angle correspondsrtte- + in the notations of sectidd 2
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