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ABSTRACT

We investigate the problem of probing the local spatial cdtrte of the magnetic field of
the interstellar medium using multi-frequency polarizedps of the synchrotron emission
at radio wavelengths. We focus in this paper on the threesdgional reconstruction of the
largest scales of the magnetic field, relying on the intedeglolarization (due to differential
Faraday rotation) of the emitting medium as a function otetenagnetic frequency. We
argue that multi-band spectroscopy in the radio wavelenglveloped in the context of high-
redshift extragalactic HI lines, can be a very useful probéhe 3D magnetic field structure
of our Galaxy when combined with a Maximum A Posteriori restonction technique.

When starting from a fair approximation of the magnetic fielé are able to recover
the true one by using a linearized version of the correspmnidiverse problem. The spectral
analysis of this problem allows us to specify the best samgtrategy in electromagnetic fre-
quency and predicts a spatially anisotropic distributibpasterior errors. The reconstruction
method is illustrated for reference fields extracted fromliséic magneto-hydrodynamical
simulations.

1 INTRODUCTION ization effect due to differential Faraday rotation, ane telation-
ship between the measured polarization at a given frequandy
The problem of studying the magnetic field structure of our the polarization of light in the source plane is linear in thuagitu-
Galaxy using measurements of the synchrotron emissiongdf hi dinal) magnetic field strength. The linearity of the probleakes
energy electrons in the Galactic magnetic field is an old one the statistical analysis tractable in the former case. éncéise that
(Ginzburg & Syrovatskil 1965; Ruzmaikin etlal. 1988; BeclaBt e investigate, the emitting and the rotating medium areséime,

11996). The fact that the emitting medium is itself magnetize which results in depolarization effects of the emitted figfiore-

induces a differential Faraday rotation of the differentission over, the synchrotron emissivity itself depends non-lityean the
planes transverse to the line of sight, resulting in a wedivikm de- field strength transverse to the line of sight. The recoutitm of
polarization effect of the integrated emission that depestrongly the magnetic field structure from the polarization data thisicase
on the electromagnetic frequency. This effect, describeté first a non-linear inverse problem. Finally, we must note thatldress
place by Burh(1966) in the case of a constant magnetic fielsl, h  the full problem of reconstruction of the magnetic field frone
been further studied in semi-analytically for given funatl forms depolarized synchrotron emission we need in principle kedge

of the magnetic field; it has also been studied from the sitzdis of both the thermal electron spatial distributiea and the spa-
point of view in some asymptotic regimes (see .9 tial distribution of cosmic ray electrons,, when, in comparison,

1998). In the present work, we want to consider the amb“llmﬂb' the inference of the magnetic energy spectrum from theiootat
lem of using this depolarization effect, together with thkesoidal measures of background sources only requires knowledgeeof t
character of the magnetic field, teconstructthe magnetic field thermal electron distribution.

structure from a set of polarized maps of the synchrotrorsemi In a first attempt at reconstructing the magnetic field, wé wil
sion of an ionized medium at different electromagneticirstpies. make the assumption that the fluctuations of the thermal asd ¢
With the upcoming prospect of detailed Multi-band spectopy mic ray electrons can be neglected compared to the fluchstio
in the radio wavelengths (Rotigering 2003 Furlanetto &8s in the magnetic field itself. In the following, we thus coreidhe
m){ developed in the context of Galactic and high-rétiskira- electronic distributions (both thermal and relativistis) constant,
galactic HI lines, this type of investigation should becgmossible. and discuss the reconstruction of the magnetic field usihgtbe

A statistical inference of the measurement of the Galac- leading coupling coefficient in the equation of radiativensfer. In
tic magnetic field correlator as a function of scale from fnult  the (thin medium, strong rotativity) limit that we assume fiis
frequency polarization measurements has already beerssicc  work, this leading term is the usual Faraday term, resptansdo
fully achieved byl Vogt & EnRlin[(2005) in the case of the Fara- the rotation of the plane of polarization. We will assumet tiha
day rotation of the polarized light from background objenyshe Faraday coefficient is dominated by the thermal electrohg;iwnis
intra-cluster magnetized plasma. In this case, there isepoldr- a reasonable assumption in non-relativistic astrophlypleamas.
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This paper is organized as follows: in sectldn 2 we discuss
the fonctional dependence of the polarization of the systcbn
emission and its variation with electro-magnetic freqyeoi the
underlying magnetic field. We present a discretized versfahis
functional dependence that will be useful in the contexthef te-
construction from discrete polarization data. In secfibwesin-
vestigate the reconstruction of the magnetic field from &teal
multi-frequency polarized data, when the functional dejesice
on the magnetic field has been linearized around a "mean”. field
Taking advantage of the linear nature of this approximabélpm,
we give a strategy for choosing the best electromagnetiiée-
cies of observation, and investigate the statistical aropy of the
magnetic field reconstruction errors. Finally, in seclibwé inves-
tigate the validity of the linearization procedure usedha prece-
dent section, as a function of the quality of our prior knaige
of the magnetic field structure. We show how the approxiniate,
earized inverse problem investigated in this work could $edas
a building block of the fully non-linear reconstruction ptem. We
emphasize that any gradient-based non-linear minimizatlgo-
rithm can be decomposed into linear sub-problems, thughjust
ing the study of the linearized problem. In this context, wees-
tigate how the conditioning of the linearized problem vaneth
the properties of the reference magnetic field around witieh t
problem is being linearized. In particular it is illustrdten a re-
alistic magneto-hydrodynamical reference field. In thechasion
(sectiorb), we summarize the main results of the paper|liregca
the main simplifying assumptions used to derive them (rgptthie
constant electronic densities hypothesis) and discusdiese as-
sumptions could be possibly alleviated by additional dedenfe.g.
H. data. We conclude on how the different results of the paper
could be used to tackle the fully non-linear reconstructibrthe
magnetic field.

2 POLARIZED EMISSION

Our objective is to recover the magnetic field given obseped
larization maps at different wavelengths. We tackle tHipdsed
problem by means of an inverse problem appr )1
which, in this context, consists in recovering the magrfetid that
gives a polarization consistent with the observations ewideying
some a priori properties. These priors are strict condgasuch as
V - B = 0, to insure that the sought field is physically meaningful
and aregularization to lever the degeneracies of the iayerblem
while avoiding artifacts due to noise amplification. We fitstive
the direct model of the polarization given the magnetic fizhdi
then introduce the inverse problem approach in a Bayesandy
work.

2.1 Direct model

We only consider here the Faraday rotation in the transfestsan,
and neglect all other coupling terms. In this case, the teargjua-
tion of the Stokes parameters of linear polarizatigh U) can be
integrated formally. We assume here that the density otreles
is constant, or that its fluctuations are only important alescthat
are not considered here.

Consider a slab of ionized magnetized medium of width
which is emitting synchrotron radiation. The polarized ssion,
as a function of frequency, integrated over the line of siten
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readsm&:

PEQHU:/e(r)eM(”dz, (1)
with @ andU are the usual Stokes paramete(s) the synchronton
emissivity which obeys:

_a=1

e(r) = A|BL(r)| T v T, @

with ¢ (r) the sum of the Faraday rotation and the primordial ori-
entation:

Y(r) = /2 + arctan (By/Bas) + g /0 B.dZ, (3)

wherer = (z,y,2) = (x.,2) is the coordinate in the slab, is
the frequency, an® = (B., By, B.) = (B, B.) isthe magnetic
field. In equation[(B)K reads:

3
_ Ge Ne
8m2m2cep’

4)

while, in equation[(R)A is given by
y—1

V3n, E] ¢ (31 (311
12 12 ’

 16meomec
where Fy is the energy scale of the relativistic electron spectrum,
me andg. stand for the mass and the charge of the electnon,
andn, are the thermal and relativistic electron densities suggos
constant, while the exponentstands for the spectral index of the
cosmic ray electrons; is the speed of lights, is the electric per-
mittivity and T" is the Euler gamma function. The lengths are in
kilo-parsec (kpc) and so the density in kg the magnetic fields
in micro-GaussG) and the frequencies in giga-Hertz (GHz). Re-
expressing the intrinsic polarization phase in terms ofgrsvef the
magnetic field components, we get the following expressioitie
polarization:

3 qe
271 mdct

y—3

0
/ (B +B;) *
x (B2 — B} +2iB, By) (x1,2)

: 0
X exp<212K/ Bz(xl,z”)dz”) dz. (5)

v
As real data come in discrete form, let us discretize thisesgion
by replacing all integrals with sums, assuming a regularrditza-
tion grid that will be defined more precisely below. Equat@
then reads

y—1

P(xi,v)=Av 2 (x1,2)

P(x.1,v) — Ahv T Z (Bf +B§)7773 (x1,2)

z

x (B2 — B} +2iBy By) (x1,2)
X exp< IthOH(z'—z)Bz(xl,z/O . (6)

v

Herefy is the Heaviside functiond () = 1 forz > 0 and O
elsewhere), and the discretization length along Equation[() is
formally a function ofB = {(B., By, B-)}, where we use bold
symbols to represent the discretized vector fields migla triple
index spanning the magnetized volume on a regular cubic mesh
with cell sizeh.

The solution to the inverse problem will be obtained by means
of minimization of some merit function (as explained in whalt
lows), we therefore need to compute the partial derivatdfethe

2i

2!

(© 0000 RAS, MNRASDOO, 000—-000



Probing magnetic fields with multi-frequency polarizeddyotron emission 3

polarization with respect to the magnetic field. Let us fitsine
pute the derivatives with respect to the transverse compsraf
the field:
OP(x.,V)
9B:(r')
=5

—op(r—r)Ahy T (B2+ B2 T (¥)

7—B B, +i(y —1)B§By+2133}(r/)

X exp<21 5 Z&H(z"f Bz(xl,z")> ,

with r = (x1,2), r' = (x/.,2') andép Dirac’s delta function.
The derivative with respect tB, follows closely, with the square
bracket term becoming:

14y 7
2

X Bg—i—

iKh

@)

B2 - =X BB, +i(y fl)BzB§+QiB;°’,] (8)

which corresponds to @/2 rotation in the plane perpendicular to

the LOS. We see that in both cases the phase term is unaffected

since it is only a function of the longitudinal magnetic fieldm-
ponentB.. Finally let us compute the derivative with respect to

B.:
OP(x1,v . _a+3
(9]57?’)) op(x1 fx/l)2zKAh21/ 2
X Z (B2 + B2)'© (B2 — B2+ 2iB,B,)(x, 2)
21 Kh

Z O (z//

2

x0u (2 — z) exp ( —2)B. (x4, z”)) . (9)
We note that here the phase term, not the emissivity laysn, tisr
involved. The case = 3 is detailed in Appendik’A and leads to a
simplification of the above equations.

2.2 Maximum A Posteriori formulation
From the direct model, we can express the observed data as:
dm fP((xl, )m,B)Jrem, (20)

with m an index which spans the mixed frequency position-on-the-
sky cube,(x1,v)n the corresponding coordinateB, the actual
magnetic field ane,,, an error term which accounts for noise and
model approximations. Using vector notation, equafio) i@ pli-
fiesto:d = P(B) + e with d = {d,, } the vector collecting all the
observationsP(B) = {P((x.,v)m,B)} ande = {e,}. Our
inverse problem is to recover the magnetic field vecRyrgiven
some noisy measurements of the polarizatidnPue to the un-
known errors in equatio (10) and to possible strict degrsies
of the direct model, there is not a unique magnetic field thelty
a polarization consistent with the observations. We tloeechieed
some means to select a unique solution and, hopefulljpektone
given the data.

Probabilities provide a consistent framework to define such
a solution; we thus define the sought magnetic field as beiag th
most likely given the observations. It is the one which maxzes
the posterior probability:

BMAp = arg max P(B|d) 5 (11)
B

and which is termed as thmaximum a posterioffiMAP) solution

(see e.d. Pichon & Thiébdut 1998). By Bayes’ theor@{B|d) =
P(d|B)P(B)/P(d), and sinceP(d) does not depend on the

(© 0000 RAS, MNRASDOQ, 000-000

sought parameteB, this amounts to maximizin@(d|B) P(B).
The termP(d|B) is the likelihood of the data given the model,
while the termP(B) accounts for any priori knowledge about
the magnetic field. We can anticipate two types of priorsti@®
strict constraint that, to be physically meaningful, thédfishould
be solenoidal:VB = 0; (ii) some so-calledegularization con-
straint to overcome the ill-conditioning of the inverse fgeon and
to enforce the unicity of the solution. Without loss of geality, we
state that the probabilities writes:

P(d|B) = k1 exp(—3 L(B)) (12)
1 . ; _

P(B):{ K2 exp(—2 R(B;p)) , if VB. 0, 13
0 otherwise.

where the factors; andk, do not depend o3 and x accounts
for parameters to tune the regularization. Finally, taking log-
probabilities and discarding constants, the maximum aepiost
magnetic field writes:

Buap = argmin Q(B), (14)
B,VB=0
with:
Q(B) = L(B) + R(B; ), (15)

which is the objective function. Before going into the distaif the
expressions of(B) and R(B; 1) we can already note that the
solutionBumap will depend on the datel and on the regulariza-
tion parameterg:. The value ofu can be chosen, e.g., to provide
the best bias-variance compromise on the sought sol

11990; Golub et &l. 2000).

2.2.1 Likelihood

Assuming Gaussian statistics for the noise and model ertioes
likelihood of the data is the so-called and writes:

L(B) = (d—P(B))' -C;' (d—P(B)) (16)

with C,, the covariance matrix of the errors. There is a slight issue
here because we are dealing with complex values. Since eampl
numbers are just pairs of reals, complex valued vectors asdh
P(B) ande can beflattenedinto ordinary real vectors (with dou-
bled size) to use standard linear algebra notation. Thishit s
assumed in equatiof {[L6). Under these conventions, theianea
matrix of the errors write€,, = (e-e") with T to denote trans-
position.

2.2.2 Regularization

The regularization ternR (B; ) implements loose constraints to
avoid over-fitting the data and enforce local unicity of tb&igon
(see sectiofi 4]13). Requiring that the magnetic field be asgmo
as possible (while being consistent with the data) matcheset
requirements and is supported by physics since the madiatic
should have no discontinuities. To simplify further consgdigns,
we choose the following particular expression of the regzedion
'R to favor the smoothness of the field:

R = ps| A B oc s Y [k|*|BJ?, (17)
k

which scales as the integrated norm of the spatial Laplafidine

field to the power/4. For a periodic field, this generic smoothing

penalty is diagonal in Fourier space. In addition, if the eld8 is
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Gaussian and scale invariant, themay be chosen to be the power
law index of the power spectrumﬁﬁ of the field. In this case,
choosing the specific value of the hyperparametee- 1/|B|§:1,
the MAP solution correspond to the minimal variance Wierler fi
tered data.

2.2.3 ImposingvB = 0

For simplicity, we assume here that the magnetic field is imult
periodic, with periodL in all three directions. We may then rewrite
the magnetic field as:

B=F'. (BMGM + BLQeLQ) =II-B, (18)

whereF~! = FT/N;%” andF is the forward DFT operatore( =
k/|k|, e.1, e12) form a spherical basis in Fourier space, while
B, 4, i=1,2 are the projections over that basis of the Fourier-com
ponentB = F - B of the field. Equation{18) defines the projector
IMI=F"'.(eL ®e.)- F.Such afield satisfies by construction

k-B=0, (19)

In fact, there is a slight complication at the Nyquist freqcies

where only one component of the field is free, see appdndix B.
Note that the divergence free condition could also be imghose

by other means (see e.g. Nocedal & Wright 2006). For instance

adding a quadratic penalty term li§€_(V B)? to the total penalty

Q(B). We however found that, in practice, the projed®ied to

a better conditioned reconstruction problem.

which implies V-.-B=0.

2.3 Implementation

Given equationd(16) anf{l17) the objective function writes
Q=P-d)" - C;'- (P-d)+pu|A*BI*. (20

To minimize Q(B), we used a variable metric limited memory
optimization method with BFGS updatés_(Nockdal 1980) dalle
VMLM and implemented in OptimP £2002). Finding
the optimal solution, equatiof {IL4), involves computing ¢madi-
ent of equation[{20) with respect 1. Now differentiating equa-
tion (I8) with respect to a magnetic field components we get

ax? oP
0B; 0B; |’

wheredP /0B, for i = x,y, z are given by equationE](7) arid (9).
Similarly, differentiating equatioi (17) with respectBoyields

OR -1 A e
9B, — us F - Bylk|”.
The VMLM algorithm is a quasi-Newton method which proceeds
by solving successive linear problems. Let us therefore dos-
sider a linearized version of our inverse problem, which roary
respond to a physically motivated problem when a good firesgu
for the magnetic field is known.
Note finally that equation§](7) anid (9) imply thay? /0B; =
0 at B, = B, = 0. Note also that if B.., B, B-) is a solution
to equation[{(p), so i$—B,, —B,, B.). Consequently we expect
that they? will be strongly multivalued as a function @ The

=2Re |(P-d)'-C;"-

(21)

(22)

L OptimPack is freely available athttp://ww obs. univ-

I'yonl.fr/| abo/ perso/eric.thiebaut/optinpack. htni.

2 For instance a magnetic loop close to thaxis (whereB,, andB,, ~ 0)
and its mirror image by symmetry along theaxis have the samg? and
almost zero gradient.

smoothing penalty should in part prevent a pixel-by-pixigl @f
thex andy component. It remains nonetheless to be shown that the
zero divergence condition is sufficient to avoid flipping fletd in
regions bound by zeros of these two components, if suchnmegio
exist. Addressing these issues will be the topic of anothpep

3 LINEARIZATION

Let us first consider the situation when a fairly good guess fo
the overall magnetic fieldBo, is known, on the basis, say of
a first large scale investigation, or via some modelling & th
field as a function of the underlying density (
[KachelrieR et al. 2007). Let us then seek the departure ftosn t
guess. It is then legitimate to assuBe= B, + B, with, possi-
bly (if the prime guess is accurate enougiy /|Bo| < 1, so that
equation[(b) becomes:

_ (0P

where the tensodP /9B, is given by its components, equations
(@, (@) and[(®), whileP = P — P(By). Now equation[(2B) is
likely to be a much better behaved equation as the lineadtyamts
convexity of the objective function, hence the formal utyiaf the
solution.

In this paper, we will address two linear problems in turre on
of academic interest, to understand the properties of therse
problem at hand, while the second one should allow us to carry
realistic reconstructions, in the regime when a fair rafeedfield is
known. Specifically, we will first assume that the (noise fréata
is in the image of OP /0B) :

d =Py = (0P/9B)g, - 0B +e,

(23)

linear problem (1),

while for the second problem (the so called Gauss-Newtornoapp
imation)

d=6PpL =P — P(Bo) +e, pseudo linear problem (II).

We investigate the linear problem in this section and theigse
linear problem in sectidnl 4.

3.1 Linear reconstruction

Let us first illustrate our method on a problem of realistialss.
This first simulation is carried on &7 grid (NV: = 64) with

N, = 64 frequencies. The reference fieRl}, is chosen constant
and set tol uG everywhere for each component, the power spec-
trum of the perturbation fieldB has a power law index = 2

and its RMS i€).01. Data are simulated linearly (see secfibn 3) and
are noised with a SNR 20. Figure[1 illustrates the quality of the
reconstruction. Théop panelrepresents the andz components
along the LOS £ direction) or transversey(direction) for a given
pixel. As the results for thg component and the direction are
similar to thex component and thgdirection, they are not plotted.
Here, thesolid linesstand for the input field and thdashed lines
for the recovered one. It is clear that the two fields are vanylar

and that thez component is the best recovered (see seiigh 3.3).
Thebottom left paneshows a map ofB| for a transverse section
after smoothing. The smoothing is made by convolving thel fiel
with a four pixels full-width at half maximum (FWHM) gaussia
The green features represent the input field and the recaotestr
one is shown in the superposed white contours. Bditom right
panelshows the power spectra of the input fietdl{d line) and the

(© 0000 RAS, MNRASDOO, 000—-000
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Figure 1. Top: input (solid line9 and recovereddashed linesz andz components of the field along a LOBff) and along the, transverse directiorright).
The y component and the direction are not plotted since very close to theomponent and thg direction. One can see that thecomponent is better
reconstructed than the or y components which is consistant with the variance measurenaad the global conditioning of the problem (see seéfi@i. 3
The reconstruction is carried o = 64 grid with N, = 64 frequency channel. The data are generated linearly (séersg&} with a SNR= 20. Bottom
left: maps of| B| for a transverse section after smoothing of the fields. Teemgimages represents the input field while the superposie edntours show
the recovered ondBottom right: power spectra of the input fielgdlid line) and the recovered onerfsses As expected, the recovered power spectrum is
damped at higher frequencies because of the regularizatitiustrate this we added the power spectrum of a recoatstn with SNR=200.

recovered onecfossed Finally, figure 2 represents the field lines
of the input field fop) and the recovered onédtton). These fig-
ures show that, if the frequencies are correctly sampleziggetion
[B:2), the linear inverse problem (1) recovers qualitaivekll the
underlying field. The local and global properties of the fiedah be
reconstructed provided that the linearization remaingwahich
will be investigated in sectidd 4.

It is of interest to study the conditioning of the linear prob
lem for two reasons (i) to understand the spatial spectetlife
of the solution; in particular the biases of the eigenvecufrthe
linearized problem which induces anisotropy in the distiim of

(© 0000 RAS, MNRASDOQ, 000-000

errors around the solution; (ii) to constrain the best samgstrat-
egy in order to recoveB. Eventually it will also have an impact on
our ability to carry out the non linear reconstruction.

The requirements to set up a good conditioning of the global

inverse problem can be formulated in steps. First a negessadi-

tion is to make a proper choice of the (electromagnetic)eagy
sampling, which can be achieved by looking at a smaller saipr
lem on a given LOS; however, this optimal sampling does nat wa
rant a good global conditioning; we therefore investighgdual-

ity of the global linear reconstruction by looking at diféet ele-
ments of the reconstruction covariance matrix in (spafiauency
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Figure 2. Field lines of the inputléft) and the recoveredight) fields for a
642 reconstruction withV,, = 64 frequencies. The fields correspond to a
reconstruction with a SNR of 200.

space. In particular, we will show that the quality of theaestruc-
tion is anisotropic and depends on the components of the #&ld
which is confirmed by looking at the eigenvectors of the ciavare
matrix for a low dimensional problem.

3.2 Conditioning of a line of sight and frequency sampling

One can see easily that in the relation between polarizatiwh
magnetic field (equatiod}5)), each line of sight is indeardf
the other. The link between them is provided by the soleraiota:
dition. In this subsection we will not consider this conalitiand the
matrix (0P /0B)s, becomes block-diagonal. Moreover, the three
components can be separated leading to three differentcestr
(0P/0B.), (0P/0B,) and (0P/0B.). The field B is taken
constant and its modulus set BG. In this case, all blocks are
the same and the study of the conditioning is reduced to thiy st
of threeN, x N, matrices with/V,, the number of frequencies and
N, the number of pixels in the direction.

Numerical investigations show that the conditioning of
(0P /0B,) depends mainly on the rati§ h B. /v* leading to the
conclusion that the conditioning is dominated by the exptine
term of equation[{7). It follows thatoP /dB,, ) has the same be-
havior as(0P /9B, ) since the exponential terms are the same in
both equationd{7) anfll(8), which is confirmed numerically.

Recall that in this section the reference field is chosen con-
stant, so isB. ; therefore the best sampling for the frequencies is to
havev, > — v, 7, constant, that is a constant step for the squared
wavelength; henceX2 = \3 4 (n — 1) AN withn = 1,..., N,
the index of the frequency/wavelength. So that the compkgo-e
nential becomes
Q21K B hmAL/c? _ Q21K B= hmAﬁ/cQGQiKBZ hm (n—1) AX2/c?
with m = 1,..., N, the pixel index along the line of sight. The
value of AX? must be chosen in such a way that the frequency de-
pendent complex exponentials are uniformly sampled on dhe ¢
plex circle. Hencek B, h Ny (n — 1) AX?/c* must be a multiple
of = for any n. With L = h N, the maximum probed depth and
taking the smallest multiple, this yields:

o us 02
T KB. L’
With this particular choice, the matrice$oP/0B.) and

AN (24)
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(oP/0B,) take the following form:

Ny—m
)

is a different constant in the

(0P /0By, )nm = Capye™™” <,\3 i

X (eﬂﬂe

where3 = 2K B. hAj andC,,

-1
z andy directions. If the factof\j + (n — 1)7/(K B.L)) T s
set to 1, the matrix is a unitary Vandermond matrix and itsdéon
tioning is 1 (Cordova et &l. 1990).

Accounting for this factor impairs the conditioning buttiags
close to unity. The elements of the last mat(i&P /0B..) are just
geometrical series of the elements(6P/0B..). Thus, they read:

—2im(n—1)
Ny

(25)

(n—1)m

_ NeiB [ 2 4
(0P/0B.),,, = Cae ()\0+ KBZL)

1 —exp(—iB(Nr + 1 —m))exp <_]3iﬂ-

r

(0= )+ 1= m))

1 —exp (fw exp(—%(n - 1)))

whereC', is yet another constant. Now, there is only one free pa-
rameter, the first frequency,. The conditioning of 0P /6B,,,,)
being always close to unity, the valueaf must be chosen in order
to minimize the conditioning ofoP /0B..).

Figure3 top pane) represents the conditioning (9P /9B..)
as a function of\, for different grid sizes. The curves are very simi-
lar in shape and the best conditioning is represented byethdats.
In thebottom panethe wavelength providing the best conditioning
for (0P /0B.) is plotted as a function of the grid size. It appears
that Ao o< /N, and the precision on\, is not really important
since the minimum of the curves are not really marked. Thase p
ticular choices of\, give a conditioning ofl.29 for (9P /9B, ),
whatever grid size.

3.3 Conditioning of Cyiap and a posteriori variances

Let us now investigate the a posteriori variances of diffespatial
frequencies of the reconstructed field. This covarianceimean
be written as

Cuar = (AT . C;' A+ CgH)7Y, (26)

where A (0P/0By) - II with II the projector that can-
cels the divergence (cf. equation(18)) a4 ' and Cg'
s F~'diag(|k|*)F are the a priori covariance matrices of the
noise and the signal respecti\Bly-lere we seelCyap, the Fourier
transform of Cyap as we want to understand the relative error
in the amplitude of the spatial modes Bf. Because of the po-
tential high dimensionality of our problem, the covariameatrix,
Cuap is not computed directly. We chose instead to compute the
selected values by solving fi3 the following equation with a con-

jugate gradient method (CGM, Shewchuk 1994; Nocedal & Wrigh

2006):

Bref-

Waap - B = (27)

3 Throughout this section (unless stated otherwise) we asshatc is
given by minus the powerspectrum index of the sought magfietd, and
chooseus = 1/P(k = 1), which corresponds to the minimum variance
solution.

(© 0000 RAS, MNRASDOO, 000—-000
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1 e L A RN R R R creases. In Figufd 4 the SNR is defined as

o8’ SNR = RMS(data) /o, (30)

e16°
0328

with o2 standing for the noise variance. The results for fyeand
B. fields in thex direction are not plotted because there are exactly
the same as those in thedirection. First note that the variances,
o2 for the B, component of the field are much smaller in ampli-
tude relative to the other components. ForBigandB,, fields, at
low SNR, the Wiener prior is important in the reconstructier-
plaining the separation of the three curves correspondirtgree
different scales. In Fourier spadgs = pg ' diag(|k|~*) with o
the spectral index of the power spectrum of the input fieldhéf
regularization dominate€;yvap ~ |k|~*, which corresponds to
the values on the figures when the SNR is low.
For the transverse frequencid®{tom panels the behaviour
of the variances is well understood. At low SNR, the Wienéorpr
il bl b b L dominates the reconstruction for ti, andB, components but
2 4 6 not for theB. one. Increasing the SNR implies increasing the rel-
ative weight of the data compared to the prior. So equafi@) (2
Ao (m) becomes
10-0 T 1 ‘ ‘

100

Cz

50

_I.|I|I|I|I|I|I|I|I|I|I|I|I|I|I|
-|'|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I

ol

. Cuar ~ (AT-C.'-A)"', whenSNR— co.  (31)

- 1 If we assume a Gaussian white noi€k, = o2 I with I the identity
6. Non.72 - matrix, equation[(31) becomes

Cnap ~ Uﬁ(AT : A)71 ; (32)

Ao (m)

s0Cumap o o2 or given equation(30)Cyap o« SNR™2 which
B 7 is the slope of these curves. Finally, note that there is nmsgtry
. ‘ L breaking between the andy directions and between theandy
10.0 20. 50. components of the field or between the sine and cosine modes in
N, Cumap.
Now, consider the: andy components of the field along a LOS
Figure 3. Top conditioning, 'z, of (9P /9B) as a function ofAo for (top panel. At low SNR, the Wiener prior still dominate, provid-
differe_nt grid sizes. Thg _req dots represgnt the best_dor?i]‘igs. Bottom ing the same value as in the transverse direction. Then atfience
t);](;?x)'ni T/eN_beSt conditioning as a function of the grid sig, It appears decreases as SNR but reaches a threshold and stagnate. Itis clear
v on the figures that there is a symmetry breaking between trel
they components of the field and a separation between the sine and
Here, Wyap = Cy/ip and the solutionB, found by the CGM is cosine modes. At first it may be surprising that the variameash
o . a threshold since the frequencies have been chosen to erthad
B = Cuap - Bret. (28) best possible conditioning f¢OP /0B,) along a LOS (see section
[B:2). In fact this is a consequence of the solenoidal canditRe-
call that for the global inverse problem, the relevant lineadel
isA = (0P/0By) - I1, wherell is the projector given by equa-
tion (I8). This projector changes the mat(iXP/0B,) and adds
off-diagonal terms to the block diagonal matrix consideirethe
dprevious subsection. In effect, the solenoidal conditiegrddes
the global conditioning relative to the one LOS problem (leagll
that without it we have an ill posed problem). In turn this hes

The reference fieldB..t, is equal tol or +i for the choserk fre-
guency and its oppositek in order to have a real field, aridelse-
where. The element8, andB_y of the solution are combinations
of the covariance dk and—k and the variance d&. It allows us to
determine the a posteriori variance of the chosen spadgquincy

k. To check this method, the same variances were also compute
by the iterative VMLM method. One can check that:

((Bin — Bout) - (Bin — Bout)") = Cumap, (29) the eigen structure df\ap and therefore its projection in Fourier
. . space.
where{ denotes conjugate transpositidd;, and B, stand re- P Indeed, let us compute directly the whole magap for a
spectively for the input field and the reconstructed one iorféo smaller, more tractabld, = 8 constant reference magnetic field
space. As expected, the higher the number of iterations;ltser with IV,, = 8 frequencies sampled following the procedure defined
the two estimates of the variance. S in sectio 3. Figurel® shows the global conditioning of the co-
Figurel4 represent the evolution of the a posteriori vaseofodi- variance matrixCuap as a function of the SNR. One can see that

ferent spatial frequencidsfor the different components of the field 4,0 mixing of the LOS has a significant effect on conditionieen
in different directions (along a LOS or transverse to it) darec- though the frequencies were chosen optimally. Fifilire 6stisas

tion of the SNR. The size of the box /8, = 16 and the number ¢ 4t realistic SNR, the global conditioning remains teehand
of frequencies isV, = 16. Figure[® shows the evolution of the

a posteriori variances of the same frequencies as of fgubait4,
as a function of the spectral index, of the sought field (for a 4 As expected the curves of the variance as a function of the BNRI
SNR= 20). As expected, the variance decreases as the index in- previously are recovered exactly with this direct caldatat

(© 0000 RAS, MNRASDOQ, 000-000
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Figure 4. A posteriori variance of different spatial frequencles (1, 2, 3) for the different components of the field in different diienot (along a LOS or
transverse to it) as a function of the SNR. The size of the 8d%.i= 16 and the number of frequency ¥, = 16. Thetop panelsorrespond to the variation

of az for three different values df. while thebottom panelsorrespond to varying, . The cosine modetlfick line) and sine modedashed ling are both
shown. All variances decrease with increasing SNR as eag@eatthough at different rate, see the main text. Note tifierdint amplitude inr% for thebottom
right panelwhich shows that th@& . component of the field is better recovered compared to ther attmponents. This reflects the anisotropy of the model

A which induces anisotropic reconstruction errors.

could be improved, e.g. for the purpose of numerical coreserg,
by artificially increasing the hyperparameter. Note finally that
even though the global conditioning increases with the SIKR,
variances all decrease, as expected.

3.4 Eigenspace analysis

In order to understand the plateau on figure 4, let us alsdcexpl
itly diagonalizeWyiap for the smaller above-described, = 8
problem with a SNR= 20. The corresponding spectrum is plotted
on figure T bottom rightpanel. The global conditioning 3V viap
is about10® (consistently with what was shown on Figlide 6 for
Cwmavp), but note importantly that there is a cluster of eigenvalue

followed by a gap. This gap is consistent with the platean sge
figurel4. When increasing the SNR, one expects to filter oatdad
less eigen modes, and therefore to access more and moreezgigen
tors (corresponding to decreasing eigenvalues) in thenstiacc-
tion. However, when reaching the gap, although the SNR &sag,
no more eigenvalues are available for a while. The lowenwige-
tors, encoding informations on higher frequencies, arewittin
reach, and the a posteriori variance of these frequencenate,
as seen in figurl 4. If the SNR increases further, these eibers/
(and therefore their associated eigenvectors) will be ssanand

(© 0000 RAS, MNRASD0O, 000—-000
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Figure 5. Same as Figuilgl 4 but as a function of the spectral inderf 6B for a SNR= 20. As expected, the smoother the expected field, the largére

smaller the posterior variances.

10;\ AR RARRN LARRN LARMN LARM) LARRY =
S 8f =
g E E
g 6fF =
— = E

4F N

;’H\H\‘HH‘HH‘H\\‘\H\‘HH‘HH‘HH‘H‘;
0 1 2 3 4
Log(SNR)

Figure 6. Global conditioning of the (a posteriori) covariance matri
Cumap as a function of the SNR. The higher the signal to noise, toemor
difficult the inversion, but the smaller the covariance at@asri. The 3D
matrix, A = (0P /0By)-II appears to be more poorly conditioned than its
one D counterpart even though the sampling in electromagfrefjuency
was the same as in sectibn3.2. It remains bounded and wigaichrof
double precision calculation.

we expect that the? variances will decrease agﬁinThe modu-
lus of the first eigenvector (associated to the highest gajea) is
plotted on theop panelsn thez—y (left) andx — z (right) planes.
It is clear on these figures than thheandy directions are isotropic
while the z one is anisotropic for this eigenvector. Moreover, the
component of the power spectra in thettom left paneshow that
the B. component clearly differ from the other two components.
However, all of the main eigenvectors do not behave in the
same way. Some of them clearly break the symmetry between the
andy directions or/and between theandy components leading to
the differences in the curves of figutke 4. Finally note thatriain

5 in other words, the plateau seen in the variance per mode tohpanels
reflects the fact that those modes have non zero contrilsufrom the low
signal to noise eigen modes (i.e. eigen modt—:@gfl/2 -Cp -021/2 with
low eigen values, wher€ ;' = AT - C; ! - A).

(© 0000 RAS, MNRASDOQ, 000-000

eigenvectors are fairly high frequencies fields. So, thesiguimri
variances will be smaller for high frequencies than for lones,
which is reflected by theop panelsof figure[4.

4 VALIDITY OF THE LINEAR APPROXIMATION
4.1 Linear and pseudo linear inversion

Let us first carry out a linear inversion of the same pertubdteld
dB, with RMS(6B) = 103G, while considering both the linear
() and the pseudo linear (I1) data sets (see seflion 3). Wk inere
on aN; = 64 grid, with N,, = 64 frequencies, a constant refer-
ence field of module LG and SNR=20. Recall that for the linear
minimum variance solution, the hyperparameter= 1/P(k = 1)
(see section2.2.2), while for the the pseudo linear datasety be
tuned. FiguréBop panelshows the input component for the in-
put field (solid line) along a given LOS and the output onéstted
line for the linear datajP; anddashed linefor the pseudo lin-
ear,dPp1,) while thebottom paneshows the different power spec-
tra. As previously, the field recovered from linearized dsts fits
quite well the input one. The recovered pseudo linear fialolgh
somewhat different from the linear one, remains fairly eltsthe
original field. The corresponding powers pectra are alsavahan
Figurel® and confirm that the recovered field in setting (I§usn-
titatively redder.

4.2 Second order residuals

Let us now study the second order residuals to quantify the do
main of validity of the linearization. For this purpose, wégact

to the total polarization its zero and first order expans@mahitain
(P—Po—(9P/IB)g o dB?) and we divide this quantity by the
first order term P — Py o< 6B). Figure[9 represents the average
of this quantity as a function of RM8B). Here the perturbation
consist of a single frequency and single component field.sbiid
linesrepresent the results obtained witBa component along the
LOS at the lowest mode, while tldashed linesorrespond to the
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Figure 7. Top panelsmaps of the modulus of the field corresponding to th
constant reference magnetic field with, = 8 frequencies sampled as explai

e firstraigetor of Wy ap in the z —y (left) andx — z (right) plans for a8
ned in sedfioh 3.2 with a=SNR The first eigenvector appears to be isotropic

in x andy and anisotropic in the direction.Bottom left:power spectra of the three components of this eigenvectw.ahisotropy of the component is

clearly visible and in good agreement with the results fomrgectior 3.1 (figur]

lowest transverse mode of tfig. component. Theark curvegep-
resent the real parf), of the polarization whildight onesstand for
the imaginary parl/ (see equatiori{1)). At very low RM8B),
numerical noise dominate but decreases as the RMS incrééfses
ter reaching a minimum, note that the quantity plotted iasecas
RMS(6B) sincecx §B?/6B and thusx §B. As expected, the
lower the RM36B), the better the linear approximation and the
better the reconstruction. Note also the significant anngditdif-
ference between thB, and B, components; we interpret this as
a difference between the second derivatives of the fieldchvim
turn, impairs the accuracy of the linearization for theomponent.
This should not be a limitation when carrying the non linear r
construction using a method such as VMLM, as the amplitude of
the subsequent changes in the magnetic field will be scaledeby
inverse second derivatives.

El1) add 3.3 (figurk Bottom right:spectrum of the eigenvalues Wyap.

4.3 Towards the non linear problem

Up to now, we have only considered the situation wigsevas as-
sumed to be constant. What happens to the conditioning wigen w
add spatial frequencies 8B,? It is easy to see that adding trans-
verse frequencies to theor they component ofB will not change
the conditioning of a LOS. Indeed, according to equatibhsafid
(29), only the constants,, ,, are modified and vary for each LOS,
but remain constant along each of them, which has no effecbion
ditioning. On the contrary, if the modulation is along a L@S,,,

is no longer constant, and varies for every pixel along a Lx$v-
ever, given that the conditioning is dominated by the exptiak
terms in the Vandermond approximation, it doesn’t changendit-
ically. Hence the choice ofy and the sampling frequency remain
the same but the conditioning increases slightly; it caché&sfor
(0P/0B,,) and40 for (9P /0B.).

The situation is a priori more dramatic for thecomponent of the
field. Indeed, the addition of a transverse modulation hgsifi

(© 0000 RAS, MNRASDOO, 000—-000
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Figure 8. Top: B along a LOS for the input fieldsplid line) and for
the recovered fields with linear dat@P 7, (dashed lingand pseudo linear
ones,dPp1, (dotted lind (see sectiofi]3)Bottom: power spectra of these
three fields. Note that the power spectrum of the reconstufield from
the pseudo linear data set is steeper.

cant consequences, as the valueZfin equation [24) becomes
different for each LOS. Therefore, the valueoA? should in prin-
ciple be different for each LOS to conserve the best conditm
In practice it is simplest to take the averagd®f as a guess. How-
ever the conditioning per LOS increases signicantly andjtiadity
of the reconstruction should be affected.
However, it appears that the global conditioning®fiap does not
change dramatically compared to the constant reference/adle,
whatever the frequency and the amplitude of the added modula
tion. The solenoidal condition appears to be very effeclivdact,
the repetition of the spectral analysis carried in sedfigh shows
that the main difference will be in the gap seen on fifire 7.iAgid
modulation on a constant field induces earlier, deeper gdfised
SNR, the number of useful eigenvalues for the reconstnucte
creases with the modulation. The inversion can still beiedsbut
will be more biased by the lack of resolved eigenmodes.

As a final illustration, figurd_10 shows an implementation

(© 0000 RAS, MNRASDOQ, 000-000
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Figure 9. Average second order of the polarization divided by the dirder
as a function of RM®B). Here RM§J/B) is a single component and
single mode field. Results are for a the lowest longitudinatienfor thex
component (solid lines) and the lowest transverse modaéar tcomponent
(dashed lines)Dark curvesrepresent the real pa€ of the polarization
while light onesare for the imaginary paft (see equatiorf{1)).

of the linear inversion on a more realistic reference fidBi,
which is extracted from a magneto-hydrodynamical simatati
(Kowal & Lazariahl 2007), perturbed by a power-law fluctuatio
with a power spectrum af = 2 and a relative amplitude dfo—2
from a virtual data set of SNR=20. Both the shape of the ctimec
and its power-spectrum (not shown here) are well recovenetthis
relative amplitude.

5 CONCLUSION AND PERSPECTIVES

We investigated the problem of reconstructing the three-
dimensional spatial structure of the magnetic field of amgyisienu-
lated patch of our Galaxy, using multi-frequency polarizegps of
the synchrotron emission at radio wavelengths.

When starting from a fair approximation of the magnetic fiele
were able to obtain a good estimate of the underlying fieldby u
ing a linearized version of the inverse problem considenpdo a
642 grid size. The spectral analysis of the strictly linear peai
(with a constant reference field, and the simulated datairsata
through a linearized model) allowed us to specify the best-sa
pling strategy in electromagnetic frequency, and predagatially
anisotropic distribution of posterior errors.

The best sampling strategy is in equah?; it follows from the
shape of(0P/0B,) along one LOS, which can be approximately
recast into a unitary Vandermond matrix when this particaéan-
pling is used. The errors on the reconstruci&dand B, compo-
nents of the field are shown to be larger than the error orBthe
component. This anisotropy can be traced back to the shape of
posterior covariance, and ultimately of the linearized edadhich

is highly anisotropic, as only the component of the field induces
Faraday rotation.

We considered in turn two more realistic cases: (i) a pseudo
linear model (linear reconstruction of non-linearly siateld data),
and (ii) a varying reference mod&,. We found that for these
reconstructions, the global conditioning of the minimurniamace
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Figure 10. top panel map of a slice (of width.047kpc) of input refer-
ence magnetic field3o; middle panelthe input reference magnetic field;
bottom panelthe input perturbation and the recovered one along a LOS.
The perturbation field is a power-law fluctuation with a powpectrum of

o = 2 and a relative amplitude af0—2 from a virtual data set of SNR=20.

solution remained tractable. Finally, we investigated tiase
where the reference field is given by the outcome of a magneto-
hydrodynamical simulation, and is perturbed by an addition
fluctuating component of known power spectrum. We showed tha
even in this case the linear reconstruction quality is nealske.
This leads us to claim that a full non-linear reconstructioased

on a Gauss-Newton sequence of linear sub-problems of waryin

Probing magnetic fields with multi-frequency polarizeddymntron emission

reference field, should be achievable.

Possible extensions of this work, beyond the scope of this
paper, involve investigating systematically the possisgenera-
cies of the non-linear inversion. It would be worthwhile tone
struct specific estimators for the (possibly anisotropcpl power
spectrum of the field (see e.g. Lazarian & Pogosyan|2006lIfin
from a modelling point of view, one of the main limitations of
the present method is that we had to assume constant (or known
thermal and relativistic electronic densities, in orderotiain a
well posed inverse problem from synchrotron emission diataea
However, we could in principle relax this assumption by addi
extra data constraining the electronic densities (e g.ddta, see

[2003), and attempt a joint reconstructiorhefmag-
netic field and the electronic densities. Another possybikiould
be to use the extra information given by the circular poktian of
synchrotron emission (see Appenflik C); this circular ppétion,
if negligible in the case of low energy sources (like our GQgja
is measurable in the case of relativistic radio sources ésge
Jones & Odell 1977), and opens a way to constrain the eléctron
density together with the magnetic field structure of theseu

Acknowledgments

We thank Jean Heyvaerts, Martin Lemoine, Guy Pelletierriait-f
ful comments on the early stages of this work. Special thémks
Alex Lazarian for providing us with his interstellar magioegimu-
lations.

References

Beck R., Brandenburg A., Moss D., Shukurov A., Sokoloff D.,
1996,ARA&A 34, 55

Beck R., Shukurov A., Sokoloff D., Wielebinski R., 2003, AAP
411, 99

Burn B. J., 1966MNRAS 133, 67

Cao Z., Zhong Dai B., Yang J. P., Zhang L., 2006, ArXiv Astro-
physics e-prints

Celledoni E., Owren B., 2001

Cordova A., Gautschi W., Ruscheweyh S., 1990, Numerische
Mathematik, 57, 577

Furlanetto S. R., Briggs F. H., 2004, New Astronomy RevieBy, 4
1039

Ginzburg V. L., Syrovatskii S. |., 196 ARA&A 3, 297

Golub G. H., Hansen P. C., O’Leary D. P., 2000, SIAM Journal
on Matrix Analysis and Applications, 21, 185

Haffner L. M., Reynolds R. J., Tufte S. L., Madsen G. J., Jaghn
K. P, Percival J. W., 200 pJ Sup.149, 405

Jones T. W.,, Odell S. L., 197ApJ, 214, 522

KachelrieR M., Serpico P. D., Teshima M., 2007, Astropéatic
Physics, 26, 378

Kowal G., Lazarian A., 2007ApJ Let, 666, L69

Lazarian A., Pogosyan D., 2008pJ, 652, 1348

Nocedal J., 1980, Mathematics of Computation, 35, 773

Nocedal J., Wright S. J., 2006, Numerical Optimization, 2dd.
Springer Verlag

Pichon C., Thieébaut E., 1998|NRAS 301, 419

Rottgering H., 2003, New Astronomy Review, 47, 405

Ruzmaikin A. A., Sokolov D. D., Shukurov A. M., eds, 1988,
Magnetic fields of galaxies Vol. 133 of Astrophysics and $pac
Science Library

(© 0000 RAS, MNRASDOO, 000—-000



Probing magnetic fields with multi-frequency polarizeddymotron emission 13

Sazonov V. N., 1969, Soviet Astronomy, 13, 396

Shewchuk J. R., 1994

Sokoloff D. D., Bykov A. A., Shukurov A., Berkhuijsen E. M.,
Beck R., Poezd A. D., 1998INRAS 299, 189

Tarantola A., 1987, Inverse Problem Theory. Elsevier

Thiébaut E., 2002, in Starck J.-L., Murtagh F. D., eds, éstm-
ical Data Analysis Il Vol. 4847, Optimization issues in ldide-
convolution algorithms. pp 174-183

Vogt C., EnR3lin T. A., 2005, AAP , 434, 67

Wahba G., ed. 1990, Spline models for observational data

APPENDIX A: THE CASE ~ =3

For~ = 3, equation[(b) takes a particularly simple expression

P BN - B + 2iB.(2)By ()

. 0
X exp <2;§( / B. (z")dz") dz, (AL)
while equation[(B) simplifies to:
OP(x.,v) o -1 . '
9B, (') op(r —r')2Ahv™ (Bz + iBy)(r")
2iKh
X exp < 2 ZQH(ZHZ/)BZ(Z'I,Z/I,ZN)> ) (A2)

Note that for this value of, the two derivatives with respect to the
transverse magnetic field are thus related:
OP(x.,v) Z,(?P(xl, V)

OBy(r')  9B.(r)

(A3)

APPENDIX B: SOLENOIDAL FIELDS WITH FIXED
POWER SPECTRUM.

The generation of solenoidal (divergence free) fields wixedi
power spectra up to the Nyquist frequency is a tricky probl€he
field must obey the three following conditions:

(i) fixed power spectrumP (k) o< k™,

(ii) free divergenceV - B=0« k-B =0,

(iii) reality of the field: By = B_j+.

Given conditions (i) and (ii), the field is best generated auiter
space. Since the field is multi periodic and we may write

B=Biiei1+ Biseis ) (B1)

wheree| = k/|k|, e1; and e » form a spherical basis in Fourier
space, whiIeEL,i, i=1,2 are the projection over that basis of the
Fourier componant of the field. The vecters, and e 5 are cho-
senin such away thaf. |, = —e_x1,2. The spherical basis is
direct fork and indirect for—k. In this representation, conditions
(i) and (iii) become,

Bkum = *Biku/zv and BkH = 0. (B2)

So, the first step is to generate two complex fieltls, and B »
with the sought power spectrum and then apply equakich (B2).
Next, consider the frequencies that have no conjugatethieefre-
quencyk; = 0 (constant) and; = N, (Nyquist frequency) where
the index: represents the Cartesian coordinates. Let us défine
as the set of these two particular values, Fg. = [0, N,], and

(© 0000 RAS, MNRASDOQ, 000-000

F5 the set of all the other values, i.e. for a vector of dimensign
F,=[-(N/2-1),—(N/2-2),....,—1,1,..N/2—2,N/2 —1].
When the three componentslkbelong toF1, the reality condition
of the field is merelyZmB = 0. After putting this imaginary part
to 0, the field can be projected into the Cartesian basis.
The difficulty arises when one or two components belongtd-or
example, consider the frequenky= (kz, ky, k.) with k, € Fi,
k, andk. € F». In this case, condition (iii) becomBy, = B_.
wherek = (k,, —k,, —k-) is the “opposite” ofk. The problem
is that in this caseey 1,2 # —€_gi1/2 and the above discussed
method can no longer apply. Fortunately, the combinatiocoof
dition (i) and B = B_;. leads to the following set:

k-B=0, and By, =0. (B3)
So, the trick is to put the faulty component@@nd to generate the
other two as previously but in 2D space. Nowkifp = (ky, k=),
we generateB = Biaspe.ian, Whereejop = kap/|kep| and
e op form a polar basis in Fourier space. As previously, the wscto
e op are chosen in such a way that,, 12p = —e_k,, 12p. IN
this 2D representation, conditions (ii) and (iii) lead to:

Biyp 120 = =By, 1op, and B, j2p = 0. (B4)
Here we have only one degree of freedom left, thus, for these f
quencies, we must generate one complex fieldp with the de-
sired power spectrum, and then apply equatiod (B4). Whear
k. belongs taF, a similar procedure applies.

In the last case, two component belongRo For examplek =
(kz, ky, k=) with k, € F>, ky andk. € Fi. In this case, condi-
tion (iii) become By, = B_;. wherek = (—ku,ky,k.) is the
‘opposite” of k. Again, ex.11/2 # —e_g,,,, and the combina-
tion of condition (ii) andBx, = B_j. leads to equation§ (B3).
Consequently, the same procedure follows for these fregijgen
After inverse Fourier transform, one can check that the feetdal,
solenoidal and with the right power spectrum up to the Nytdtes
quency.

APPENDIX C: CIRCULAR POLARIZATION

In reality, the scalat< in the rotating term depends on the den-
sity field of thermal electrons. in the medium, so that we can-
not separate, with the Faraday rotation onlyfrom B.. One way

to tackle this problem is to pick up the next coupling term o t
Stokes parameters in the (optically thin medium, strongtidty
limit) assumption that describes our medium. This next tesra
factor of conversion between linear and circular polarirgtthat
can be considered together with the synchrotron emissifitir-

cular polarization (Jones & Odeéll 1977). Following the riatas of
[Sazonov

9), we write the transfer equation of the pdéion
tensorl,s as follows:

CUTB() = Eap(2) ~i(Tao(2)857 —bas Tjr(2))Ior(2) , (C1)
with I3 = UI jgf lﬁ t ZQV ,andFE,z(z) is an emissivity

term. In the assumption of a thin, strongly rotating mediwm can
retain only the rotating terms (the Hermitian part)lofs. Defining

- h q+if
T*( q—if

h ) we can show that the transfer equation
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can be reexpressed in terms of g, V, U) “vector” as: sence of internal sources. It corresponds to the simplestilpe
B h case of integration of an equation on the SO(3) Lie Group. (e.g
d 8 - EQ 8 - Celledoni & OwreH 2001). By linearity, we can find the diseret
dz - vl f : (€2) solution to the transfer equation with sourdes](C3):
U Ly q U
. . . . . . . Nny—1nz— E i 2 i
The fact that this differential equation involves multgation by a ! ! Qi cos(2s)
non-Abelian group element - in SO(3) - prevents us from wgith Vo) = Z H exp(—AzM;) By ’
U i=0 j=i —Eq;sin(2t;)

formal solution to the equation in terms of exponentialswieer,
since we are in the end working on a discretized mesh, we @an st with ¢» = arctan(B./B,) [l. This expression generalizes equa-

write a formal solution to the discrete problem in terms afi(é) tion (@) and can be used to infer the Frechet derivatives epth
sums of (finite) rotations products as we will see below. @mear- larization field with respect to the magnetic field, as wasedion
tant point to notice, linked to the tensor nature of equdfdh is sectior 2 from the integral solution. The source terms irfthme
the transformation law of these “vectors” under rotationhaf co- attached to the local transverse magnetic field

ordinate axes in the plane perpendicular to the line of sighhis @));

respect, the vectofh, ¢, f) behaves the same way as the vector ai1 o o
(Q,V,U), i.e. the(Q,U)and (h, ) subvectors are rotated [y} Eq=Cn:B,?> v 2, Ev=-DnBBfv~
when the coordinate axes are rotatedybyin the case of a homo- . e . . .
geneous medium, this alloWs Sazdnby (1969) [and Jones & Odellwherenr is the distribution of high-energy electrons in the medium,

(1911) o choose the coordinate aves used to meagamat so (L U6, 5508 PN ST o 2 M
that thel” Stokes parameter couples only &b (this is achieved ) d ’ g

wheng is set t00). In this reference frame, the projection of the differently in the expressions diq andE'v, hence we can in prin-

(constant) magnetic field is aligned with the second coateiaxis. ciple disentangleB frqm - Here dllfferent assumpthns. can be
In the case of a fluctuating magnetic field, such a scheme is not made, namely assuming either thqtis related to the distribution

possible anymore, and we need to rotate the coupling casftii of thermal electrons.e, or that it is constant, or that it is related
(best expressed in the reference frame given by the locggro tq the magnetlc flel.d pressure Iocal!y (m’ mz a.

. o . discussion of the different assumptions). Another possiaith is
tion of the magnetic field) in a common, constant, refereraemé.

Thus, in an inhomogeneous medium, the equdTigh C2 in the com-to add exterpal constraints on either (coming for ms_tance_from
. H. observations (see Haffner eilal. 2003) or from dispersioa-me
mon reference frame takes the form:

surements of pulsars), or eventually on the relativisgécbn dis-

a
2

(C4)

a1 @ Eq cos(2¢) h cos(2¢) Q tribution n, with diffuse gamma-ray measurements.
—_— = EV — f X Vv s
NG — Eosin(29) —hsin(2¢) U

where(Q, U, V') are measured in the common reference frame, and
all other quantities are defined in the frame of the local netign
field. In the applications we will consider in this paper, tiota-

tion coefficients are dominated by the contribution of ctté:(mal)
electrons of the medium. In this contex, f) take the following

form (Sazondv 1969):
h_ GemeBL . aneB
4m2m3c3 3’ mm2c2r?’

It is interesting to note that both the frequency dependeand
the dependence on the magnetic field are different in thelicmup
terms. We note thdf €3 involves the multiplication of theke®
“vector” by an element of a non-Abelian group (SO(3)), whicbk-
cludes finding a formal solution to this differential eqoati How-
ever, the linearity of the equation in the Stokes paramgetdiavs
us to write a formal solution in the discretized case in teofrgims
of products of rotations on the source terms. This equatareiy
similar to the rigid body type equations encountered in rageh
ics, with the (major) difference that it is linear. For sinejtly, we
will consider here a first-order discretization of the peshl(i.e. we
consider the different fields to be piecewise constant).Sthetion
to the homogeneous Stokes transfer equation can be wriiten a

Q ns—1 Q
V | (2)= H exp(—AzM;) | 'V | (2=0),
U i=0 U

where M;is the skew-symmetric matrix corresponding to the vec-
tor (hi cos(2v), fi, —hisin(2;)). This discretized solution en-
sures the exact conservation of the polarization degreberab- 6 Beware that this angle correspondsrte- + in the notations of sectidd 2
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