
HAL Id: hal-00415604
https://hal.science/hal-00415604v1

Submitted on 11 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey of Mobile Transactions
Patricia Serrano-Alvarado, Claudia Roncancio, Michel Adiba

To cite this version:
Patricia Serrano-Alvarado, Claudia Roncancio, Michel Adiba. A Survey of Mobile Transactions. Dis-
tributed and Parallel Databases, 2004, 16 (2), pp.193-230. �10.1023/B:DAPD.0000028552.69032.f9�.
�hal-00415604�

https://hal.science/hal-00415604v1
https://hal.archives-ouvertes.fr

A Survey of Mobile Transactions

Patricia Serrano-Alvarado∗, Claudia Roncancio, Michel Adiba

LSR-IMAG Laboratory

BP 72, 38402 St. Martin d’Hères, France

e-mail: Firstname.Lastname@imag.fr

July 31, 2003

Contents

1 Introduction 4

2 Mobile Transaction Context 6
2.1 Architectural Context . 6
2.2 Operation Modes of a Mobile Host . 8
2.3 Execution Models . 8
2.4 Unsuitability of Classical ACID Techniques . 11

3 Mobile Transaction Proposals 13
3.1 Clustering . 13
3.2 Two-tier replication . 14
3.3 HiCoMo . 14
3.4 IOT . 15
3.5 Pro-motion . 15
3.6 Reporting . 16
3.7 Semantics-based . 16
3.8 Prewrite . 17
3.9 Kangaroo Transactions . 18
3.10 MDSTPM . 18
3.11 Moflex . 19
3.12 Pre-serialization . 19
3.13 Commercial Products . 20
3.14 Summary and Discussion . 23

4 Ensuring ACID Properties for Mobile Transactions 25
4.1 Atomicity . 25

4.1.1 Commit Process . 25
4.1.2 Other Commit Protocols . 28
4.1.3 Discussion . 29

4.2 Consistency . 30
4.2.1 Semantic Information . 30
4.2.2 Summary . 32

4.3 Isolation . 32
4.3.1 Visibility Aspects . 32
4.3.2 Concurrency Control Schemes . 33

∗Supported by the CONACyT scholarship program of the Mexican Government

1

4.3.3 Replication Issues . 35
4.3.4 Other Concurrency Control Approaches . 36
4.3.5 Discussion . 36

4.4 Durability . 37
4.4.1 Durability Guarantees . 38
4.4.2 Related Works on Logging . 38
4.4.3 Discussion . 39

5 Movement and Disconnection Management 40
5.1 Movement and Disconnection Issues . 40
5.2 Discussion . 43

6 Conclusions and Research Directions 44

2

Abstract

Transaction support is crucial in mobile data management. Specific
characteristics of mobile environments (e.g. variable bandwidth, dis-
connections, limited resources on mobile hosts) make traditional trans-
action management techniques no longer appropriate. Several models
for mobile transactions have been proposed but it is difficult to have
an overview of all of them. This paper analyzes and compares sev-
eral contributions to mobile transactions. The analysis distinguishes
two groups of models. The first group includes proposals where trans-
actions are completely or partially executed on mobile hosts. In this
group we focus on ACID properties support. The second group consid-
ers transactions requested by mobile hosts and executed on the wired
network. In this case, ACID properties are not compromised and focus
is on supporting mobile host movements during transaction execution.
Discussions pointing out limitations, interesting solutions and research
perspectives complete this paper.

Keywords: Mobile transactions, databases, mobility, transaction exe-
cution, atomicity, consistency, isolation, durability.

3

1 Introduction

The omnipresence of mobile devices such as cell phones, PDAs (Personal
Digital Assistant), smartcards, sensors and laptops together with the devel-
opment of different kinds of networks (local, wireless, ad-hoc, etc) leads to
a true mutation in the use, design and development of current and future
information systems. Several efforts are devoted to improve data manage-
ment in mobile environments and solutions have been proposed in distinct
areas [64, 58, 41]. Important topics include: broadcast to deliver informa-
tion, caching, location dependent queries and mobile transactions. Research
works on these topics attempt to improve support for different types of ap-
plications that can be personal or professional ones. For instance, clients
accessing public data (e.g. weather forecast, stock exchange, road traffic) or
with an inherent mobility (e.g. mobile vendors/clients, health care services,
mobile offices, transportation).

To manage data correctly, support for traditional properties of transac-
tions – atomicity, consistency, isolation and durability – is needed or should
be revisited with respect to the specificities of these mobile applications. For
that several models have been proposed so far [61, 29, 78, 10, 79, 52, 16, 80,
45]. These works point out the limitations of current transaction technol-
ogy for mobile information systems. This paper1 surveys mobile transaction
processing works. We consider that this topic is very important and chal-
lenging, given the complex aspects of the considered environment. Despite
many research efforts [16, 17, 32], the field still lacks a deep comparison of
existing works. Our survey attempts to provide a global yet precise view of
the current state of the art.

As a general framework, we are considering a mobile computing environ-
ment consisting of fixed (FH) and mobile hosts (MH) [38] (Fig. 1). Mobile
and fixed hosts can be either clients or servers and MHs can be of different
natures, from PDAs to personal computers. Here, we make no specific hy-
pothesis about the database model (relational, object) and the centralized
or distributed nature of the database management system (DBMS). How-
ever, we consider that MHs can have storage capabilities and can run DBMS
modules. While in motion, a MH can retain its network connections through
a wireless interface supported by some FHs that act as Base Stations (BS)
– also called MSS. The geographical area covered by a BS is called a cell.
Each MH communicates with the BS of the cell it belongs to. The process of
entering a new cell is called hand-off or hand-over. Compared to traditional

1This work is an extended version of [74]

4

ones, wireless networks have particular characteristics like low and variable
bandwidth. These characteristics and the (generally) expensive transmis-
sion cost make bandwidth consumption an important concern. Also, being
portable devices, MHs are often limited in screen size, battery power, pro-
cessing capability and memory/storage capacities, and moreover, they are
exposed to loss and accidents. Communication capabilities between MHs
and BSs are asymmetric: BSs do not have power constraints and can take
advantage of the high-bandwidth broadcast channels that can exist from
BSs to mobile clients in a cell. No direct communication among MHs is sup-
posed. It is also important to point out that in wireless networks, bandwidth
availability leads to different quality of connections – strong, weak connec-
tion. In addition, disconnections must be handled as “normal” situations
and not as failures – MHs may disconnect to save battery consumption.

Most of these characteristics can impact data management process. For
instance, consider an e-shopping application that allows people to browse
products in an e-mall, to select, to book and to buy items. We assume that
secured e-payment is available based on credit cards or e-money. Application
execution – as a set of transactions – will not be the same if transactions
are launched from a (fixed) terminal office, from a PDA while traveling in a
train or from home using a laptop. Thus, under this context:

• transactions may succeed but with different execution times (band-
width capacity is highly variable) and communication costs (prices
vary among wireless network providers/technologies/time-access);

• energy consumption is affected by low bandwidth (more battery is
consumed);

• transaction failures may occur due to unexpected disconnections or
battery breakdown.

Informally, a transaction is a set of operations that translate a database
from a consistent state into another consistent state. In the context of mobile
computing, there may exist several interpretations of mobile transactions,
but here, we adopt a general definition: a mobile transaction is a transaction
where at least one mobile host is involved. Transaction managers must be
designed to support transaction processing while MH changes location and
network connections. This affects mobile application performance. As we
will see in the following, traditional transaction managers should be adapted
to support MTs. Different transaction models (relaxing ACID properties)

5

MH

MH

MH

DBMS

9 Kbps - 2 Mbps

Mobile Host

Base StationBS

FH

MH

MH

Fixed Host

Wireless Communication

Wired Communication

Wireless radio cell

Wireless radio cell

11 Mbps
Wireless LAN cell

MH MH
MHMH

MH

FH

FHBS

BS

FH

BS

Figure 1: Mobile environment global architecture

have been proposed to fulfill mobile user requirements and wireless environ-
ment constraints.

The rest of the paper is organized as follows. Section 2 introduces gen-
eral aspects related to transaction support in mobile environments. Sec-
tion 3 introduces research projects and commercial products for providing
mobile transactions. Section 4 describes research works that propose spe-
cial features with respect to ACID properties. Section 5 discusses research
proposals dealing particularly with mobility and disconnections. Section 6
concludes the paper and gives some research perspectives.

2 Mobile Transaction Context

This section discusses some features related to the context of mobile trans-
actions. Section 2.1 introduces system architecture issues. Section 2.2 deals
with operation modes. Section 2.3 presents different execution models for
mobile transactions. To finish, Section 2.4 briefly discusses the limitations
of traditional transaction techniques in a mobile context.

2.1 Architectural Context

In classic client-server architectures, functions of each actor are statically
defined [40]. In the absence of failures it is assumed that neither the client
and server locations nor the connection between them change. In mobile
environments, however, the distinction between clients and servers can be

6

temporarily blurred resulting in an extended client-server model [70]. Ar-
chitectural choices impact application design and data management. In par-
ticular, transaction execution on a MH is only possible if the MH provides
some minimal capabilities. Data stored on MHs (memory/disk) generally
come from database servers (FHs). Therefore, MH work must remain con-
sistent with the database server. Mobile clients may vary from thin to full
clients, depending on their characteristics as follows:

Thin client architecture, where clients require to run operations on
servers. This architecture is specially suitable for dumb terminals or small
PDA applications. Thin client resources are limited (e.g. small screen size,
small cache memory, limited bandwidth). For this architecture, the server
is in charge of all computations while clients only display text and graphics,
play audio and compressed video, capture pen input, etc.

Full client architecture. In mobile environments, clients can be forced to
work in disconnected mode or with weak connections (due to low bandwidth,
high latency, or high costs). Full clients emulate server functions to enable
application execution without being strongly connected to remote servers.
Full clients are usually portable computers with enough resources to execute
applications.

Flexible client-server architecture generalizes both thin and full client
approaches. The roles of clients and servers as well as the application func-
tionalities can be dynamically relocated. The distinction between clients
and servers may be temporarily blurred for performance and availability
purposes.

Client-agent-server architecture. This three-tier model introduces an
agent or proxy located on the fixed network. Agents are used in a variety of
roles acting as a surrogate of one or several mobile hosts or being attached
to a specific service or application (e.g. database server access). As we
will see in the following, several proposals concerning mobile transactions
management adopted this architecture.

Another related, somehow orthogonal issue is push-based data delivery.
In many wireless networks the server is connected to BSs. BSs have a rela-
tive high-bandwidth channel that supports broadcast delivery to all mobile
clients located inside the geographical area they cover. This facility provides
the infrastructure for push-based data delivery where the server broadcasts

7

data to a client population without specific request. Several works are done
to exploit broadcast facilities [1, 12]. In particular, push-based data deliv-
ery allows read-only transactions to be processed by a mobile client without
contacting the server. Data broadcast is scalable because its performance
is independent of the number of clients [63, 62]. Examples of applications
are road traffic management systems, electronic commerce, business (auc-
tions or electronic tendering, stock quotes, sport tickets). Broadcast related
topics are out of the scope of this paper.

2.2 Operation Modes of a Mobile Host

In distributed systems, hosts can operate either in connected or discon-
nected modes. In mobile computing new operation modes are introduced
to take into consideration communication variability and MH’s power lim-
itation [59]: strong and weak connections, disconnected and doze modes.
Going from strong to weak connections depends on bandwidth availabil-
ity. The degradation of connectivity is very frequent in wireless networks;
thus, working with weak connections should be one of the normal operation
modes in mobile systems. MHs can decide to switch to a disconnected mode
to minimize connection expenses or because no connection is possible. MHs
can change to a doze mode to save energy. In this mode the clock speed is
reduced and no user computation is performed. The MH returns to normal
operation upon the receipt of any message.

In mobile computing two types of mobility – micro and macro mobility
– are generally considered, according to the scale of the movements. Micro
mobility concerns movements within a geographically contiguous area. The
mobile user remains in the same wireless network. For instance a connection
is maintained as the user walks or moves in a car/train. Macro mobility is
related to wide area mobility and can involve heterogeneous networks. The
mobile user connects/disconnects his (her) laptop/PDA at different places
– at work, at home or in different cities when traveling for instance.

2.3 Execution Models

Mobile transactions involve MHs and FHs. As we have seen in Section 2.1,
servers generally run on FHs (wired network) and MHs can be simple clients
with some server capabilities. According to client capabilities we define five
execution models. The first three models involve one MH whereas the fourth
and fifth ones involve several MHs.

8

1. Complete execution on the wired network. Here, the MT is
initiated by a MH but entirely executed on FHs. This is the classical query
shipping approach where the data server executes update/query requests
and sends results to the client. Examples in a mobile context where this
execution scenario is appropriate are location dependent queries (e.g. hotels
located within a radius of 5 miles) and updates (e.g. booking a room in one
of those hotels [18]). In this context it is also suitable to execute transactions
on a large data set.

2. Complete execution on a MH. In this case the MT is initiated
and executed on the MH. This model requires the MH to have all relevant
data and enough “server” capabilities to execute its local transaction. The
autonomy of the MH allows it to keep working even though connections
with the server are not available. Reconciliation procedures are necessary to
integrate MH’s work in the database server located on FHs. The following
sections show that different reconciliation strategies can be adopted. In
most cases, some final work has to be done on the database server even if
the MT is executed on the MH. For instance, consider a salesperson having
on her (his) MH all the required data related to the products she (he) sells
(available stock, price, etc.). The work done autonomously (sales) on the
MH is integrated afterwards to the main server.

3. Distributed execution between a MH and the wired network.

This model is very flexible as it allows to distribute transaction execution
between the MH and the database server(s) on the wired network. This
distribution may be motivated by resource availability (e.g. data, power on
the MH) or for optimization reasons. Server capabilities are required on
the MH as well as minimum communications with the server during trans-
action execution. The sales example introduced before may also require a
distributed execution scenario. As far as the salesperson has the product in-
formation on her (his) MH, she (he) could sell products without connection
to the database server – warehouse store. Nevertheless, the payment proce-
dure may require a connection to the bank server to check client’s credits.
The sale is done by a distributed transaction having one sub-transaction
executed on the MH and another one executed on the bank server.

4. Distributed execution among several MHs. This case is very
ambitious and difficult but interesting. The objective is to provide a “peer
to peer” approach. MHs act as servers for other MHs so that the execution of

9

a MT is distributed among several MHs. The idea is that depending upon
MH location, it could be interesting to ask a “neighbor” MH to act as a
data server or as a service provider. Here “neighbor” means closer in terms
of communication than the database server. As an example consider two
salespeople working in the same geographical area who need to share some
data in a cooperative way without referring to the main database server.2 To
support this execution model, particular features are required to allow MHs
to be aware of each other. BSs could play an important role by maintaining
specific database catalogs allowing MHs to know the data available in the
area. These catalogs should be updated and forwarded across BSs according
to MHs movements.

In ad-hoc networks [24, 37], MHs interact by establishing a point to point
connection bypassing BSs. Since no BS is involved each MH has to maintain
its own database catalog and to allow its neighbors to access it. Distributed
transaction execution among several MHs is particularly oriented towards
dynamic network configurations.

5. Distributed execution among MHs and FHs. This is the fully
distributed scenario where MT execution is distributed among several mobile
and fixed hosts. This approach is an extension of the previous scenario and
is oriented towards cooperative work as well as to multidatabases including
MHs participating in the global execution.

Electronic commerce is a promising application where small devices will
engage in commercial transactions among themselves (execution model 4),
with BSs or with remote hosts reached through a combination of wireless
and wired infrastructure (execution model 5, hereafter) [66]. For instance
participant MHs could be in an open air trade fair where suppliers, man-
ufacturers, retailers and customers would meet to see the latest products
available. Customers may want to buy some of the products after seeing
them and consulting an online catalog available at the fair. Upon the re-
ceipt of an order the merchants could contact one another to order parts and
locate supplies. With the appropriate devices and transactional support all
these operations could be performed on site and be uploaded later onto the
company’s servers.

The five execution models introduced in this section cover all the possi-
bilities involving mobile or fixed hosts. Nevertheless, the following sections
show that current proposals concern only the first three models. Participa-

2This execution model is considered by Bayou [13] and Deno [42] Those projects are
not developed here because they are replication-oriented rather than transaction-based.

10

tion of several mobile hosts in a same distributed transaction has not been
developed yet.

2.4 Unsuitability of Classical ACID Techniques

ACID properties (Atomicity, Consistency, Isolation, Durability) [31] are the
reference to transaction correctness. The atomicity property is the notion
of all or nothing – all operations of a transaction must be done or none
of them. Commit protocols ensure this property. Consistency deals with
database correctness. Databases usually have data integrity constraints
(e.g. restrictions concerning relationships among data) for maintaining spe-
cific consistent database states. Hence each transaction must transform a
database from a consistent state to another one. The isolation property en-
sures that each transaction execution be isolated even though transactions
are executed concurrently. Concurrent control protocols ensure this prop-
erty. Durability is the condition stating that once a transaction commits,
its effects on the database are durable. Logging is one of the most used
techniques to guarantee durability.

Previous sections introduced particular characteristics of the mobile con-
text. This section briefly points out why these characteristics make some
classic transaction techniques not suitable for mobile environments.

Commit protocols Transaction commit in mobile computing is partic-
ularly affected by the unpredictable and undefined periods of MHs discon-
nections. If a transaction required by a MH client is completely executed
on the wired network (model 1 in Section 2.3), commit is rather simple. A
transaction can commit even if the MH is disconnected, and pending mes-
sages or results delivery may be deferred to the next reconnection. Consider
now a mobile transaction executed on the MH using data coming from a
server on the wired network (model 2 in Section 2.3). In this case, updates
performed on the MH have to be integrated and committed on the server.
An immediate commit on the server may not be possible because of discon-
nections. Deferred commits on the server will be necessary, although this
may increase the transactions abort rate.

Commit protocols of distributed transactions (models 3, 4 and 5 in Sec-
tion 2.3) should also be revisited. The standard Two Phase Commit pro-
tocol (2PC) [28] – used in distributed transactions – requires a high rate
of messages and does not allow off-line processing. Besides, it is a blocking
protocol because participants wait for a global decision. These characteris-
tics associated to MH limited resources, disconnections and communication

11

cost, make 2PC not suitable for mobile environments.

Concurrency control mechanisms Frequent disconnections and com-
munication limitations also affect isolation support. Pessimistic approaches
such as Two Phase Locking (2PL) [22] require message exchanges with the
server that may not always be possible. Unpredictable disconnections may
also lead to undefined locking periods of time. Thus, optimistic approaches
appear more suitable for the mobile context.

Logging Fault tolerance strategies are particularly important in mobile
environments. In disconnected mode, “local durability” is the base to en-
sure global durability on database servers. Local processing information
stored in logs can be used in the reconciliation process to obtain the fi-
nal commit on the database server. Nevertheless, to be applied to mobile
environments, traditional logging solutions [3, 30] should be adapted. Op-
timizations to reduce log size and processing time become crucial because
of resource limitations at MHs. Moreover, due to the vulnerability of MHs
to loss and accidents, strategies to store logs on stable storages connected
to the fixed network should be proposed. Typically, periodic log transfers
from MHs to current BS or FHs should be enabled.

Replication Although data replication is not necessarily a transactional
issue, it is at the heart of several works on mobile transactions. The reason
is that common approaches to increase MHs autonomy are based on data
replication or data caching. In traditional database environments coherency
requirements often lead to replication protocols implementing a one-copy
equivalence model. In this model replicas are always equivalent and read-
on replicas give up-to-date data. In mobile environments, protocols that
support it (i.e. eager protocols like quorum-based [43] or ROWA [4]), have
to deal with the aforementioned communication/resource constraints. Such
constraints motivate the use of different types of replicas (e.g. a replica may
be smaller than the original object) and of protocols relaxing the coherency
model (i.e. lazy protocols [29]). Such protocols may offer convergent replicas
but allow reads – or even in some cases writes – on divergent replicas, in
which case some kind of reconciliation strategy is required.

In conclusion, communication requirements should be reduced and pro-
tocols should tolerate disconnections. It is also worth noting that several
research contributions in mobile transactions are motivated by applications
where mobile users need data management but accept to work with less

12

“guarantees” than in a wired network. In this case, applications work with
advanced transaction models, relaxing some of the standard properties to
provide a tradeoff between resource consumption and quality of service in a
constrained environment.

3 Mobile Transaction Proposals

This section introduces the main projects on mobile transactions. The an-
alyzed research projects are: Clustering (Section 3.1), Two-tier replication

(Section 3.2), HiCoMo (Section 3.3), IOT (Section 3.4), Pro-motion (Section
3.5), Reporting (Section 3.6), Semantics-based (Section 3.7), Prewrite (Sec-
tion 3.8), Kangaroo (Section 3.9), MDSTPM (Section 3.10), Moflex (Section
3.11) and Pre-serialization (Section 3.12). A more detailed analysis of these
projects is made in sections 4 and 5. Section 3.13 introduces briefly some
commercial products. Section 3.14 summarizes the principal characteristics
of studied proposals.

3.1 Clustering

Clustering [60, 61] offers a replication scheme to mobile environments where
mobile clients suffer of disconnection variations. It assumes a fully dis-
tributed system and is designed to maintain database consistency. The
database is dynamically divided into clusters, each one groups together se-
mantically related or closely located data. A cluster may be distributed
over several strongly connected hosts. When a MH is disconnected it be-
comes a cluster by itself. For every object two copies are maintained, one
of them (strict version) must be globally consistent, and the other (weak
version) can tolerate some degree of global inconsistency but must be lo-
cally consistent. The degree of inconsistency is a limited divergence between
the weak and the strict version.3 Such inconsistency may vary depending
on the availability of network bandwidth among clusters. MTs are either
strict or weak. Weak transactions access only weak versions whereas strict
ones access strict versions. Strict transactions are executed when hosts are
strongly connected and weak transactions when MHs are weakly connected
or disconnected. Two kinds of operations are introduced: weak reads and
weak writes. Strict transactions contain standard reads and writes (strict
operations), whereas weak transactions contain weak operations. At recon-
nection a synchronization process (executed on the database server) leads

3Section 4.3 gives more details.

13

the database to a global consistent state.

Distributed transactions can be executed only inside a cluster as strict
transactions. MHs may participate but only in connected mode. In discon-
nected mode MHs execute only weak transactions.

3.2 Two-tier replication

Two-tier replication is born from the analysis made in [29] where eager and
lazy replication schemes are compared. The analysis concludes that eager
schemes are not a good option for mobile environments principally because
it is not possible to allow MH disconnections. Two-tier replication is a lazy
replication mechanism which considers both transaction and replication ap-
proaches for mobile environments where MHs are occasionally connected. A
master version for each data and several replicated versions (copies) exist.
Two types of transactions are supported: base and tentative transactions.
Base transactions access master versions (lazy-master replication scheme)
whereas tentative transactions access tentative versions (local copies). Ten-
tative transactions may perform updates on the MH in a disconnected mode.
When the connection is established, tentative transactions are re-executed
as base transactions (coordinated by the current BS) to reach global con-
sistency. Results of this re-execution may have defined acceptance criteria
which allow results to be different. Transaction re-executions allow local
updates to persist.

3.3 HiCoMo

HiCoMo [49] (High Commit Mobile) is a mobile transaction model devoted
to decision making applications. Its goal is to allow updates during discon-
nections on aggregate data stored on MHs. There exist base tables on FHs
from which aggregate tables are obtained. They represent a summary or
statistics (e.g. average, summation, minimum, maximum) that is stored on
MHs. Similar to Clustering and Two-tier replication two transaction types
are considered: HiCoMo and base transactions. HiCoMo transactions are
executed on aggregate tables during MH disconnections. Base transactions
reflect the modifications made by HiCoMo transactions on base tables. Thus,
at reconnection, a HiCoMo transaction is transformed into base transactions
– one per base table accessed during the generation of aggregate tables.
The transformation is based on a complicated analysis using semantic in-
formation. Such a process is a key issue in this work. To obtain a high
rate of successful executions only commutative operations – addition and

14

subtraction- are considered for HiCoMo transactions and an error margin is
tolerated between HiCoMo and base transaction re-executions.

3.4 IOT

Coda [71] is a distributed file system that provides disconnected operation.
It uses an optimistic replication scheme where only write/write conflicts are
taken into account. IOT [51, 50] (Isolation-Only Transaction) extends Coda
addressing read/write conflicts with a transaction service. In IOT, transac-
tions are a sequence of file access operations. Transactions are classified into
two categories (similar to Clustering, Two-tier replication and HiCoMo): first
class whose execution does not contain any partitioned file accesses (i.e. the
client maintains a server connection for every file accessed) and second class
which are executed under disconnections. First class transactions commit
immediately after being executed, whereas second class ones go to a pending
state and wait for validation. When reconnection becomes possible, second
class transactions are validated according to the desired consistency criteria
i.e. local serializability, global serializability, global certifiability (see Sec-
tion 4.3). If validation is successful, results are integrated and committed.
Otherwise, transactions enter the resolution state. Resolution may be auto-
matic (re-execution, application specific, abortion) or manual (notification
to users).

3.5 Pro-motion

Pro-motion [78, 77] addresses the problem of data caching on MHs to make
possible local transaction processing in a consistent mode. Pro-motion is a
mobile transaction processing system that supports disconnected mode. To
allow local execution, Compacts are introduced as the basic unit of caching
and control. Object semantics is used in the construction of compacts to
improve autonomy and to increase concurrency. A compact encapsulates
necessary information to manage it. Pro-motion uses nested-split transac-
tions [10, 69]. It considers the entire mobile system as one extremely large
long-lived transaction executed on the server. Resources needed to create
compacts are obtained by this transaction through usual database opera-
tions. Compacts construction is the responsibility of the compact manager
at the database server. The management of compacts is performed by a com-
pact manager, a compact agent at the MH and a mobility manager at the
BS. The compact manager will act as a front-end for the database server and
appears to be an ordinary database client executing a single, large long-lived

15

transaction. On each MH, the compact agent is responsible for cache man-
agement as well as for transaction processing, concurrency control, logging
and recovery. The mobility manager is in charge of transmissions between
agents. MH transactions are executed locally even in connected mode. A
synchronization process is executed by the compact agent and the compact
manager at reconnection. This process checks compacts modified by lo-
cally committed transactions. If compacts preserve global consistency then
a global commit is performed.

3.6 Reporting

Reporting [10] considers a mobile database environment as a specific mul-
tidatabase system (MDBS) where transactions on MHs are considered as
a set of subtransactions. Nested [55] and open-nested transactions (such
as sagas [26], split transactions [67] and multitransactions [69]) are ana-
lyzed to show their limitations for mobile environments. Reporting proposes
an open-nested transaction model that supports atomic, non-compensatable
transactions and two additional types: reporting and co-transactions [9, 11].
While in execution, transactions can share their partial results and partially
maintain the state of a mobile subtransaction (executed on the MH) on a
BS. A mobile transaction is structured as a set of transactions, some of
which are executed on the MH. Authors consider that limitations on MHs
make necessary the use of FH, e.g. to store or compute part of a transaction.
Open-nested transactions with subtransactions of the following four types
are proposed. (1) Atomic transactions have standard abort and commit
properties. (2) Non-compensatable transactions at commit time delegate
to their parent all operations they have invoked. (3) Reporting transac-
tions report to another transaction some of their results at any point during
execution. A report can be considered as a delegation of state between
transactions. (4) Co-transactions are reporting transactions where control
is passed from the reporting transaction to the one that receives the report.
Co-transactions are suspended at the time of delegation and they resume
their execution when they receive a report.

3.7 Semantics-based

Semantics-based [79] focuses on the use of semantic information of objects
to improve the MH autonomy in disconnected mode. This contribution
concentrates on object fragmentation as a solution to concurrent operations
and to limitations of MH storage capacity. This approach uses objects or-

16

ganization and application semantics to split large and complex data into
smaller manageable fragments of the same type. Each fragment can be
cached independently and manipulated asynchronously. Fragmentable ob-
jects can be aggregate items, sets, stacks and queues. Mobile transactions
are invoked at the MH, and from the database server point of view, they are
long-lived because of communication delays. MH fragment request includes
two parameters: selection criteria and consistency conditions. The selection
criteria indicates data to be cached on the MH and the required fragment
size. The consistency conditions specify constraints to preserve consistency
on the entire data. Data fragmentation executed on the server allows fine-
grain concurrency control. Exclusive master copies of fragments are given
to the MH and transactions can be entirely executed on it. A reconciliation
process is executed by the server when reconnection occurs. This model may
be used with different transaction types.

3.8 Prewrite

Prewrite [52] tries to increase data availability on MHs by proposing two
variants of data: prewrite and write. A prewrite variant reflects future data
state but may be structurally slightly different from the corresponding write
value. Prewrite values are a tiny version of write values; therefore they need
less storage capacity on MHs. For instance, in an object of type document
the prewrite is the abstract and the write is the whole document (i.e. ab-
stract, body and bibliography). In Prewrite, the transaction execution is
divided between the MH and the database server. The transaction manager
on the MH executes the transaction but permanent updates are made by
the data manager located at the server. Prewrite ensures that, by delegating
the responsibility for write to the database server, transaction processing is
reduced on the MH. Three operations – prereads, prewrites and precommit
– to be executed by the transaction manager are proposed. Ordinary reads
and permanent writes are made by the data manager. The BS has logging
capabilities and maintains close relationship with the data manager. The
transaction execution proceeds as follows. The transaction manager asks the
BS for necessary locks (in connected mode). The BS acquires locks from the
data manager and the MH can disconnect. When the transaction manager
finishes the transaction, local commit (precommit) is made and reported
to the BS. The data manager makes prewrites permanent and commits the
mobile transaction. Prewrite considers mobile transactions as long-lived and
implementations can be made with nested and split transactions.

17

3.9 Kangaroo Transactions

KT [16] (Kangaroo Transactions) proposes a mobile transaction model that
focuses on MH movement during the execution of transactions. Mobile
transactions are global transactions generated at MHs and entirely executed
at a MDBS on the wired network. KT proposes to implement a Data Access
Agent on top of existing Global Transaction Managers. This agent is placed
at all BSs and manages mobile transactions and MH movement. Each in-
volved DBMS takes the responsibility for preserving the ACID properties of
subtransactions. The transaction model uses concepts of open-nested [20]
and split transactions [67]. The mobile transaction execution is coordinated
by the BS to which the MH is currently assigned. When one MH hops from a
cell to another (consequently from BS to BS) the coordination of the mobile
transaction also moves. This mobility is captured by splitting the original
transaction in two transactions (called Joeys transactions (JT), there exist
one JT per BS). The split concerns only the coordination of the transaction.
Thus, if the MH hops from BS-1 to BS-2, BS-1 coordinates the operations
that are executed during the stay of the MH in the BS-1 cell. Subtrans-
actions are executed sequentially therefore all subtransactions of the JT-1
transaction are executed and committed before all subtransactions of JT-2.

3.10 MDSTPM

MDSTPM [80] (Multidatabase Transaction Processing Manager architec-
ture) proposes a framework to support transaction submissions from MHs
in an heterogeneous multidatabase environment. The contribution concern-
ing MH disconnections is the implementation of the Message and Queuing
Facility that manages the exchanges between MHs and the wired multi-
database system. An MDSTPM is assumed at each host (FH) on top of
existing local DBMS. Local DBMSs have the responsibility for local pro-
cessing. The MDSTPM coordinates the execution of global transactions, it
generates scheduling and coordinates commits. Because of MH disconnec-
tions, a FH coordinator is designated in advance. Therefore, once a MH
submits a global transaction, it may disconnect and perform other tasks
without having to wait for the mobile transaction to commit. The coor-
dinator host will manage the mobile transaction on behalf of the MH. In
MDSTPM, as in KT, the manner ACID properties are enforced depends on
each DBMS at each site on the wired network.

18

3.11 Moflex

The principal goal of Moflex [45] is to provide access to heterogeneous mul-
tidatabase systems from MHs. Moflex supports mobility management and
flexibility in the definition and execution of MTs. It extends the Flexible
Transaction Model [21] designed for heterogeneous MDBS where a transac-
tion is a collection of subtransactions related by a set of execution depen-
dencies: success, failure and external dependencies (time, cost or location).
Besides flexible transactions, Moflex allows the definition of location depen-
dent subtransactions [18] and the support for adaptability in the execution
of subtransactions when hand-off occurs. Authors assume that the system
is built on heterogeneous, autonomous MDBS. The mobile heterogeneous
MDBS has three layers: MH, BS and MDBS. In the MH layer, users define
Moflex transactions that are submitted to the mobile transaction manager
of the current wireless cell in the BS layer. The mobile transaction manager
coordinates the execution of submitted transactions. A global transaction
manager at the heterogeneous MDBS layer executes transactions enforcing
ACID properties.

3.12 Pre-serialization

Pre-serialization [14, 15] is oriented towards mobile autonomous MDBS. MHs
request transactions from the MDBS where each DBMS runs on FHs. Mo-
bile transactions are considered as long lived global transactions composed
of compensatable subtransactions (called site transactions). Pre-serialization,
unlike KT, MDSTPM and Moflex, enforces atomicity and isolation properties
of global transactions while taking into account disconnections and migra-
tion of mobile users. To minimize the effects of mobile transactions (e.g.
long lived executions due to mobile users disconnections) Pre-serialization

allows site transactions to commit independently of the global transaction.
This allows releasing local resources in a timely fashion. In addition, a
pre-serialization process is executed. For this, a partial global serialization
graph algorithm (PGSG) verifies the serializability of global transactions.
The global transaction manager has a global coordinator and a site manager
layer. The global layer consists of a set of global transaction coordinators
located at each BS and at any other node supporting external users. The
local layer consists of a set of site transaction managers at each participat-
ing DBMS. Global transactions are requested by mobile hosts from a global
coordinator which submits site transactions to local managers. The global
layer also handles disconnections, migration of mobile users, logs responses

19

that cannot be delivered to off-line users and executes the PGSG algorithm.

3.13 Commercial Products

This section introduces some commercial products proposing database so-
lutions for mobile environments. Since they are commercial products we
do not have the same technical information as we had for other (research)
proposals described so far. Therefore, our discussion will stay at a descrip-
tive level. The reviewed products are PointBase, FastObjects j2, Oracle and
IBM proposals. Other proposals (not presented here) are eXtremeDB [53],
Sybase iAnywhere Solutions [75] or IBM Cloudscape [35].

PointBase. PointBase [65] is a relational database for mobile environments.
Directly embedded into mobile off-line applications, it can operate on any
mobile device including laptops, tablets PCs and PDAs. PointBase is entirely
written in Java with a footprint (Jar file) between 45 KB and 90 KB for the
micro version and 1MB for the embedded version. It can run on any platform
supporting a Java Virtual Machine (JVM). PointBase supports multiple con-
nections from only one application running on the same JVM. PointBase mi-
cro includes transactional support for flat transactions (auto-commit, com-
mit and rollback operations) and partially implements the SQL92 standard
and the JDBC programming interface. PointBase embedded supports dis-
tributed transactions (Two Phase Commit), it uses row-level locking and
provides the fourth isolation levels of the ANSI SQL92 (read uncommit-
ted, read committed, repeatable read, serializable). By using PointBase
UniSync, PointBase databases can be synchronized bi-directionally with cor-
porate databases like Oracle or Microsoft SQL Server. To store corporate
data on MHs, PointBase UniSync uses a publish-subscribe model. It allows
client applications to have subscriptions to published data on the server side
consisting of subsets of rows and single or multiple tables.

FastObjects j2. FastObjects j2 [23] is an object oriented database (formerly
called Navajo Poet). It provides embedded database components in a 450
KB Java package. It is a single-host component for embedded applications
that run in any Java compliant environment. FastObjects j2 has a modular
architecture with a core that provides the essential database functionalities
like object cache management and transactions. It uses object-level locking
and provides the four isolation levels defined in ANSI SQL92. The modular
architecture allows the incorporation of features, such as versioning, events,

20

Transaction
type

Exec.
model

Execution
at MH

Execution at wired
network

Operation
modes

Clustering Strict and weak
transactions

2 and 3 Weak trans-
actions and
local commit
in discon-
nected mode.
Participation
in the execu-
tion of strict
transactions
in connected
mode

Strict transactions
and commit of weak
transactions (synchro-
nization, permanents
updates)

Connected,
weak con-
nected,
disconnected
modes

Two-tier repli-

cation

Base and tenta-
tive transactions

2 and 3 Tentative
transactions
in discon-
nected mode.
Participation
in the execu-
tion of base
transactions
in connected
mode

Base transactions Connected,
disconnected
modes

HiCoMo Base and HiCoMo

transactions
2 HiCoMo trans-

actions
Generation of ag-
gregate tables and
base transactions,
execution of base
transactions

Connected,
disconnected
modes

IOT First and second
class transactions

2 Second class
transactions
in discon-
nected mode.
First trans-
actions in
connected
mode

Validation and resolu-
tion of second class
transactions

Connected,
disconnected
modes

Pro-motion Long-lived
nested-split
transactions

2 The compact
agent exe-
cutes entirely
the MT and
makes local
commit

The compact man-
ager is in charge of
compact construction,
commit of locally com-
mitted transactions
(synchronization,
permanents updates)

Connected,
disconnected
modes

Reporting Open-nested
transactions with
atomic, non-
compensatable,
reporting and
co-transactions

1 and 3 Subtransactions
and even
global trans-
actions

Global transactions
and subtransactions

Connected
mode

Semantics-

based

Long-lived trans-
actions

2 MT and local
commit

In answer to MH
requests, objects frag-
mentation (split) is
made by the database
server and also up-
dates reintegration
(merge)

Connected,
disconnected
modes

Prewrite Long-lived
(nested, split)
transactions

2 MT and local
commit

Lock management and
commit of locally com-
mitted transactions
(write operations)

Connected,
disconnected
modes

KT Open-nested and
split transactions

1 Transaction
request

Coordination and
transaction execution

Movement
in connected
mode

MDSTPM Multitransactions 1 Transaction
request

Coordination and ex-
ecution of multitrans-
actions

Movement in
connected,
disconnected
mode

Moflex Multitransactions
and location
dependent trans-
actions

1 MT definition Coordination and
transaction execution

Movement
in connected
mode

Pre-serialization Multitransactions 1 Transaction
request

Coordination, trans-
action execution pre-
serialization with the
PGSG algorithm

Movement
in connected
and dis-
connected
mode

Table 1: Main features of MT research proposals
21

XML support, logging (undo-log based recovery) and replication if they are
needed by the applications. FastObjects j2 allows an off-line multithreaded
access to the database providing ACID, nested and parallel transactions. It
supports JDOQL (Java Data Objects Query Language)and it is JDO and
ODMG (Object Data Management Group) compliant. FastObjects j2 offers
a “shadow database” replication feature. Replicas can be modified with
transactions, changes are logged and applied to the primary database.

Oracle9iAS Wireless and Oracle9i Lite. Oracle addresses mobile data ac-
cess with the Oracle9iAS Wireless application server [57]. Oracle9iAS Wireless

makes an application web site (running on FHs) accessible from mobile de-
vices. It includes mobile services such as PIM (Personal Information Man-
ager), e-mail, location-based (for location aware applications), and push
services – via SMS (Short Message Service), WAP (Wireless Application
Protocol), e-mail and voice. In particular, Oracle9iAS Wireless provides se-
cure mobile transactions from any mobile device (this is oriented to mobile
commerce). To allow off-line processing, Oracle proposes Oracle9i Lite [56]
(an extension to Oracle9iAS Wireless), a relational database with a footprint
from 50 KB to 1 MB (depending on the platform). It runs under Win-
dows CE, Windows 95/98/NT/2000, Palm OS or Symbian EPOC operating
systems. Oracle9i Lite supports flat ACID transactions and the four isola-
tion levels of the ANSI SQL92. Concurrent accesses are controlled with a
row-level locking approach. Multiple JDBC or ODBC connections are sup-
ported. It is possible to create copies (snapshots) for mobile devices from
Oracle master sites. Snapshots may be modified in disconnected mode. A bi-
directional synchronization (Mobile Sync) with corporate databases is made
(in connected mode) by the master site. Mobile Sync synchronizes multiple
devices simultaneously.

WebSphere Everyplace and DB2 Everyplace. IBM has developed Web-

Sphere Everyplace products family for data management on mobile environ-
ments. WebSphere Everyplace Access [36] allows mobile devices to access
data (e-mail, PIM and business application data). It delivers web pages and
e-business applications to cell phones and wireless PDAs. It contains a Lo-
cation Aware Service that provides location information to mobile-enabled
applications. IBM also proposes DB2 Everyplace [34], an off-line single-user
relational database with a footprint of 180 KB that provides local store on
mobile devices. It is available for Palm OS, Symbian OS, Windows CE,
Windows 95/98/NT/2000/XP, QNX Neutrino, Linux, and embedded Linux

22

devices. DB2 Everyplace supports a subset of SQL and provides indexing. It
contains a bi-directional Synchronization Server that synchronizes relational
data between the mobile device and enterprise data sources (DB2, Oracle,
Informix, Sybase, MS SQL Server and Lotus Domino). DB2 Everyplace

provides flat transaction management (commit, auto-commit and rollback
operations). It supports multithread database connections (ODBC/JDBC)
in a serialized way. In connected mode mobile devices may request queries
and stored procedures executions on the database server.

3.14 Summary and Discussion

Table 1 summarizes the main features of the reviewed research projects:
transaction types, execution models, parts executed on MH or on the wired
network and operation modes (e.g. disconnected).

All models but Reporting assume that mobile transactions are requested
from MHs. In Reporting, transactions can be requested by any host. The
transaction execution model (Section 2.3) used by each proposal is the fol-
lowing. The first model (complete execution on the wired network) is applied
by Pre-serialization, KT, MDSTPM and Moflex. The second model (complete
execution at a MH) is used in Clustering, Two-tier replication, HiCoMo, IOT,
Pro-motion, Semantics-based and Prewrite. The third one (distributed execu-
tion between a MH and the wired network) is supported only in connected
mode by Clustering, Two-tier replication and Reporting. The fourth and fifth
execution models – where execution involves several MHs – are not sup-
ported either by the research proposals or the analyzed commercial prod-
ucts. These products use the first or the second model and do not support
distributed mobile transaction executions.

Concerning transaction models themselves, Reporting is an original model.
Authors extend the open-nested transaction model applying delegation tech-
niques to allow visibility and to delegate MH responsibilities to FHs. In most
cases contributions propose new features to support mobile transactions but
do not really propose structural variations of the transaction model.

Table 24 shows the basic characteristics of the studied commercial prod-
ucts. On the one hand it is interesting to note the similarity between Point-

Base and FastObjects j2. Both follow the embedded approach and are 100%
Java-oriented. It can be noticed that FastObjects j2 has a better transac-

4In the following tables an empty cell means that we do not have enough information

about this point.

23

General information Data access Transactional
sup.

Replication/Sync

PointBase Relational database, 45-90
KB and 1 MB footprint,
single off-line application
(execution model 2) for any
Java compliant platform

Multiple JDBC
connections with
support of SQL92

Flat transactions
in micro ver-
sion. Distributed
transactions, four
isolation levels
and row-level
locking in the
embedded version

Publish/subscribe
model and
PoinBase
UniSync with
bi-directional
synchronization
with Oracle or
Microsoft SQL

FastObjects j2 Object-oriented database,
450 KB footprint, single
off-line application (execu-
tion model 2) for any Java
compliant platform

Multiple JDBC
connections with
JDOQL support

ACID nested
and parallel
transactions
(object-level
locking), four
isolation levels

Shadow database
to backup appli-
cation data

Oracle9iAS

Wireless

On-line web application
access (execution model 1)

Provides access
to PIM, e-mail,
location-based
and push-based
services

Oracle9i Lite Relational database with
50 KB to 1 MB footprint,
off-line applications (exe-
cution model 2) for several
operation systems

Multiple
JDBC/ODBC
connections

ACID trans-
actions, four
isolation levels,
locking approach
for concurrency
control

Bi-directional
snapshot syn-
chronization

WebSphere Ev-

eryplace Access

On-line web application
access (execution model 1)

Provides access to
e-mail, PIM and
bussines applica-
tion data, it pro-
vides a Location
Aware Service

DB2 Everyplace Relation database with
180 KB footprint, off-line
applications (execution
model 2) for several
platforms

Multiple
JDBC/ODBC
connections with
a subset of SQL.
Remote queries
and stored proce-
dures execution
in connected
mode

Flat transactions DB2 Everyplace
Sync Server with
bi-directional
synchronization

Table 2: Overview of some data management products for mobile devices

tion management mechanism whereas PointBase contains a more complete
replication/synchronization process. On the other hand, mobile approaches
of IBM and Oracle, besides proposing a small footprint database, address
on-line web application access.

There exist also industrial products – oriented to small footprint database
systems – like PicoDBMS [5] and GnatDb [76].

24

4 Ensuring ACID Properties for Mobile Transac-

tions

This section presents how MTs deal with ACID properties (Atomicity, Con-
sistency, Isolation, Durability) [31]. Works are compared and common fea-
tures identified. One section is dedicated to each property although there
are no really clear borders between them. Indeed relationships between
ACID properties, correctness criteria and execution protocols are not always
clearly defined. The following choices were made to organize the analysis:
the atomicity Section (4.1) introduces information related to commit proto-
cols; the consistency Section (4.2) deals with the management of semantic
information; the isolation Section (4.3) describes visibility and concurrency
control aspects as well as mutual consistency issues (replication is discussed
here). Finally, the durability Section (4.4) is mainly devoted to the durable
effects of MTs and to logging aspects.

Works analyzed in this section are Clustering, Two-tier replication, HiCoMo,
IOT, Pro-motion, Prewrite, Semantics-based and Reporting. Works using exe-
cution model 1 – complete execution on the wired network – propose features
on mobility management and do not focus on protocols oriented to ACID
properties. Thus KT, MDSTPM, Moflex and Pre-serialization are discussed
in Section 5.

4.1 Atomicity

The atomicity property (Section 2.4) is ensured by commit protocols. Sec-
tion 4.1.1 deals with commit process for each analyzed work. Section 4.1.2
discusses other related works such as UCM [6] and TCOT [47]. Section 4.1.3
contains a summary discussion.

4.1.1 Commit Process

Except for Reporting and Semantics-based, transaction commit is done in
two steps. The first one is realized on MHs – local commit – and the second
one – commit – at the BS/Database server. Clustering, Two-tier replication,
HiCoMo, IOT, Pro-motion and Prewrite execute local commit, each one with
specific characteristics:

• Clustering and Two-tier replication make local commit only in discon-
nected mode using special transaction types. In connected mode an

25

atomic commit protocol is used (e.g. 2PC). It includes participation
of several hosts.

• HiCoMo, Pro-motion and Prewrite do not differentiate connected and
disconnected modes. Local commit is performed using an atomic com-
mit protocol (2PC in Pro-motion). In Pro-motion the transaction de-
signer decides whether or not the transaction makes local commit.

• IOT also makes a local commit (in connected and disconnected modes)
but recovery in case of failure is not guaranteed. Authors argue that
on mobile clients, space is a limited resource and a large amount of
space is needed for undoing the effect of a transaction. Consequently,
the logging service will be unavailable to a client when its log space is
exhausted. Locally committed transactions go into a pending state.

At the second step of the commit process, locally committed transactions
make updates permanent on the database server. Transaction commit can
involve reconciliation mechanisms or transaction re-execution.

• Reconciliation in Clustering is made syntactically where weak transac-
tions are aborted or rolled back if their weak writes conflict with strict
transactions.

• In Two-tier replication, base transactions (re-execution of tentative
transactions) are executed in their local commit order. If this re-
execution fails, even by taking into account the acceptance criteria
(attached to each tentative transaction), then the tentative transac-
tions are aborted. To improve the chances of success, tentative trans-
actions can be designed to commute with each other.

• In HiCoMo the set of base transactions generated from a HiCoMo one
is organized in an extended nested transaction where each base trans-
action is a subtransaction. If a base transaction aborts – because of
integrity constraint problems – another base transaction can be gen-
erated (from the same HiCoMo) and executed. The criteria for stop
retrying depends on the defined error margin values. Thus, the global
commit is almost always guaranteed thanks to the considerations made
– HiCoMo transactions are commutative, error margins are tolerated
and base transaction re-execution are allowed.

• IOT provides four options to reconciliate pending transactions: (1) re-
executing the transaction using the up-to-date server files (this is the
default option), (2) invoking the transaction’s Application Specific Re-
solver (ASR), that is, the transaction designer may attach an ASR to

26

Commit process

First step at MH Second step at BS/DB server

Clustering Disconnected mode: local commit
of weak transactions. Connected
mode: 2PC for strict transactions

Commit involves syntactic reconcil-
iation with abortion and rollback in
the resolution of conflicts

Two-tier repli-

cation

Disconnected mode: local commit of
tentative transactions. Connected
mode: atomic commit protocol for
base transactions

Tentative transactions are re-
executed taking into account their
acceptance criteria

HiCoMo local commit of HiCoMo transactions Execution of base transactions tak-
ing into account defined margin er-
rors. If a base transaction aborts,
another one can be defined and ex-
ecuted

IOT local commit of local transactions Four resolution options for second
class transactions: re-execution,
application specific, abortion and
notification to users

Pro-motion local commit of local transactions
(2PC)

A synchronization process checks
compacts involved in local transac-
tions. In case of conflicts, local
transactions are aborted and con-
tingency procedures are executed

Prewrite local commit of local transactions
(prewrite operations)

Local updates are made permanent
by the write operations

Semantics-

based

local commit Updates reintegration (merge). As
fragments are exclusive copies and
they have attached consistency con-
ditions there are no conflicts in rein-
tegration.

Reporting All subtransactions are atomic and they are able to commit independently of
the parent transaction. In case of abortion compensating transactions can be
associated to subtransactions (except for non-compensatable ones)

Table 3: Summary of commit process

a transaction to be automatically invoked by the system, (3) aborting
the transaction and (4) Asking the users to manually resolve conflicts.

• In Pro-motion, compacts involved in locally committed transactions
are checked. If some compacts are no more valid, then mobile transac-
tions are aborted and a contingency procedure (attached to each local
commit) is executed to obtain semantic atomicity.

• In Prewrite, neither reconciliation nor re-execution are made. By
means of the transaction processing algorithm and the locking proto-
col, Prewrite ensures that locally committed (precommitted) transac-
tions will commit at the database server. This is because the prewrite
and write data variants are actually different. Thus, the preread,
prewrite and precommit executed on MHs are also different (but with
a particular relation, see Section 4.3) from the read, write and commit
operations executed to make updates permanent.

The commit process is different in Reporting where each subtransaction
is atomic but this does not imply the atomicity of the global mobile transac-

27

tion. Except for non-compensatable subtransactions, compensating transac-
tions can be associated to subtransactions so (semantic) atomicity is guar-
anteed. In Non-compensatable transactions, reporting and co-transaction
delegation does not affect atomicity because it does not require the invoking
transaction of an operation to be the one who either commits or aborts this
operation. A transaction is quasi atomic if all operations that it is respon-
sible for are committed or none of them. Subtransactions may commit or
abort unilaterally without waiting for any other subtransaction and even for
their parent transaction.

In Semantics-based, transactions are considered long-lived. As MHs are
responsible for local transaction commit, it would be possible to support
atomic or not-atomic transactions.

Table 3 summarizes the commit processes.

4.1.2 Other Commit Protocols

We extend our analysis by considering other works where participants may
be mobile or fixed hosts (execution models 3-5). The motivation behind
these protocols generally is to provide a mobile commit process which takes
into account (1) the limited characteristics of the wireless network by reduc-
ing the number of messages and (2) the mobile nature of MHs by including
BSs in the commit process.

UCM (Unilateral Commit Protocol) [6] supports disconnections and off-
line executions (on MHs). This work is motivated by the weakness of the
2PC protocol when executed on mobile environments: no off-line processing,
MHs necessity of supporting the prepared state and 2 rounds of messages.
UCM is a one-phase protocol where the voting phase of 2PC is eliminated.
The coordinator acts as a “dictator” and broadcasts its decision to all par-
ticipants. Several assumptions are made. For instance, all participants are
required to serialize their transactions using strict 2PL5 and at commit time
the effects of all local transactions must be logged on stable storage.6 UCM

5Strict 2PL (the most implemented version of 2PL) releases write locks after the trans-

action commits or aborts, read locks can be released when the transaction terminates.

Generated schedules are strict [3] (i.e. they are recoverable and avoid cascading aborts).
6Physical storage of MH is not considered stable because MHs are subject to lost,

damages or undefined disconnections. Thus, only FHs are considered as stable storage.

28

guarantees atomicity and durability; nevertheless, because of its assump-
tions, data accessed by uncommitted local transactions are blocked until
commit and logs must be flushed (on a FH) at each transaction commit.

TCOT (Transaction Commit On Timeout) [47, 46] uses timeouts to pro-
vide a non-blocking protocol with restrained communication. In order to
achieve this objective, instead of using messages to know if a mobile par-
ticipant is ready to commit, the commit coordinator waits for timeouts to
expire. The coordinator is installed on the current MH’s BS, or hopping
from BS to BS along with the MH. Thus, participants must send a commit
message to the coordinator. If participant’s timeouts expire and the coordi-
nator has received neither a commit nor an abort message, the transaction
is aborted. If all participant’s commit are received before a global timeout,
the transaction is committed without sending a global commit message. If
necessary, timeouts may be renegotiated during execution. Participants may
commit locally before the global commit. If the global commit fails, the co-
ordinator sends a global abort message and compensating transactions are
executed. To be able to commit independently, mobile participants have
to send their logs of updates to the coordinator. When the global com-
mit is successful, the coordinator sends MH updates to the corresponding
DBMS on the wired network (reconciliation problems are not considered).
The protocol considers the doze mode (see Section 2.2) but does not take
disconnections into account. TCOT provides semantic atomicity [25]. To
provide atomicity (not semantic atomicity) and to avoid cascading aborts,
TCOT proposes using strict 2PL by each participant.

4.1.3 Discussion

Conceptually, Semantics-based, Pro-motion, Prewrite and Reporting consider
transactions as long-lived ones. If these transactions are executed on MDBS,
global atomicity depends on the autonomy of each database system [7]. If
some DBMS cannot participate in a global atomic commit protocol, then
atomicity is hard to be guaranteed. If works introduced in Section 4.1.2
are applied to MDBS, the autonomy is violated because DBMS are forced
to send their logs to the commit coordinator (in TCOT) or to a fixed host
(UCM). Furthermore UCM and TCOT assume that all participant process-
ing systems use strict 2PL (this assumption can be relaxed for TCOT).
Such assumption may lead to data blocking for undefined periods of time.
Nevertheless, cascading aborts are avoided.

29

Cascading aborts may occur in Clustering, Two-tier replication and Pro-

motion. But, as local committed transactions modify local data, only aborts
of local transactions are generated. In addition, these aborts concern only
weak and tentative transactions because local results are exclusively avail-
able for these type of transactions. IOT prevents cascading inconsistency by
notifying the users about objects accessed by non-validated transactions. In
reconciliation, where a non-validated transaction is being resolved, both the
local and global state for the relevant inconsistent object must be exposed,
in that way the resolver can choose the local or global state for an object.

Regarding works that use a distributed execution model (Clustering with
strict transactions, Two-tier replication with base transactions, UCM and
TCOT), only UCM supports MH’s disconnections. In Clustering and Two-

tier replication MHs must be strongly connected. If a disconnection occurs
the commit process raises an error. In TCOT, if a mobile participant com-
mits locally and immediately after it disconnects, it will not be informed
about a subsequent global abort.

Mobile transaction commit is generally made in two steps: local commit
is done on MHs and commit is done on the BS/Database server. This
approach relaxes atomicity and requires extra execution process compared to
traditional techniques (e.g. 2PC). Nevertheless, it is well adapted to mobile
environments because it gives MHs the possibility to work in disconnected
mode without blocking the execution of the system.

4.2 Consistency

Consistency (Section 2.4) is preserved by respecting integrity constraints
wich are application based – semantic information is used to define them.
Section 4.2.1 analyzes the way semantic information is exploited to ensure
data consistency when using mobile transactions. Section 4.2.2 summarizes
the analysis.

4.2.1 Semantic Information

• In Clustering, semantic information is used to specify the degree of
inconsistency among clusters. This degree may be limited by (1) the
number of local commits, (2) the number of transactions that can op-
erate on inconsistent copies, (3) the number of copies that can diverge,
etc. There exists also a function h that controls this degree by pro-
jecting strict operations on weak versions. Full consistency is achieved

30

by merging (reconciliation) different copies of the same data located
at different clusters.

• In Two-tier replication, the acceptance criteria is a test that allows base
transaction results to be slightly different from tentative transactions.
Such acceptable difference is semantics based. Semantic information
is also used to design commutative tentative transactions.

• In HiCoMo semantic information is used: (1) to obtain aggregate ta-
bles, (2) to design commutative HiCoMo transactions, (3) to define
allowed error margins and (4) to generate base transactions. In par-
ticular, the transaction transformation function (used to generate base
transactions) needs as input: the aggregate table accessed, operation
types, base tables configuration, integrity constraints and conflicts be-
tween concurrent base transactions and the concerned HiCoMo one.

• In IOT, the Application Specific Resolver (ASR) solution applied to
pending transactions (see Section 4.1) is based on semantic informa-
tion.

Pro-motion and Semantics-based exploit semantic information to con-
struct compacts and fragments:

• For Pro-motion the compact represents an agreement between the database
server and the MH. The compact manager and the database server en-
capsulate in compacts: data, type specific methods, state information,
consistency rules, and obligations. If the compact agent and com-
pact manager respect all these conditions, the use of compacts will
not affect database consistency. The compact designer can determine
correctness criteria and concurrency control methods per compact.

• In Semantics-based, to preserve consistency, objects must carefully sup-
port split (to make fragments) and merge (to reconciliate fragments)
operations. Another restriction to preserve consistency is to provide
consistency conditions – supplied by applications – on the entire ob-
ject. These conditions include allowable operations, constraints of
their input values and conditions on the object state.

Reporting does not propose new ways to preserve consistency, but sub-
transactions can be related to compensating transactions – except for non-
compensatable – in order to maintain semantic consistency in case of abor-
tions.

31

Consistency and semantic information

Clustering Definition of the function h and degrees of inconsistency
Two-tier repli-

cation

To define commutative tentative transactions and acceptance criteria

HiCoMo To define: aggregate tables, commutative HiCoMo transactions, and error mar-
gins. To execute the transaction transformation function

IOT ASR resolution conflicts
Pro-motion Compacts construction (type specific methods, consistency rules and obligations)

and contingency procedures
Reporting Delegation, compensating transactions
Semantics-

based

Objects fragmentation (consistency conditions and split/merge operations)

Prewrite Definition of data variants (prewrite/write)

Table 4: Summary of consistency aspects

4.2.2 Summary

Table 4 summarizes the main concepts used to preserve consistency. Se-
mantic information on objects is essential to guarantee consistency in mo-
bile applications. All analyzed works take advantage of object semantics in
different ways. Clustering defines degrees of inconsistency based on the ap-
plication semantics. Two-tier replication manages an acceptance criteria be-
tween tentative and base transactions. HiCoMo generates base transactions
from commutative HiCoMo transactions, among others. IOT uses applica-
tion specific resolvers to reconciliate second class transactions. Pro-motion

uses semantic information to build compacts and Semantics-based to split
and merge objects. Reporting bases delegation on semantic requirements,
and Prewrite defines “semantically identical” data variants (prewrite/write
objects).

4.3 Isolation

This section discusses three issues concerning isolation (Section 2.4) : (1) the
degree of visibility for locally committed transactions (Section 4.3.1); (2) the
choice about concurrency control protocols (Section 4.3.2); and (3) mutual
consistency (i.e. one-copy serializability) for data replication (Section 4.3.3).
Section 4.3.4 introduces new proposals on concurrency control. Section 4.3.5
closes this part with a brief discussion.

4.3.1 Visibility Aspects

Concerning visibility of intermediate transaction results, Clustering, Two-tier

replication, HiCoMo, IOT, Pro-motion and Semantics-based give visibility of
locally committed results to local transactions on the same MH. Prewrite

32

makes public locally committed results when the local commit is reported
to a BS. In Reporting, visibility is allowed in atomic, reporting and co-
transactions but not in non-compensatable transactions. An atomic trans-
action can commit its execution even before the commit of its parent, and
its modifications to the database become visible to other transactions. The
objective of reporting and co-transactions is precisely to allow visibility of
partial results while in execution.

Taking Pro-motion and Reporting as open-nested transactions, global iso-
lation is not enforced since subtransactions are not executed isolately. After
the synchronization process, Pro-motion splits its long-lived transaction. All
operations that have been successfully synchronized form a separate trans-
action that is committed on the database server. Results of this split (com-
mitted) transaction are visible to the whole database environment.

4.3.2 Concurrency Control Schemes

To manage concurrent executions, Clustering and Prewrite use 2PL-oriented
protocols and propose new conflict tables.

• Clustering uses strict 2PL and proposes four lock types that correspond
to weak and strict operations (WR, WW, SR, SW). Four conflict ta-
bles for lock compatibility are proposed. The projecting function h
utilizes conflict tables to reflect strict operations on weak versions de-
pending on the application consistency requirements. For example,
strict consistency requires translating a strict write on an object into
strict writes on all its copies (strict and weak ones). Consequently,
a SW lock is incompatible with any other lock. Weak transactions
release their locks at local commit and strict transactions at commit.
If weak and strict transactions are executed concurrently in a clus-
ter, a correct schedule ensures that a weak read operation reads data
modified by the last write (weak or strict) operation, and a strict read
operation reads data modified by the last strict write.

• As Clustering, Prewrite uses a 2PL protocol and the conflict opera-
tion table includes preread and prewrite operations (PR, PW, R, W).
Prewrite and preread locks concern the prewrite version of data. Read
and write locks concern the write version. All locks are managed by
a BS. To make prewrites permanent the prewrite lock must be con-
verted into a write lock; in this way, the data manager can write and
commit mobile transactions. Preread locks are released at local com-
mit time whereas prewrite/write/read locks at commit time. At using

33

simple objects (without two variants) prewrites are identical to writes
and the algorithm behaves as using relaxed 2PL. Prewrite ensures that
the transaction processing algorithm along with a lock-based protocol
produce only serializable histories. This serializability is based on the
local commit order of mobile transactions.

In HiCoMo, as HiCoMo transactions are commutative, their execution
can be made without strong restrictions on the order. Whereas, base trans-
actions are not commutative – they can execute division or multiplication
operations – thus, the order between them and HiCoMo transactions is im-
portant. An optimistic concurrency control strategy based on timestamps
[58] is used to detect conflicts.

Similarly, in Two-tier replication if tentative transactions are commuta-
tive there is no need of a local concurrency control mechanism. Nevertheless,
for executing base transactions locking mechanisms are used.

In IOT, concurrency control is made in two levels. Across clients, global
concurrency control is maintained using the optimistic concurrency control
(OCC) schema [48]. Within a client, local concurrency control is enforced
with strict 2PL with a periodic deadlock detection. Serializability is guar-
anteed locally.

Since in Pro-motion the compact designer can determine correctness cri-
teria and concurrency control methods per compact, they propose to use a
ten-level scale. Levels are characterized based upon the degrees of isolation
defined in the ANSI SQL standard as extended in [2]. Level 9 represents
a serial execution of transactions and level 8 a serializable execution. Each
successive level represents a weaker degree of isolation. At level 0 there is
no guarantee about isolation. Since the arbitrary use of isolation levels can
lead to inconsistencies, Pro-motion proposes simple rules:

1. Transactions impose a minimal level for write and read operations.

2. Each operation is associated with a level.

3. None of the write operation levels is lower than the write level of the
transaction.

4. None of the read operation levels is lower than the read level of the
transaction.

5. The lowest level of any read operation is greater than or equal to the
highest level required by any write operation.

34

In Semantics-based, to ensure serializability, local transactions have ac-
cess to cached fragments by using conventional concurrency control protocols
(e.g. 2PL).

4.3.3 Replication Issues

Replication issues are tightly integrated with mobile transaction manage-
ment in several works. Clustering and Two-tier replication maintain two ver-
sions of data. Both versions are located on the MH, one of them (weak/tentative)
is used to support data evolution in disconnected mode. The second one
(strict/master) must be always consistent. Consistency in strict/master
versions is preserved using one-copy serializability methods. To provide
coherency Clustering uses quorum consensus and Two-tier replication uses a
lazy-master replication protocol. In Two-tier replication, tentative data ver-
sions are discarded at reconnection because they are outdated by completely
refreshed master versions.

HiCoMo, Pro-motion and Prewrite take a different approach. They con-
struct a special type of data (from sources stored on FHs) that will be stored
on MHs and that can be considered as a special kind of replica. In HiCoMo,
aggregate tables are generated from base tables. The correctness criterion
is convergence7 where base tables eventually reflect updates made in aggre-
gate tables. The approach is similar in Prewrite, where the prewrite variant
is a smaller variant of the write value. In Pro-motion, unlike HiCoMo and
Prewrite, compacts contain not only specific data but also special informa-
tion for using it. The flexibility offered by compacts allows Pro-motion to
support several dynamic replication schemes with a variety of consistency
constraints and correctness criteria.

In IOT, a variant of the read-one, write-all approach (ROWA) [4] is used
to maintain consistency in a fully connected environment. With ROWA,
first class transactions are serializable with all committed transactions. In
disconnected mode, an optimistic evolution on MHs is assumed. IOT de-
fines a correctness criterion called global certifiability. It requires that a
pending transaction to be globally serializable with and after all previously
committed or resolved transactions. Global certifiability is enforced with a
systematic re-execution of pending second class transactions. This is the
default consistency criterion.

7Convergence states that eventually all replicas will converge on the same state.

35

4.3.4 Other Concurrency Control Approaches

As discussed in Section 2.4, 2PL is not suitable for distributed transac-
tion executions including MHs (execution models 3-5). This is because of
unknown locking time due to unpredictable disconnections. Variants have
been proposed as in [54] where a concurrency control scheme integrating
optimistic and pessimistic approaches is presented. A timeout is associated
to locked data. This timeout is the estimated time interval within which the
transaction is expected to commit. If the commit does not occur within that
period (because of disconnections), then the pessimistic policy is switched
to an optimistic one. In reconnection, optimistically committed transactions
are re-executed.

O2PL-MT (O2PL for Mobile Transactions) [39] extends the optimistic
two phase locking algorithm (O2PL) [8] to mobile environments. In this
algorithm, read locks are granted on demand and write locks are deferred
until commit time. Working in a replicated context, the O2PL-MT algo-
rithm reduces the number of messages to be sent when releasing read locks.
O2PL-MT allows releasing a read lock for an item to be executed at any
copy site, regardless of whether that site is different from the copy site where
the lock is set.

4.3.5 Discussion

Mobile computing usually involves some kind of replication because data
cached on MHs are extracted from databases located on the wired network.
Under data replication two correctness levels are considered: locally (on
each host) and globally (on all hosts). In a fully connected environment it is
possible to ensure global correctness (or mutual consistency) of the mobile
system. For instance, see Clustering, Two-tier replication and IOT in Table
5. In disconnected or weak connected modes, the global correctness criteria
must be relaxed to avoid blocking MH as well as FH executions. Thus,
local data evolution may continue giving MH some autonomy. Eventual
global correctness [68][69] seems to be adequate to mobile environments
because consistency is achieved or required “at specific real-time”, “within
some time” or “after a certain data value threshold is reached”. Among
analyzed models note that in Clustering, eventual consistency is proposed to
define degrees of inconsistency (see Section 4.2.1). This allows “a maximum
number of transactions that may operate on disconnected mode”, “a range
of acceptable values a data may take”, “a maximum number of divergent
copies per data”, “a maximum number of updates per data not reflected at

36

Visibility Concurrency control Replication issues

Clustering local committed transaction
results are visible to local
weak transactions on the
same MH

2PL, 4 conflict tables and
new lock types are pro-
posed

2 versions of data: strict
(one-copy serializability
using quorum consensus
protocol), weak (degrees
of inconsistency, data
evolution in disconnected
mode)

Two-tier repli-

cation

local committed transaction
results are visible to lo-
cal tentative transactions
on the same MH

Locking mechanisms for
base transactions

2 versions of data: mas-
ter (one-copy serializabil-
ity using a lazy master
replication protocol), ten-
tative (local data evolu-
tion in disconnected mode)

HiCoMo local committed HiCoMo re-
sults are visible to another
HiCoMo on the same MH

Optimistic timestamp or-
dering for a HiCoMo with
base transactions

Aggregate and base ta-
bles. Convergence as cor-
rectness criteria

IOT local committed transaction
results are visible on the
same MH

OCC globally, 2PL locally A variation of ROWA for
a fully connected environ-
nement, optimistic evolu-
tion in disconnected mode,
global certifiability as con-
sistency criterion

Pro-motion local committed transaction
results are visible to local
transactions on the same
MH

Possibility of different iso-
lation levels and concur-
rency control per compact

Compacts definiton allows
several replicaton schemas

Reporting with subtransactions
atomic, reporting and
co-transactions visibility is
allowed before the commit
of the global transaction

Semantics-

based

local committed transac-
tions results are visible to
local transactions on the
same MH

2PL to control access to lo-
cally cached fragments

Prewrite local committed transac-
tions results are visible to
all hosts

2PL extended, one conflict
table and new lock types
are proposed

Write and prewrite data
variations

Table 5: Summary of isolation aspects

all copies”.

As we can notice in Table 5, although local results are tentative (in re-
connection a global commit should be done) the majority of analyzed works
makes them locally visible. It is also interesting to notice that in general lo-
cal correctness is ensured by using traditional locking approaches (i.e. 2PL).
Nevertheless, as 2PL is not well suited for distributed mobile executions,
optimistic-oriented protocols are being developed (e.g. see Section 4.3.4).

4.4 Durability

To make mobile transaction effects durable (Section 2.4), local commits
must be transformed into global ones on the database server. Section 4.4.1
shows the opportunity for local committed transactions to successfully com-
mit at the database server level. As the majority of studied works do not
address particular logging techniques, Section 4.4.2 completes this analy-

37

sis with other related proposals. Section 4.4.3 gives a brief discussion of
analyzed aspects.

4.4.1 Durability Guarantees

Clustering, Two-tier replication, IOT and Pro-motion cannot guarantee dura-
bility before commit on the wired network. Pro-motion with compacts can
give some guarantees of durability, but there may exist conditions that can-
not be respected because of disconnections; e.g. there is a deadline (in the
compact) that could not be reached. Consequently, durability is hard to
obtain in the synchronization process. In Reporting, subtransactions are
durable if the parent transaction commits.

HiCoMo, Semantics-based and Prewrite approaches guarantee durabil-
ity upon local commit. Nevertheless, the first work requires commutative
HiCoMo transactions, besides it has a complicated base transaction genera-
tion (see Section 4.2) and considers regenerations and base transaction re-
executions (in case of abortions). Semantics-based reduces fragments avail-
ability because a MH can hold fragments for an undefined period of time.
In the Prewrite algorithm, if a mobile transaction makes a local commit, its
commit is assured. The drawback is the message exchanges necessary to get
locks from the BSs.

Concerning logging, IOT (actually Coda [44]) proposes a mechanism to
reduce the log size. In disconnected mode, sufficient information to replay
updates (when reconnecting) is maintained in a replay log. To reduce the
length of the replay log, in update operations, instead of logging the “open”,
“close” and intervening “write” operations individually, a single record is
logged during the “close” operation. Authors also discard previous store
records for a file when a new one is appended. This is possible because a
store operation makes all previous versions of a file useless.

4.4.2 Related Works on Logging

The Little Work project [33], like IOT, proposes to reduce the log size. It
suggests to apply rule-based techniques used in compiler peephole optimizers.
Rules are used to eliminate redundant or useless operations from logs. The
optimizer takes an input list of rules, each of which consist of a set of source
operations followed by a set of target operations equivalent to the source
set. For instance, a “create filei” operation followed by a “rename filei by
filej” will be replaced by a “create filej” operation.

38

Durability guarantees Drawbacks

Clustering After commit (reconciliation) Locally committed transactions can
be rolled back due to reconciliation
conflicts

Two-tier repli-

cation

After commit (re-execution) Locally committed transactions can
be rolled back due to conflicts dur-
ing re-execution

HiCoMo After local commit Commutative HiCoMo transactions,
complicated base transaction
generation, regeneration and
re-executions

IOT After commit Locally committed transactions can
be aborted due to reconciliation
conflicts

Pro-motion After commit (reconciliation) Locally committed transactions can
be rolled back due to reconciliation
conflicts

Reporting If the parent transaction commits,
subtransactions are durable

Semantics-

based

After local commit Reduction of fragments availability
at database server

Prewrite After local commit Many message exchanges between
MHs and BSs

Table 6: Summary of durability aspects

The effect of mobility on logging is analyzed in [17]. The problem ad-
dressed is: if mobile transactions are distributed on several MHs, where
should reside logs in order to guarantee durability? Three techniques to
address this problem are proposed.

1. The Home BS logging approach maintains the MH logging at its home
BS (the BS where the MH initially was registered) even though the
MH moves and changes from BS to BS. The log of a distributed mobile
transaction will be scattered over the home BSs of the participating
MHs.

2. The Home MH logging approach stores the log at the BS covering the
MH when the transaction is originated. The log of a transaction is
centralized in one BS.

3. The Local BS logging approach stores the log entries on the current
MH’s BS. The entire log of a transaction may be scattered into a
number of BS.

4.4.3 Discussion

Table 6 shows when durability is ensured and what drawbacks here are.
Notice that generally, durability is guaranteed after commit, i.e. when local

39

commits are reintegrated to database servers. In the case where local commit
guarantees durability, drawbacks concern data availability, communication
costs or complicated data reintegration.

In other respects, optimized logging techniques are not proposed. Only
IOT and the Little Work project address this issue, although – as was said
in Section 2.4 – methods to reduce MH’s log sizes are needed and more
research efforts on this subject are necessary.

Because MHs are not considered as stable storage, it should be con-
sidered to allocate logs on FHs (e.g. BSs). Regarding MH’s log location
approaches proposed in [17] the benefits of one technique or another depend
on the mobility profile of MHs as well as on the distribution of the mobile
transaction execution. Section 5 addresses more aspects of this issue.

5 Movement and Disconnection Management

The previously analyzed works do not give details about management of MH
mobility. Only Pro-motion includes in its architecture a mobility manager
that is in charge of communication between the MH and the database server
without giving details about the way it works. Therefore, here is proposed
a complementary analysis for Section 4.

In KT, MDSTPM and Moflex, ACID properties are not affected by mo-
bility because transaction execution is under the responsibility of DBMSs
located at FHs. However, as transactions are requested from MHs, mobility
and disconnections are managed. Pre-serialization is a special case in this
section because even though mobile transactions are executed on the wired
network, the atomicity and isolation properties are enforced by allowing
disconnections of mobile users during transaction execution.

Section 5.1 highlights the way analyzed works deal with movement and
disconnections. Section 5.2 discusses and compares analyzed approaches.

5.1 Movement and Disconnection Issues

In KT to support MH mobility and disconnections, the Data Access Agent
keeps track of MH movement by maintaining a list of all the BSs that have
been coordinators for the mobile transaction. This list is used in case of cas-
cading aborts. There are also data structures (transaction status table and
local log) that store information about mobile transactions such as: global
transaction ID, status (active, commit, abort), Joey transaction ID, sub-

40

transactions that are included in the Joey transaction (JT), compensating
transactions (if any), etc.

In KT two different processing modes are supported, Compensating and
Split modes. Under Compensating mode, the failure of any JT causes the
current and any preceding or following JTs to be undone. Previously com-
mitted JTs must be compensated. This operating mode requires that the
user provides compensating transactions and that the source system guar-
antees their successful commit. In the Split mode, when a JT fails no new
global or local transactions are requested. The commit and failure of cur-
rently executing transactions is a decision left to local DBMS. Split is the de-
fault mode. Neither Compensating nor Split guarantees serializability of the
Kangaroo transactions. Compensating mode ensures atomicity, but isola-
tion may be violated because concurrency control is managed autonomously
at local transaction level. Notice that user’s movement does not affects these
properties.

In MDSTPM the main idea is a Message and Queuing Facility (MQF)
which is an asynchronous message exchange, where messages are of types:
Request, Acknowledgment, and Information. With MQF the MH can sub-
mit global transactions and switch to disconnected mode. MHs and coordi-
nator hosts maintain tables and logs that record the overall state of the MH
as well as information on global transactions (Message Queue, Transactions
Queue, Global Log, Global Transaction Table, Site Status Table). At any
moment, a MH can request information about its global transactions.

Concerning correctness aspects, in MDSTPM participating DBMS are
autonomous and may be heterogeneous. Thus, local transaction manage-
ment mechanisms (e.g. concurrency control) can be different and the infor-
mation regarding local executions (e.g. logs) is limited or denied. To manage
global transactions, MDSTPM implements strict 2PL and uses the optimistic
ticket method (OTM) [27] to solve indirect conflicts [7]. In OTM all global
subtransactions are forced to obtain a ticket. This causes additional con-
flicts between subtransactions and the execution order is determined by the
ticket.

In Moflex two characteristics concerning mobility are highlighted: the
execution of location dependent transactions [18] and hand-off influence
on transaction execution. In the transaction definition, users can specify
whether a subtransaction is location dependent or not. For location depen-
dent subtransactions, hand-off control rules have to be specified. Choices

41

are:

• continue the transaction execution at the new cell;

• restart: abort the transaction at the previous cell and restart it at the
new cell;

• split-resume: operations executed at the old cell commit and remaining
operations are executed at the new cell;

• split-restart: operations executed at the old cell commit and the trans-
action is executed entirely at the new cell.

The split operation used here is similar to the one used in KT. When
MHs hop from BS to BS, transactions are split and the coordination is
relocated at the new BS. Transaction definitions may also include goal states
indicating acceptable final states. The 2PC protocol is used. The mobile
transaction manager of the cell where one of the subtransactions reached an
acceptable goal state, becomes the coordinator of the 2PC protocol for the
global commit.

In Pre-serialization the principle is to enforce Atomicity and Isolation
(A/I) properties supporting disconnection and migration of mobile users
during the execution of mobile transactions (actually global transactions).
Site transactions of global ones are organized in vital and non-vital ones. A/I
properties are enforced only on the set of vital site transactions. The abort
of a non-vital site transaction does not force the global transaction to be
aborted. The time between the submission of the first vital site transaction
and the completion of the last one is called the vital phase of a global
transaction. Global transactions may be in one of the following states:

• active, the user is connected and execution continues,

• disconnected, the user is disconnected but the disconnection was pre-
dicted and reconnection is expected; the execution continues.

• suspended, the user is disconnected and is deemed to have encountered
a severe failure,

• committed or aborted, the transaction is committed/aborted.

42

The transaction execution is not stopped when user disconnects (in a
predicted way). All responses addressed to a disconnected user are delivered
upon reconnection.

The control of global transactions migrates from a global coordinator to
another one according to the user’s movement. The site transaction man-
agers supervise the execution of their site-transactions. Site transactions
(vital or non-vital ones) may be in one of the four states: active; com-
pleted (the site transaction has committed at the local database but the
global transaction has not committed); committed (the site transaction and
the respective global transaction have committed) and aborted. If the global
transaction is in a disconnected state, the execution of site-transactions con-
tinues. A global coordinator stores messages for disconnected users, delivers
them upon reconnection and reactivates disconnected transactions.

The global coordinator verifies A/I properties by executing the Partial
Global Serialization Graph (PGSG) algorithm at the end of the vital phase.
If A/I are violated, the global transaction is aborted; otherwise it is toggled.
After being toggled, a mobile global transaction may initiate only non-vital
site transactions. Once toggled, the global transaction establishes its se-
rialization order in the global serialization schema and it is guaranteed to
commit. At the end of its execution, each toggled transaction runs a sec-
ond time the PGSG algorithm. The objective is to verify that non-vital
site transactions do not violate the serialization order established when the
global transaction was toggled. Any non vital site transaction that violates
this order is aborted without affecting the global transaction. A toggled
global transaction is aborted only if it prevents the execution of another
global transaction while it is in the suspended state. Thus, Pre-serialization

guarantees semantic atomicity and global serializability. A modified version
of Pre-serialization is proposed, where, A/I properties are enforced only for
vital transactions. In this version, the PGSG algorithm is executed once, at
the end of the vital phase.

5.2 Discussion

KT and MDSTPM are very similar. They propose to add a layer in exist-
ing multidatabase architectures to manage transactions requested by MHs.
The main difference is the choice of the coordinator host. In MDSTPM the
coordination of the mobile transaction execution is centralized. The FH
coordinator is fixed in advance and does not change during the whole exe-
cution. In KT, the coordination is distributed among all the BSs visited by

43

the MH. Hence, we notice that KT deals with the mobile nature of MHs, not
only with disconnections. Distributed coordination reduces communication
cost during execution; however, in case of cascading aborts communication
cost highly increases. In contrast, with a centralized coordination as in MD-

STPM, cascading aborts will be easier and cheaper; however, in case of high
mobility, communication will be expensive.

A good analysis about the impact of mobility on transactions requested
from MHs and executed on DBMS in the wired network is provided in [19].
Three possible approaches for transaction coordination are analyzed: (1)
fixed at the MH, (2) fixed at a centralized FH, and (3) moving from BS to
BS. In other respects, [17] proposes a mobile transaction definition dedicated
to location dependent data. Authors analyze the impact of mobility on such
data and their effect on the ACID properties.

In mobile computing, adaptability to environment variations is an im-
portant issue. Besides hand-off adaptability, among analyzed works, only
Moflex is interested in location dependent transactions. Moflex main draw-
back is that users have to provide a complicated transaction definition. Is-
sues concerning adaptability are treated in [72, 73].

The singularity of Pre-serialization is that A/I properties are addressed in
the multidatabase context taking into account mobile hosts disconnections.
Nevertheless, the PGSG algorithm is costly because of the propagation prin-
ciple (dissemination of serializability information) and also because it might
be executed twice during global transaction processing (in the basic version).

6 Conclusions and Research Directions

This paper explored works on mobile transactions. This topic is particularly
important today when information systems may involve mobile devices and
fixed hosts reached through a combination of wireless and wired networks.
In the last years, many academic and industrial efforts have been devoted to
improve data management in mobile environments. Unlike traditional cen-
tralized or distributed environments, mobile environments are highly versa-
tile and face several resource constraints. By consequence mobile transaction
executions are not predictable and require adapted approaches. These are
some of the reasons that lead to the development of various new approaches
for mobile transactions.

Several research projects and commercial products were overviewed. A
deep analysis of the research projects led to a classification in two groups.

44

The first one relaxes ACID properties to allow transaction executions on
MHs. Works in this group usually ignore MH’s movements. The second
group of proposals concerns transactions requested by MHs and executed
on FHs. In this case, MH movements are taken into account during transac-
tion execution. These approaches are discussed and summarized in several
sections and tables.

This study showed that ACID properties are hard to enforce in mobile
environments. The main reasons are the autonomy needed to work in discon-
nected or weak connected modes and the inherent mobility of MHs. Almost
all analyzed projects release ACID properties in order to increase flexibil-
ity and to manage mobile environment constraints. Advanced transaction
models are clearly appropriate for mobile environments.

In spite of the large number of works on mobile transactions, some re-
search issues remain open, among them, logging and adaptable mobile trans-
action management.

Logging has to be revisited to face MH limited storage capacities. Log
compression and access optimization are nearly ignored by the analyzed
works. Also, MHs may be lost and are exposed to accidents. Strategies
transferring local logs to FH’s (BS or servers are considered as stable storage)
are needed to guarantee durability of locally committed transactions.

Another important point is adaptability due to mobile environment vari-
ations (location, bandwidth, neighborhood, server distance) or to limitations
of mobile computing resources (storage/power capacity). Almost all stud-
ied systems adapt their behavior to support connected and disconnected
modes. Only a few of them consider adaptability related to MH movements
(i.e. hand-off). However, variations are not limited to disconnections and
hand-off. A dynamic choice of transaction execution models, depending on
current location, network or MH resources, would certainly increase trans-
action success rate.

To conclude, it is worth noting that supports for distributed transactions
involving several mobile hosts have not yet been developed. It would require
a flexible management that allows a dynamic configuration of the set of
participants.

Acknowledgments. The authors gratefully acknowledge the many con-
structive comments made by the anonymous reviewers and the editor P.
Valduriez; they helped to improve an earlier version of this paper. We
also thank A. Moran, N. Adiba and B. Raffin for their help in reading this
paper. We wish to thank the members of the NODS project (http://www-

45

lsr.imag.fr/Les.Groupes/STORM/) for their feedbacks all along this research.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Prefetching from
a Broadcast Disk. In Int. Conf. on Data Engineering (ICDE), New
Orleans, USA, February 1996.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E.
O’Neil. A Critique of ANSI SQL Isolation Levels. In ACM SIGMOD
Conference, San Jose, USA, May 1995.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Publisher, 1987.

[4] P.A. Bernstein and N. Goodman. An Algorithm for Concurrency Con-
trol and Recovery in Replicated Distributed Databases. ACM Trans-
actions on Database Systems (TODS), 9(4), 1984.

[5] C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez. PicoDBMS:
Scaling Down Database Techniques for the Smartcard. In Int. Conf. on
Very Large Databases (VLDB), Cairo, Egipt, September 2002.

[6] C. Bobineau, P. Pucheral, and M. Abdallah. A Unilateral Commit
Protocol for Mobile and Disconnected Computing. In Int. Conf. Parallel
and Distributed Computing Systems (PDCS), Las Vegas, USA, August
2000.

[7] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of Mul-
tidatabase Transaction Management. Very Large Databases (VLDB)
Journal, 1(2), 1992.

[8] M. J. Carey and M. Livny. Conflict Detection Tradeoffs for Replicate
Data. ACM Transactions on Database Systems (TODS), 16(4), 1991.

[9] P. K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning
about Extended Transactions. PhD thesis, University of Massachusetts,
Amherst, USA, 1991.

[10] P. K. Chrysanthis. Transaction Processing in a Mobile Computing En-
vironment. In IEEE Workshop on Advances in Parallel and Distributed
Systems (APADS), Princeton, USA, October 1993.

46

[11] P. K. Chrysanthis and K. Ramamritham. Synthesis of Extended Trans-
action Models Using ACTA. ACM Transactions on Database Systems
(TODS), 19(3), 1994.

[12] A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar. Broadcast Pro-
tocols to Support Efficient Retrieval from Databases by Mobile Users.
ACM Transactions on Database Systems (TODS), 24(1), 1999.

[13] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and B. B. Welch. The Bayou Architecture: Support for
Data Sharing among Mobile Users”. In Workshop on Mobile Com-
puting Systems and Applications, Santa Cruz, USA, December 1994.
http://www2.parc.com/csl/projects/bayou/.

[14] R. A. Dirckze and L. Gruenwald. A Toggle Transaction Management
Technique for Mobile Multidatabases. In Int. Conf. on Information and
Knowledge Management (CIKM), Bethesda, USA, November 1998.

[15] R. A. Dirckze and L. Gruenwald. A Pre-Serialization Transaction Man-
agement Technique for Mobile Multidatabases. Mobile Networks and
Applications (MONET), 5(4), 2000.

[16] M. H. Dunham, A. Helal, and S. Balakrishnan. A Mobile Transac-
tion Model that Captures Both the Data and the Movement Behavior.
ACM/Baltzer Journal on special topics in mobile networks and appli-
cations, 2(2), 1997.

[17] M. H. Dunham and V. Kumar. Defining Location Data Dependency,
Transaction Mobility and Commitment. Technical Report 98-CSE-01,
Southern Methodist University, Dallas, USA, February 1998.

[18] M. H. Dunham and V. Kumar. Location Dependent Data and its Man-
agement in Mobile Databases. In Int. DEXA Workshop on Mobility in
Databases and Distributed Systems, Vienna, Austria, August 1998.

[19] M. H. Dunham and V. Kumar. Impact of Mobility on Transaction
Management. In Int. Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE), Seattle, USA, August 1999.

[20] A. K. Elmagarmid. Database Transaction Models for Advanced Appli-
cations. Morgan Kaufmann Publishers, 1992.

47

[21] A. K. Elmagarmid, Y. Leu, and M. Rusinkiewics. A Multidatabase
Transaction Model for INTERBASE. In Int. Conf. on Very Large
Databases (VLDB), Brisbane, Australia, August 1990.

[22] K. P. Eswarn, J. Gray, R. A. Lorie, and I. L. Triger. The Notions of
Consistency and Predicate Locks in a Database System. Communica-
tions of the ACM (CACM), 19(11), 1976.

[23] FastObjects by Poet. FastObjects j2 http://www.fastobjects.com/.

[24] M. Frodigh, P. Johansson, and P. Larsson. Wireless Ad hoc Networking
- The art of networking without a network. Ericsson Review, 4, 2000.

[25] H. Garcia-Molina. Using Semantic Knowledge for Transaction Process-
ing in a Distributed Database. ACM Transactions on Database Systems
(TODS), 8(2), 1983.

[26] H. Garcia-Molina and K. Salem. Sagas. In ACM SIGMOD Conference,
San Francisco, USA, May 1987.

[27] D. Georgakopoulos, M. Rusinkiewicz, and A.P. Sheth. Using Tickets to
Enforce the Serializability of Multidatabase Transactions. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 6(1), 1993.

[28] J. Gray. Notes on Database Operating Systems. In Advanced Course:
Operating Systems, number 60 in LNCS, 1978.

[29] J. Gray, P. Helland, P.O’Neil, and D. Shasha. The Dangers of Replica-
tion and a Solution. In ACM SIGMOD Conference, Montreal, Canada,
June 1996.

[30] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publisher, 1993.

[31] T. Härder and A. Reuter. Principles of Transaction-Oriented Database
Recovery. ACM Computing Surveys, 15(4), 1983.

[32] R. Hirsch, A. Coratella, M. Felder, and E. Rodrguez. A Framework for
Analyzing Mobile Transaction Models. Journal of Database Manage-
ment (JDM), 12(3), 2001.

[33] L. B. Huston and P. Honeyman. Peephole log Optimization. In IEEE
Workshop on Mobile Computing Systems and Applications, Santa Cruz,
USA, December 1994.

48

[34] IBM Software Products. DB2 Everyplace http://www-
3.ibm.com/software/data/db2/everyplace/.

[35] IBM Software Products. IBM Cloudscape http://www-
3.ibm.com/software/data/cloudscape/.

[36] IBM Software Products. WebSphere Everyplace Access http://www-
3.ibm.com/software/pervasive/products/mobile apps/ws everyplace access.shtml.

[37] IETF. Mobile Ad-hoc Networks (manet)
http://www.ietf.org/html.charters/manet-charter.html.

[38] T. Imielinski and B. R. Badrinath. Wireless Mobile Computing: Chal-
lenges in Data Management. Communications of the ACM (CACM),
37(10), 1994.

[39] J. Jing, O. Bukhres, and A. K. Elmagarmid. Distributed Lock Manage-
ment for Mobile Transactions. In Int. Conf. on Distributed Computing
Systems (ICDCS), Vancouver, Canada, May 1995.

[40] J. Jing, A.S. Helal, and A. K. Elmagarmid. Client-Server Computing
in Mobile Environments. ACM Computing Surveys, 31(2), 1999.

[41] G. Jomier and A. Doucet, editors. Chapter ”Bases de Donnes et Mo-
bilit” in Bases de donnes et Internet: Modles, langages et systme. Infor-
matique et systmes d’information. Hermes Science Publications, 2001.

[42] P. J. Keleher and U. etintemel. Consistency Management in
Deno. Mobile Networks and Applications (MONET), 5(4), 2000.
http://www.cs.umd.edu/projects/deno/.

[43] B. Kemme and G. Alonso. Don’t be Lazy, be Consistent: Postgres-R,
A new way to implement Database Replication. In Int. Conf. on Very
Large Databases (VLDB), Cairo, Egypt, September 2000.

[44] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the
Coda File System. ACM Transactions on Computer Systems (TOCS),
10(1), 1992.

[45] K. Ku and Y. Kim. Moflex Transaction Model for Mobile Heterogeneous
Multidatabase Systems. In IEEE Workshop on Research Issues in Data
Engineering, San Diego, USA, February 2000.

49

[46] V. Kumar. A Timeout-based Mobile Transaction Commitment Pro-
tocol. In ADBIS-DASFAA Symp. on Advances in Databases and In-
formation Systems, volume 1884 of LNCS, Prague, Czech Republic,
September 2000.

[47] V. Kumar, N. Prabhu, M. H. Dunham, and A. Y. Seydim. TCOT-
A Timeout-Based Mobile Transaction Commitment Protocol. IEEE
Transactions on Computers, 51(10), 2002.

[48] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concur-
rency Control. In Int. Conf. on Very Large Databases (VLDB), Rio de
Janeiro, Brazil, October 1979.

[49] M. Lee and S. Helal. HiCoMo: High Commit Mobile Transac-
tions. Kluwer Academic Publishers Distributed and Parallel Databases
(DAPD), 11(1), 2002.

[50] Q. Lu and M. Satynarayanan. Isolation-Only Transactions for Mobile
Computing. ACM Operating Systems Review, 28(2), 1994.

[51] Q. Lu and M. Satynarayanan. Improving Data Consistency in Mobile
Computing Using Isolation-Only Transactions. In IEEE HotOS Topics
Workshop, Orcas Island, USA, May 1995.

[52] S. K. Madria and B. Bhargava. A Transaction Model for Improving
Data Availability in Mobile Computing. Kluwer Academic Publishers
Distributed and Parallel Databases (DAPD), 10(2), 2001.

[53] McObject Solutions. eXtremeDb http://www.mcobject.com/extremedb.htm.

[54] K. A. Momin and K. Vidyasankar. Flexible Integration of Optimistic
and Pessimistic Concurrency Control in Mobile Environments. In
ADBIS-DASFAA Symp. on Advances in Databases and Information
Systems, volume 1884 of LNCS, Prague, Czech Republic, September
2000.

[55] J. E. B. Moss. Nested Transactions: An approach to Reliable Comput-
ing. PhD thesis, Massachusetts Institute of Technology, Massachusetts,
USA, 1981.

[56] Oracle Corporation. Oracle9i Lite: The Internet Platform For Mobile
Computing http://otn.oracle.com/products/lite/.

50

[57] Oracle Corporation. Oracle9iAS Wireless
http://otn.oracle.com/products/iaswe/.

[58] T. Ozsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 2nd edition, 1999.

[59] E. Pitoura and B. Bhargava. Building Information Systems for Mobile
Environments. In Int. Conf. on Information and Knowledge Manage-
ment (CIKM), Gaithersburg, USA, November 1994.

[60] E. Pitoura and B. Bhargava. Maintaining Consistency of Data in Mo-
bile Distributed Environment. In Int. Conf. on Distributed Computing
Systems (ICDCS), Vancouver Canada, May 1995.

[61] E. Pitoura and B. Bhargava. Data Consistency in Intermittently Con-
nected Distributed Systems. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 11(6), 1999.

[62] E. Pitoura and P. K. Chrisanthis. Scalable Processing of Read-Only
Transactions in Broadcast Push. In Int. Conf. on Distributed Comput-
ing Systems (ICDCS), Austin, USA, June 1999.

[63] E. Pitoura, P. K. Chrisanthis, and K. Ramamritham. Characterizing
the Temporal and Semantic Coherency of Broadcast-Based Data Dis-
semination. In Int. Conf. on Database Theory (ICDT), volume 2572 of
LNCS, Siena, Italy, January 2003.

[64] E. Pitoura and G. Samaras. Data Management for Mobile Computing.
Kluwer Academic Publishers, 1998.

[65] PointBase Java Databases. PointBase http://www.pointbase.com.

[66] A. Popovici and G. Alonso. Ad-hoc Transactions for Mobile Services. In
VLDB Workshop on Technologies for E-Services, Hong-Kong, China,
August 2002.

[67] C. Pu, G. Kaiser, and N.Hutchinson. Split Transactions for Open-
Ended Activities. In Int. Conf. on Very Large Databases (VLDB), Los
Angeles, USA, September 1988.

[68] K. Ramamritham and P. K. Chrysanthis. A Taxonomy of Correct-
ness Criteria in Database Applications. Very Large Databases (VLDB)
Journal, 5(1), 1996.

51

[69] K. Ramamritham and P. K. Chrysanthis. Advances in Concurrency
Control and Transaction Processing. IEEE Computer Society Press,
1996.

[70] M. Satyanarayanan. Mobile Information Access. IEEE Personal Com-
munications, 3(1), 1996.

[71] M. Satynarayanan, J. Kistler, P. Kumar, E. Okasaki, H. Siegel, and
C. Steere. Coda: A Highly Available File System for Distributed Work-
station Environment. IEEE Transactions on Computers, 39(4), 1990.

[72] P. Serrano-Alvarado. Defining an Adaptable Mobile Transaction Ser-
vice. In Int. EDBT Workshop on Young Researchers Workshop, number
2490 in LNCS, Prague, Czech Republic, March 2002.

[73] P. Serrano-Alvarado, C. Roncancio, M. Adiba, and C. Labbé. Envi-
ronment Awareness in Adaptable Mobile Transactions. In Journes de
Bases de Donnes Avances (BDA), Lyon, France, October 2003.

[74] P. Serrano-Alvarado, C. L. Roncancio, and M. Adiba. Analyzing Mobile
Transactions Support for DBMS. In Int. DEXA Workshop on Mobil-
ity in Databases and Distributed Systems (MDDS), Munich, Germany,
September 2001.

[75] Sybase Inc. Mobile and Wireless
http://www.sybase.com/products/mobilewireless/.

[76] R. Vingralek. GnatDb: A Small-Footprint, Secure Database System.
In Int. Conf. on Very Large Databases (VLDB), Hong Kong, China,
August 2002.

[77] G. D. Walborn and P. K. Chrysanthis. PRO-MOTION: Management
of Mobile Transactions. In ACM Symp. on Applied Computing, San
Jose, USA, March 1997.

[78] G. D. Walborn and P. K. Chrysanthis. Transaction Processing in PRO-
MOTION. In ACM Symp. on Applied Computing, San Antonio, USA,
February 1999.

[79] G. D. Walborn and Panos K. Chrysanthis. Supporting Semantics-
Based Transaction Processing in Mobile Database Applications. In
Symp. on Reliable Distributed Systems (SRDS), Bad Neuenahr, Ger-
many, September 1995.

52

[80] L. H. Yeo and A. Zaslavsky. Submission of Transactions from Mobile
Workstations in a Cooperative Multidatabase Processing Environment.
In Int. Conf. on Distributed Computing Systems (ICDCS), Poznan,
Poland, June 1994.

53

