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Abstract We propose a new approach to the problem
of robust estimation for a class of inverse problems aris-

ing in multiview geometry. Inspired by recent advances

in the statistical theory of recovering sparse vectors,

we define our estimator as a Bayesian maximum a pos-
teriori with multivariate Laplace prior on the vector

describing the outliers. This leads to an estimator in

which the fidelity to the data is measured by the L∞-

norm while the regularization is done by the L1-norm.

The proposed procedure is fairly fast since the outlier
removal is done by solving one linear program (LP). An

important difference compared to existing algorithms is

that for our estimator it is not necessary to specify nei-

ther the number nor the proportion of the outliers; only
an upper bound on the maximal measurement error for

the inliers should be specified. We present theoretical

results assessing the accuracy of our procedure, as well

as numerical examples illustrating its efficiency on syn-

thetic and real data.

Keywords Structure from motion · Sparse recovery ·
Robust estimation · L1-relaxation

1 Introduction

In the present paper, we are concerned with a class of
non-linear inverse problems appearing in the structure

from motion problem of multiview geometry. This prob-

lem, that have received a great deal of attention by the
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computer vision community in last decade, consists in
recovering a set of 3D points (structure) and a set of

camera matrices (motion), when only 2D images of the

aforementioned 3D points by some cameras are avail-

able. Throughout this work we assume that the internal
parameters of cameras as well as their orientations are

known. Thus, only the locations of camera centers and

3D points are to be estimated. In solving the structure

from motion problem by state-of-the-art methods, it is

customary to start by establishing correspondences be-
tween pairs of 2D data points. We will assume in the

present study that these point correspondences have

been already established.

One can think of the structure from motion prob-

lem as the inverse problem of inverting the operator O
that takes as input the set of 3D points and the set

of cameras, and produces as output the 2D images of
the 3D points by the cameras. This approach will be

further formalized in the next section. Generally, the

operator O is not injective, but in many situations (for

example, when for each pair of cameras there are at

least five 3D points in general position that are seen
by these cameras [19]), there is only a small number

of inputs, up to an overall similarity transform, having

the same image by O. In such cases, the solutions to

the structure from motion problem can be found using
algebraic arguments.

The main flaw of algebraic solutions is their sen-

sitivity to the noise in the data: very often, because
of the noise in the measurements, there is no input

that could have generated the observed output. A nat-

ural approach to cope with such situations consists in

searching for the input providing the closest possible
output to the observed data. Then, a major issue is how

to choose the metric in the output space. A standard ap-

proach [11] consists in measuring the distance between
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Fig. 1 (a) One image from the dinosaur sequence. (b)-(c) Camera locations and scene points estimated by the blind L∞-cost
minimization. (d)-(e) Camera locations and scene points estimated by the proposed “outlier aware” procedure. This figure demonstrates
that the estimator minimizing the L∞-cost is severely affected by the outliers.

two elements of the output space in the Euclidean L2-

norm. In the structure from motion problem with more

than two cameras, this leads to a hard non-convex op-

timization problem. A particularly elegant way of cir-
cumventing the non-convexity issues inherent to the use

of L2-norm consists in replacing it by the L∞-norm [10,

13,20,21,23,22]. It has been shown that, for a number

of problems, L∞-norm based estimators can be com-
puted very efficiently using, for example, the iterative

bisection method [13, Algorithm 1, p. 1608] that solves

a convex program at each iteration. There is however an

issue with the L∞-techniques that dampens the enthu-

siasm of practitioners: it is highly sensitive to outliers
(cf. Fig. 1). In fact, among all Lq-metrics with q ≥ 1,

the L∞-metric is the most seriously affected by the out-

liers in the data. Two procedures have been introduced

[23,14] that make the L∞-estimator less sensitive to
outliers. Although these procedures demonstrate satis-

factory empirical performance, they suffer from a lack

of sufficient theoretical support assessing the accuracy

of produced estimates.

The purpose of the present work is to introduce and
to theoretically investigate a new procedure of estima-

tion in presence of noise and outliers. Our procedure

combines L∞-norm for measuring the fidelity to the

data and L1-norm for regularization. It can be seen as
a maximum a posteriori (MAP) estimator under uni-

formly distributed random noise and a sparsity favoring

prior on the vector of outliers. Interestingly, this study

bridges the work on the robust estimation in multiview

geometry [8,23,14,16] and the theory of sparse recov-
ery in statistics and signal processing [6,1,3,4]. Further-

more, since the estimator we propose solves the same

convex program as that solved at each step of itera-

tion of the procedure in [14], the theoretical arguments
developed in the present work provide an explanation

to the nice empirical performance of Kanade and Ke’s

procedure. Moreover, our procedure is complementary

to that of Kanade and Ke, since the free parameter for

our procedure is the maximal reprojection error of in-

liers and not the presumed number of outliers.

The rest of the paper is organized as follows. The

next section gives the precise formulation of the transla-
tion estimation and triangulation problem to which the

presented methodology can be applied. A brief review

of the L∞-norm minimization algorithm is presented

in Section 3. In Section 4, we introduce the statisti-
cal framework and derive a new procedure as a MAP

estimator. Main results assessing the accuracy of this

procedure are stated in Section 5, while Section 6 is

devoted to a discussion on the relations of our method-

ology with some relevant recent studies. Section 7 con-
tains numerical experiments supporting our theoretical

results. The methodology of our study is summarized

in Section 8 and the technical proofs are gathered in

Section 9.

2 Translation estimation and triangulation

Let us start by presenting a problem of multiview geom-

etry to which our approach can be successfully applied,

namely the problem of translation estimation and tri-
angulation in the case of known rotations. For rotation

estimation algorithms, we refer the interested reader to

[18,9] and the references therein.

Let P∗
i , i = 1, . . . , m, be a sequence of m cameras

that are known up to a translation. Recall that a cam-

era is characterized by a 3×4 matrix P with real entries
that can be written as P = K[R|t], where K is an invert-

ible 3 × 3 matrix called the camera calibration matrix,

R is a 3×3 rotation matrix and t ∈ R
3. We will refer to

t as the translation of the camera P. We can thus write
P∗

i = Ki[Ri|t∗i ], i = 1, . . . , m. For a set of unknown scene

points U∗
j ,, j = 1, . . . , n, expressed in homogeneous co-

ordinates (i.e., U∗
j is an element of the projective space
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P
3), we assume that noisy images of each U∗

j by some

cameras P∗
i are observed. Thus, we have at our disposal

the measurements

xij =
1

eT
3 P∗

i U
∗
j

[
eT
1 P∗

i U
∗
j

eT
2 P∗

i U
∗
j

]
+ ξij ,

j = 1, . . . , n,

i ∈ Ij ,
(1)

where eℓ, ℓ = 1, 2, 3, stands for the unit vector of R
3

having one as the ℓth coordinate and Ij is the set of

indices of cameras for which the point U∗
j is visible.

We assume that the set {U∗
j} does not contain points

at infinity: U∗
j = [X∗T

j |1]T for some X∗
j ∈ R

3 and for

every j = 1, . . . , n.

We are now in a position to state the problem of

translation estimation and triangulation in the context

of multiview geometry. It consists in recovering the 3-
vectors {t∗i } (translation estimation) and the 3D scene

points {X∗
j} (triangulation) from the noisy measure-

ments {xij ; j = 1, . . . , n; i ∈ Ij} ⊂ R
2. In what follows,

we use the notation θ∗ = (t∗T
1 , . . . , t∗T

m ,X∗T
1 , . . . ,X∗T

n )T.
Thus, we are interested in estimating θ∗ ∈ R

3(m+n).

Remark 1 (Cheirality) It should be noted right away

that if the point U∗
j is in front of the camera P∗

i , then

eT
3 P∗

i U
∗
j ≥ 0. This is termed cheirality condition. Fur-

thermore, we will assume that none of the true 3D

points U∗
j lies on the principal plane of a camera P∗

i .

This assumption implies that eT
3 P∗

i U
∗
j > 0 so that the

quotients eT
ℓ P∗

i U
∗
j/e

T
3 P∗

i U
∗
j , ℓ = 1, 2, are well defined.

Remark 2 (Identifiability) The parameter θ we have

just defined is, in general, not identifiable from the mea-

surements {xij}. In fact, one easily checks that, for ev-

ery α 6= 0 and for every t ∈ R
3, the parameters {t∗i ,X∗

j}
and {α(t∗i −Rit), α(X∗

j +t)} generate the same measure-

ments. To cope with this issue, we assume that t∗1 = 03

and that mini,j eT
3 P∗

i U
∗
j = 1. Thus, in what follows we

assume that t∗1 is removed from θ∗ and θ∗ ∈ R
3(m+n−1).

Further assumptions ensuring the identifiability of θ
∗

are given below.

3 Estimation by Sequential Convex

Programming

This section presents results on the estimation of θ

based on the reprojection error (RE) minimization. This

material is essential for understanding the results that
are at the core of the present work. In what follows, for

every s ≥ 1, we denote by ‖x‖s the Ls-norm of a vector

x, i.e., ‖x‖s
s =

∑
j |xj |s if x = (x1, . . . , xd)

T. As usual,

we extend this to s = +∞ by setting ‖x‖∞ = maxj |xj |.
A classical method [11] for estimating the parame-

ter θ is based on minimizing the sum of the squared

REs. This defines the estimator θ̂ as a minimizer of

the cost function C2,2(θ) =
∑

i,j ‖xij − xij(θ)‖2
2, where

xij(θ) :=
[
eT
1 PiUj ; e

T
2 PiUj

]
T/eT

3PiUj is the 2-vector
that we would obtain if θ were the true parameter. It

can also be written as

xij(θ) =

[
eT
1 Ki(RiXj + ti)

eT
3 Ki(RiXj + ti)

;
eT
2 Ki(RiXj + ti)

eT
3 Ki(RiXj + ti)

]T

. (2)

The minimization of C2,2 is a hard nonconvex problem.

In general, it does not admit closed-form solution and

the existing iterative algorithms may often get stuck

in local minima. An ingenious idea to overcome this
difficulty [10,12] is based on the minimization of the

L∞ cost function

C∞,s(θ) = max
j=1,...,n;i∈Ij

‖xij −xij(θ)‖s, s ∈ [1, +∞]. (3)

This cost function has a clear practical advantage in

that all its sublevel sets are convex. This property en-

sures that all minima of C∞,s form a convex set and

that an element of this set can be computed by solving
a sequence of convex programs [13], e.g., by the bisec-

tion algorithm. Note that for s = 1 and s = +∞, the

minimization of C∞,s can be recast in a sequence of

LPs. The main idea behind the bisection algorithm can

be summarized as follows. We aim to designate an al-
gorithm computing θ̂s ∈ argmin

θ
C∞,s(θ), for any pre-

specified s ≥ 1, over the set of all vectors θ satisfying

the cheirality condition. Let us introduce the residuals

rij(θ) = xij − xij(θ) that can be represented as

rij(θ) =

[
aT

ij1θ

cT
ijθ

;
aT

ij2θ

cT
ijθ

]T

, (4)

for some vectors aijℓ, cij ∈ R
3(m+n−1). Furthermore, as

presented in Remark 2, the cheirality conditions imply

the set of linear constraints cT
ijθ ≥ 1. Thus, the problem

of computing θ̂s can be rewritten as

minimize γ subject to

{
‖rij(θ)‖s ≤ γ,

cT
ijθ ≥ 1.

(5)

Note that the inequality ‖rij(θ)‖s ≤ γ can be replaced

by ‖Aijθ‖s ≤ γcT
ijθ with Aij = [aT

ij1;a
T
ij2]. Although

(5) is not a convex problem, its solution can be well ap-

proximated by solving a sequence of convex feasibility
problems of the form

Ps,γ : find θ s.t.

{
‖Aijθ‖s ≤ γcT

ijθ,

cT
ijθ ≥ 1.

Given a small number ǫ > 0 controlling the accuracy of

approximation, the bisection algorithm reads as follows:

Step 1: Compute a θ̂ satisfying the cheirality conditions;

for example, by solving a linear feasibility problem.
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Step 2: Set γl = 0 and γu = C∞,s(θ̂).

Step 3: Set γ = (γl + γu)/2.

Step 4: If Ps,γ has no solution, set γl = γ. Otherwise,

replace the current value of θ̂ by a solution to Ps,γ

and set γu = C∞,s(θ̂).

Step 5: If γu−γl < ǫ, then assign to θ̂s the current value
of θ̂ and terminate. Otherwise, go to Step 3.

4 Robust estimation by linear programming

This and the next sections contain the main theoreti-

cal contribution of the present work. We start with the

precise formulation of the statistical model. We then ex-

hibit a prior distribution on the unknown parameters
of the model that leads to a MAP estimator.

4.1 The statistical model

Let us first observe that, in view of (1) and (4), the

model we are considering can be rewritten as

[
aT

ij1θ
∗

cT
ijθ

∗ ;
aT

ij2θ
∗

cT
ijθ

∗

]T

= ξij , j = 1, . . . , n; i ∈ Ij . (6)

Let N = 2
∑n

j=1 Ij be the total number of measure-

ments and let M = 3(n + m − 1) be the size of the
vector θ∗. Let us denote by A (resp. C) the N ×M ma-

trix formed by the concatenation of the row-vectors aT

ijℓ

(resp. cT
ij

1). Similarly, let us denote by ξ the N -vector
formed by concatenating the vectors ξij . In these no-

tation, Eq. (6) is equivalent to aT
p θ∗ = (cT

p θ∗)ξp, p =

1, . . . , N . This equation defines the statistical model in

the case where there is no outlier. To extend this model

to cover the situation where some outliers are present
in the measurements, we introduce the vector ω∗ ∈ R

N

defined by ω∗
p = aT

p θ∗ − (cT
p θ∗)ξp so that ω∗

p = 0 if the

pth measurement is an inlier and |ω∗
p| > 0 otherwise.

This leads us to the model:

Aθ∗ = ω∗ + diag(Cθ∗)ξ, (7)

where diag(v) stands for the diagonal matrix having

the components of v as diagonal entries.

Statement of the problem: Given the matrices A

and C, estimate the parameter-vector β∗ = [θ∗T; ω∗T]T

based on the following prior information:
C1 : Eq. (7) holds with some small noise vector ξ,

C2 : minp cT
p θ∗ = 1,

C3 : ω∗ is sparse, i.e., only a small number of coor-

dinates of ω∗ are different from zero.

1 To get a matrix of the same size as A, in the matrix C each
row is duplicated twice.

4.2 Sparsity prior and MAP estimator

To derive an estimator of the parameter β∗, we place

ourselves in the Bayesian framework. To this end, we

impose a probabilistic structure on the noise vector ξ

and introduce a prior distribution on the unknown vec-
tor β.

Since the noise ξ represents the difference (in pixels)

between the measurements and the true image points,

it is naturally bounded and, generally, does not exceeds
the level of a few pixels. Therefore, it is reasonable to

assume that the components of ξ are uniformly dis-

tributed in some compact set of R
2, centered at the

origin. We assume in what follows that the subvectors

ξij of ξ are uniformly distributed in the square [−σ, σ]2

and are mutually independent. Note that this implies

that all the coordinates of ξ are independent. In prac-

tice, this assumption can be enforced by decorrelating

the measurements using the empirical covariance ma-
trix [15]. We define the prior on θ as the uniform dis-

tribution on the polytope P = {θ ∈ R
M : Cθ ≥ 1},

where the inequality is understood componentwise. The

density of this distribution is p1(θ) ∝ 1P(θ), where ∝
stands for the proportionality relation and 1P(θ) = 1
if θ ∈ P and 0 otherwise. When P is unbounded, this

results in an improper prior, which is however not a

problem for defining the Bayes estimator.

The task of choosing a prior on ω is more delicate in
that it should reflect the information that ω is sparse.

The most natural prior would be the one having a den-

sity which is a decreasing function of the L0-norm of

ω, i.e., of the number of its nonzero coefficients. How-
ever, the computation of estimators based on this type

of priors is NP-hard. An approach for overcoming this

difficulty relies on using the L1-norm instead of the L0-

norm. Following this idea, we define the prior distribu-

tion on ω by the probability density p2(ω) ∝ f(‖ω‖1),
where f is some decreasing function2 defined on [0,∞).

Assuming in addition that θ and ω are independent,

we get the following prior on β:

π(β) = π(θ; ω) ∝ 1P(θ) · f(‖ω‖1). (8)

Theorem 1 Assume that the noise ξ has independent
entries which are uniformly distributed in [−σ, σ] for

some σ > 0, then the MAP estimator β̂ = [θ̂T; ω̂T]T

based on the prior π defined by Eq. (8) is the solution

of the optimization problem:

min ‖ω‖1 s.t.

{
|aT

p θ − ωp| ≤ σcT
p θ, ∀p

cT
p θ ≥ 1, ∀p.

(9)

2 The most common choice is f(x) = e−x corresponding to the
multivariate Laplace density.
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The proof of this theorem is a simple exercise and is

left to the reader.

Remark 3 (Condition C2) One easily checks that any

solution of (9) satisfies condition C2. Indeed, if for some

solution β̂ it were not the case, then β̃ = β̂/ minp cT
p θ̂

would satisfy the constraints of (9) and ω̃ would have
a smaller L1-norm than that of ω̂, which is in contra-

diction with the fact that β̂ solves (9).

Remark 4 (The role of σ) In the definition of β̂, σ is a

free parameter that can be interpreted as the level of

separation of inliers from outliers. The proposed algo-

rithm implicitly assumes that all the measurements xij

for which ‖ξij‖∞ > σ are outliers, while all the others

are treated as inliers.

If σ is unknown, a reasonable way of acting is to

impose a prior distribution on the possible values of σ

and to define the estimator β̂ as a MAP estimator based
on the prior incorporating the uncertainty on σ. When

there are no outliers and the prior on σ is decreasing,

this approach leads to the estimator minimizing the L∞
cost function. In the presence of outliers, the shape of

the prior on σ becomes more important for the defini-
tion of the estimator. This is an interesting point for

future investigation.

4.3 Two-step procedure

Building on the previous arguments, we introduce the
following two-step algorithm.

Input: {ap, cp; p = 1, . . . , N} and σ.

Step 1: Compute [θ̂T; ω̂T]T as a solution to (9) and set

J = {p : ω̂p = 0} .
Step 2: Apply the bisection algorithm to the reduced data

set {xp; p ∈ J}.
Two observations are in order. First, when applying

the bisection algorithm at Step 2, we can use C∞,s(θ̂)
as the initial value of γu. The second observation is

that a better way of acting would be to minimize the

weighted L1-norm of ω, where the weight assigned to

ωp is inversely proportional to the depth cT
p θ∗. Since

θ∗ is unknown, a reasonable strategy consists in adding

a step in between Step 1 and Step 2, which performs

the weighted minimization with weights {(cT
p θ̂)−1; p =

1, . . . , N}.

5 Accuracy of estimation

Let us introduce some additional notation. Recall the

definition of P and set ∂P = {θ : minp cT
p θ = 1}. For

every subset of indices J ⊂ {1, . . . , N}, we denote by

AJ the N ×M matrix obtained from A by replacing the

rows that have an index outside J by zero. Furthermore,

for every J ⊂ {1, . . . , N}, let us define

δJ(θ) = sup
θ′∈∂P,Aθ′ 6=Aθ

‖AJ(θ′ − θ)‖2

‖A(θ′ − θ)‖2
, θ ∈ ∂P . (10)

One easily checks that for every θ ∈ ∂P , δJ(θ) ∈ [0, 1]

and δJ(θ) ≤ δJ′(θ) if J ⊂ J ′.

Assumption A: The real number λ(θ∗) defined by

λ(θ∗) = min
θ∈∂P\{θ∗}

‖A(θ − θ∗)‖2

‖θ − θ∗‖2

is strictly positive.

5.1 The noise free case

To evaluate the quality of estimation, we first place our-

selves in the case where σ = 0. The estimator β̂ of β∗ is

then defined as a solution to the optimization problem

min ‖ω‖1 over β =

[
θ

ω

]
s.t.

{
Aθ = ω

Cθ ≥ 1
. (11)

In this particular case the proposed procedure coincides

with the well-known estimator that minimizes the L1-
norm of Aθ subject to Cθ ≥ 1. Although this procedure

was known, to the best of our knowledge the theoretical

results of this section are new.

From now on, for every index set T and for every

vector h, hT stands for the vector equal to h on an
index set T and zero elsewhere. The complementary

set of T will be denoted by T c.

Theorem 2 Let Assumption A be fulfilled and let T0

(resp. T1) denote the index set corresponding to the lo-

cations of S largest entries3 of ω∗ (resp. (ω∗ − ω̂)T c
0
).

If δT0(θ
∗)+δT0∪T1(θ

∗) < 1 then, for some constant C0,

it holds:

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗
S‖1, (12)

where ω∗
S stands for the vector ω∗ with all but the S-

largest entries set to zero. In particular, if ω∗ has no

more than S nonzero entries, then the estimation is

exact: β̂ = β∗.

Remark 5 The assumption δT0(θ
∗) + δT0∪T1(θ

∗) < 1 is

close in spirit to the restricted isometry property (cf.,

e.g., [6,4,2] and the references therein). It is very likely
that results similar to that of Theorem 2 hold under

other kind of assumptions recently introduced in the

theory of sparse recovery based on L1-relaxation [7,27,

1]. This investigation is left for future research.

3 in absolute value
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We emphasize that the constant C0 is rather small.

For example, if δT0(θ
∗) + δT0∪T1(θ

∗) = 0.5, then ‖ω̂ −
ω∗‖2 + ‖A(θ̂ − θ∗)‖2 ≤ (8/

√
S)‖ω∗ − ω∗

S‖1.

5.2 The noisy case

The assumption σ = 0 is an idealization of the reality
that has the advantage of simplifying the mathematical

derivations. While such a simplified setting is useful for

conveying the main ideas behind the proposed method-

ology, it is of major practical importance to discuss the

extensions to the more realistic noisy model.

Theorem 3 Let the assumptions of Theorem 2 be ful-
filled and let the noise vector ξ satisfy ‖ξ‖∞ ≤ σ, then

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗
S‖1 + C1σ(‖Cθ̂‖2 + ‖Cθ∗‖2),

where C0 and C1 are some constants.

The constants C0 and C1 have rather simple ex-

plicit forms which are given in Remark 6 of Section 9.

These constants have very reasonable values provided

that the parameter λ in Assumption A is not too small

and δT0(θ
∗) + δT0∪T1(θ

∗) is not too close to one.
It should also be noted that Theorem 3 covers also

the case of random noise vector ξ. Indeed, if ξ is random

with all its coordinates a.s. bounded by σ, then the

conclusion of Theorem 3 holds with probability one.
The situation is a bit different in the case of unbounded

random errors, since even if all the assumptions are

fulfilled, the result of Theorem 3 is guaranteed to hold

only with probability pσ, where pσ = P(‖ξ‖∞ ≤ σ)

is in general < 1. Fortunately, it is often possible to
make this probability close to one by a proper choice

of σ using well-known inequalities controlling the tails

of random variables. For instance, if the coordinates of

ξ are independent centered Gaussian with variance v2,
then by choosing σ = v

√
4 log N , we can guarantee that

pσ ≥ 1 − N−1, which in typical cases is very close to

one since N is large.

The result of Theorem 3 may appear not very con-

ventional in that its right hand side contains a term de-
pending on the estimator θ̂. All numerical experiments

we did show that the term ‖Cθ̂‖2 is not very large com-

pared to ‖Cθ∗‖2, which is always larger than
√

N . How-

ever, for the sake of completeness we present another re-
sult that—at the price of a stronger assumption—leads

to an upper bound (on the accuracy of the estimator)

which is independent of β̂.

Theorem 4 Let us introduce the quantity

λC/A(θ∗) = sup
θ∈∂P\{θ∗}

‖C(θ − θ∗)‖2

‖A(θ − θ∗)‖2
.

If all the assumptions of Theorem 3 are fulfilled and

δT0(θ
∗) + δT0∪T1(θ

∗) +
√

2 σλC/A(θ∗) < 1, then

‖β̂ − β∗‖2 ≤ C′
0‖ω∗ − ω∗

S‖1 + C′
1σ‖Cθ∗‖2

where C′
0 and C′

1 are some constants.

5.3 Discussion on assumptions

Assumption A is necessary for identifying the parame-
ter vector θ∗ even in the case without outliers. In fact,

if ω∗ = 0, and if Assumption A is not fulfilled, then4

∃θ1 ∈ ∂P \ {θ∗} such that Aθ1 = Aθ∗. This obviously

implies that the vector θ∗ is not identifiable.

The main assumption in Theorems 2 and 3 is that

δT0(θ
∗) + δT0∪T1(θ

∗) < 1. While this assumption is by

no means necessary, it should be recognized that it can-

not be drastically relaxed. In fact, it is easy to give an

example showing that the condition δT0∪T1(θ
∗) < 1 is

necessary. For instance, let S = 1 and

A =





1 0 0

0 1 0
0 0 1

1 0 0



 , C =





0 1 2

0 2 1
0 1 2

0 3 2



 , θ∗ =




0
0

1



 , ω∗ =





0

0
1

0



 .

Then T0 = {3} and it can be checked that δT0∪{2}(θ
∗) =

1, since the sup is attained for θ′ = [0 1 0]T. For this

example, consistent estimation of θ∗ is impossible since
there is no particular reason for choosing θ∗ instead of

θ′. This kind of situations are discarded thanks to the

assumption on δT0(θ
∗) + δT0∪T1(θ

∗).

Note also that the mapping J 7→ δJ (θ) is subaddi-
tive, that is δJ∪J′(θ) ≤ δJ(θ) + δJ′(θ). Therefore, the

condition of Thm. 2 is fulfilled as soon as δJ(θ∗) < 1/3

for every index set J of cardinality ≤ S. Thus, the con-

dition maxJ:|J|≤S δJ(θ∗) < 1/3 is sufficient for identi-
fying θ∗ in presence of S outliers.

A simple upper bound on δJ , can be computed as

follows.

Proposition 1 Let us denote by U the N × Rank(A)

matrix having orthonormal columns spanning the image

of A. Then, for every index set J ⊂ {1, . . . , N} and for

every θ ∈ ∂P, we have δJ(θ) ≤ ‖UJ‖, where the matrix

norm is understood as the largest singular value.

The proof of this proposition, obtained by replac-

ing the sup over ∂P by the sup over R
M , is given in

Section 9. Note that for a given J , the computation of
‖UJ‖ is far easier than that of δJ(θ).

4 We assume for simplicity that ∂P is compact.
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6 Relation to previous work

The present work is closely related and to some ex-

tent is complementary to that of Kanade and Ke [14],

Sim and Hartley [23] and Candès and Randall [3]. The
first two papers propose two different approaches for al-

lowing the L∞-cost minimization procedure to handle

outliers, while the third paper is the first one apply-

ing the L1 relaxation heuristic to the problem of robust

estimation.

In [14], the authors argue for minimizing the (m +

1)th largest in absolute value reprojection error in or-

der to handle (at most) m outliers. This problem be-
ing in general NP-hard, the authors propose an algo-

rithm, hereafter referred to as KK-procedure, solving

a sequence of convex problems leading to an estimator

that, in some particular cases, minimizes the (m+1)th
largest RE. It is however not clear how often the KK-

procedure will really produce the (m + 1)th largest RE

minimizer. There is actually no theoretical investigation

supporting the KK-procedure.

Since the estimator proposed in the present paper

solves an optimization problem that coincides with that

solved at each step of iteration of the KK-procedure,

roughly speaking, the theoretical arguments presented
in previous sections provide an explanation to the nice

empirical performance of the KK-procedure. Moreover,

our procedure is complementary to the KK-procedure,

since the free parameter for our procedure is the pre-
cision of inliers, while the free parameter for the KK-

procedure is the presumed number of outliers. The com-

plexities of these algorithms are very comparable.

The procedure introduced by Sim and Hartley [23],

hereafter referred to as SH-procedure, consists in itera-

tively computing the L∞-cost minimizer and in remov-

ing, at each cycle, the measurements that have maximal

RE. For a fixed positive integer k—the free parameter
of the procedure—the SH-procedure stops when the to-

tal number of removed measurements exceeds k. While

the authors prove that at each cycle at least one out-

lier is removed, there is no theoretical result evaluating
the number of inliers removed at each cycle. As for the

KK-procedure, the SH-procedure requires the number

of presumed outliers. (Note however that one can also

consider a stopping rule depending on the desired ac-

curacy of the reconstruction; namely, one can decide
to terminate iterations when the maximal reprojection

error becomes smaller than a prescribed threshold σ.)

The SH-procedure is substantially more time consum-

ing than the KK-procedure, as well as the one proposed
in the present work. In fact, in many situations, the

number of outliers is of order of several hundreds while

the average number of measurements removed at each

iteration varies between 10 and 30 for different datasets.

In such cases, the SH-procedure may require a large

number of cycles being very time-expensive.

In the statistical literature, the approach consisting

in L1-relaxation for robust estimation in the presence

of measurement errors has been recently considered in
[3], see also Candès and Tao [5]. However, there is a key

difference between the framework considered by the au-

thors and the one of the present work. In fact, Candès

and Randall are concerned by the problem of decoding

linear codes in which the matrix A can be chosen by the
encoder/decoder. Therefore, their results require some

conditions that are prohibitively restrictive in our con-

text. For example, the columns of A are assumed to be

orthogonal.

7 Numerical experiments

The aim of this section is twofold. First, we show that

the presented methodology can be effectively imple-

mented and leads to estimators that are competitive

with the state-of-the art procedures. Second, we pro-
vide an empirical evaluation of the quantities involved

in our theoretical results for several real-world datasets.

This gives an idea of the order of magnitude of the con-

stants appearing in the theorems.

We implemented the algorithm in MatLab, using

the SeDuMi package for solving LPs [25]. The Matlab
code of our program can be freely downloaded from

http://imagine.enpc.fr/̃ dalalyan/3D.html. To test

our approach, we applied our algorithm to four datasets:

the dinosaur and the corridor sequences available at
http://www.robots.ox.ac.uk/ ˜vgg/data1.html, as

well as the fountain-P11 and the Herz-Jesu-P25 se-

quences available at

http://cvlab.epfl.ch/̃ strecha/multiview/.

7.1 Dinosaur data

The dinosaur sequence consists of 36 images of a di-

nosaur on a turntable, see Fig. 1 (a) for one example.

The 2D image points which are tracked across the im-

age sequence and the projection matrices of 36 cameras
are provided as well. There are 16,432 image points cor-

responding to 4,983 scene points. This data is severely

affected by outliers which results in a very poor ac-

curacy of the “blind” L∞-cost minimization procedure.

Its maximal RE equals 63 pixel and, as shown in Fig. 1,
the estimated camera centers are not on the same plane

and the scatter plot of scene points is inaccurate.

We ran our procedure with σ = 0.5 pixel. If for

pth measurement |ωp/c
T
p θ| was larger than σ/4, then
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Fig. 2 Dinosaur data: (a)-(c) Upper view of the 3D points estimated by the KK-procedure (a), by the SH-procedure (b) and by our
procedure. (d) Boxplots of the errors when estimating the camera centers by our procedure (left) and by the KK-procedure (right).
(e) Boxplots of the errors when estimating the camera centers by our procedure (left) and by the SH-procedure (right).

it has been considered is an outlier and removed from

the dataset. The corresponding 3D scene point was also

removed if, after the step of outlier removal, it was seen
by only one camera. This resulted in removing 1, 306

image points and 297 scene points. The plots (d) and

(e) of Fig. 1 show the estimated camera centers and

estimated scene points. We see, in particular, that the

camera centers are almost coplanar. Note that in this
example, the second step of the procedure described

in Section 4.3 does not improve on the estimator com-

puted at the first step. Thus, an accurate estimate is

obtained by solving only one linear program.
We compared our procedure with the SH-procedure

[23] and the KK-procedure [14]. For the SH-procedure,

we iteratively computed the L∞-cost minimizer by re-

moving, at each cycle j, the measurements that had a

RE larger than Emax,j − 0.5ǫ, where Emax,j was the
largest RE at the cycle j. We have stopped the SH-

procedure when the number of removed measurements

exceeded 1,500. This number has been attained after

53 cycles. Therefore, the execution time was approxi-
mately 50 times larger than for our procedure. The es-

timator obtained by SH-procedure has a maximal RE

equal to 1.33 pixel, whereas the maximal RE for our es-

timator is of 0.62 pixel. Concerning the KK-procedure,

we run it with the parameter value m = N − NI with
NI = 15, 000, which is approximately the number of

inliers detected by our method. Recall that the KK-

procedure aims at minimizing the mth larges RE. As

shown in Fig. 2, our procedure is quite competitive with
those of [14,23].

7.2 Corridor data

Let us turn to the corridor sequence, consisting of one

of which is shown in Fig. 3. Matched 2D image points,

true 3D scene points and the camera matrices are also

provided. There are 737 scene points and 4,035 image

points. Thus in average, to each scene point correspond

nearly 5.5 image points. We have first ran the original
L∞ cost minimization algorithm to evaluate the influ-

ence of outliers. It has produced an estimator having

maximal reprojection error equal to 1.7 pixel, with a

very accurate estimator of the locations of cameras. We

then ran our algorithm with σ = 0.5 pixel. It classified
214 image points and 8 scene points as outliers. This

also lead to an improvement of the accuracy of esti-

mation of the camera locations by a factor larger than

three. The resulting estimators of camera locations and
scene points are shown in Figure 3.

To do more experiments, we removed the outliers

detected by our procedure from the dataset. This re-

sulted in a “clean” dataset with 3,813 image points and
729 scene points. We then artificially added outliers in

order to study the impact of the number of outliers on

the performance of the algorithm. Thus, we have ran-

domly chosen—among 3,813 measurements present in
the dataset—S measurements that served as outliers.

To these S measurements, we have added independent

2D vectors with independent coordinates having the

same distribution as ζ, where

P(ζ ∈ dx) =
1

2
e−(|x|−a)1[a,+∞)(|x|) dx.

In other terms, ζ is the symmetrized version of an ex-

ponential random variable translated by a, where a is a

positive parameter corresponding to the magnitude of
the RE for outliers. We have run our procedure with

σ = 1 pixel on this dataset for several values of S and

a; namely, S = 20; 200; 500; 1, 000; and a = 5; 10.

For each value of S and a, the experiment has been re-
peated 500 times. We also did the same experiment for

the SH-procedure which has been stopped as soon as

the number of removed observations exceeded 2S.
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Fig. 3 Corridor data: (a) One image out of 11. (b) Camera locations and scene points estimated by our method. (c) True cameras
and scene points.

The results of these experiments are summarized
in Table 1, where we present the average values and

the standard deviations for the number of true posi-

tives and false positives, as well as for the accuracy

of estimating the camera locations and for the number

of cycles for SH-procedure, where each cycle comprises
one realization of the bisection algorithm. To compute

the accuracy, we have beforehand normalized the cam-

era locations so that they are centered and the average

distance to the origin is equal to one.

The results reported in Table 1 demonstrate the

complementarity of the SH-procedure and the one pro-
posed in the present work. In fact, the SH-procedure

outperforms our procedure in terms of the accuracy

of estimating the camera locations when S ≥ 500 or

a = 10. This improvement is achieved at the cost of

much larger execution times. For example, when S =
500 and a = 5, the average execution time for our al-

gorithm is more than 25 times smaller than that for

the SH-procedure and the results of our algorithm have

very acceptable accuracy. It is also noteworthy that this
synthetic dataset is particularily well suited for the use

of the SH-procedure, since more than 95% of the outiers

have a RE lying in the interval [a, a + 3], which leads

to the removal of a large number of measurements at

each cycle. In the case of the dataset of the next sub-
section, for instance, the REs of outliers are much more

spread out and, as a consequence, the average number

of measurements removed at each cycle is more than 5

times smaller than in the case of the synthetic data of
this subsection.

7.3 Herz-Jesu data

This is one of benchmark datasets of [24]; it contains 25
frames which are corrected for distortion. Each frame is

of size 2048×3072. The authors provide the camera ma-

trices as well. We first established pairwise correspon-

Our KK
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Fig. 5 Boxplots of the errors when estimating the camera centers
by our procedure (left) and by the KK-procedure (right) for (a)
HerzJesu P25 sequence and (b) Fountain P11 sequence.

dances between different frames using SIFT descriptors
[17,26]. The resulting correspondance matrix is avail-

able at http://imagine.enpc.fr/̃ dalalyan/3D.html. It con-

sists of 15,323 scene points and 87,968 measurements.

The naive L∞-cost minimization leads to an estimator
with maximal RE larger than 1,000 pixels.

We applied our procedure, with the parameter σ =

0.5 pixel, to this dataset. It classified 32,093 image points

and 10,702 scene points as outliers and resulted in an es-

timator that has a maximal RE bounded by 0.25 pixel.
The estimated camera locations and 3D points classified

as inliers are shown in Figure 4. The accuracy for esti-

mating camera locations was equal to 0.037. We have

also tried to apply the SH-procedure on this dataset.

After 100 cycles the number of removed measurements
were slightly larger than 1,000 and the maximal RE was

still on the order of 350 pixels. Finally, we applied the

KK-procedure with m = 25, 000, which is the approx-

imate number of inliers detected by our method. The
accuracy for the resulted estimator of camera locations

was 0.058. The boxplots of errors for different cameras

are presented in Figure 5.
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Our procedure SH-procedure

TP FP Accuracy TP FP Accuracy Cycles
a S Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD Mean StD

5 20 19.2 0.93 12.8 4.15 .016 .006 16.7 2.00 40.4 11.59 .079 .013 3.7 0.48
5 200 192.1 2.76 197.2 17.37 .018 .006 192.4 5.93 225.9 15.53 .050 .020 15.2 2.02
5 500 474.6 4.50 747.9 29.86 .049 .015 490.9 3.15 537.3 21.89 .013 .003 28.8 1.82
5 1, 000 935.5 8.49 1,186.9 37.87 .173 .046 972.1 4.81 1,061.1 20.45 .012 .004 46.0 1.41

10 20 19.3 0.77 30.4 8.28 .013 .004 17.2 2.10 37.1 8.54 .131 .043 3.9 0.74
10 200 192.7 2.14 672.0 40.42 .024 .009 192.7 2.50 210.7 2.99 .011 .033 15.5 0.56
10 500 484.0 3.74 1,252.8 50.53 .080 .039 492.5 2.39 534.36 19.80 .014 .006 32.6 1.85
10 1, 000 966.4 5.95 1,541.0 33.23 .211 .073 976.4 5.09 1,056.8 24.79 .010 .002 53.5 2.69

Table 1 TP is the number of true positives, that is the number of correctly classified real outliers. FP is the number of false positives,
that is the number of inliers classified as outliers. Accuracy is the largest of 11 reals measuring the distances between the estimated
and true camera locations for each camera. Cycles is the number of cycles required by the SH-procedure to achieve the desired number
of removed measurements. Mean is the average over 500 replications, while StD is the standard deviation.

(a) (b) (c)

Fig. 4 Herz-Jesu-P25 data [24]: (a) One image out of 25. (b) Camera locations and scene points estimated by our method. (c) True
cameras and estimated scene points.

7.4 Fountain data

Fountain-P11 is another dataset presented in [24], which

contains eleven frames of a fountain. One of these frames

is presented in Figure 6 (a). We established the corre-
spondances in the same way as for the previous dataset

and got 10,455 scene points and 31,714 image points.

We applied our procedure with the same parameter

value σ = 0.5. It has classified as outliers 2,531 scene
points and 8,217 image points. The result for estimated

camera locations and scene points is shown in Figure 6.

We see that the camera locations are quite close to the

true camera locations provided by [24]. The accuracy

for estimating camera locations by our procedure was
equal to 0.017, while that of the KK-procedure with

m = 50, 000 was 0.02. The boxplots of errors are shown

in Figure 5.

8 Conclusion

In this paper, we presented a rigorous Bayesian frame-

work for the problem of translation estimation and tri-

angulation that have leaded to a new robust estima-
tion procedure. We have formulated the problem un-

der consideration as a nonlinear inverse problem with a

high-dimensional unknown parameter-vector. This vec-

tor encapsulates the information on the scene points

and the camera locations, as well as the information on
the location of outliers in the data. The proposed esti-

mator exploits the sparse nature of the vector of outliers

through L1-norm minimization.

Although we focused in the present paper on the

problem of translation estimation and triangulation,
the proposed approach applies to other problems of

computer vision such as homography estimation, cam-

era resectioning and 3D reconstruction using a reference

plane. (More details on the relation of these problems

and the inverse problem considered in this work can be
found in [13].)

We have given the mathematical proof of the result

demonstrating the efficiency of the proposed estimator

under mild assumptions. Unfortunately, the verification

of these assumptions even on a synthetic data is impos-
sible, since it requires solving a non-convex optimiza-

tion problem. It is an interesting open problem to find

possibly stronger but verifiable assumptions that allow

to theoretically assess the accuracy of the estimation.

We applied our procedure to four real-world and

synthetic datasets and compared to some recently pro-
posed procedures. The results of these experiments sup-

port our theoretical results and demonstrate the com-

plementarity of our procedure to those previuosly pro-
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posed in the literature. In particular, our procedure is in

general much faster than that of Sim and Hartley [23]

in terms of execution times and is more theoretically

justified than the method of Kanade and Ke [14].

9 Proofs

This section contains the proofs of the main theoreti-

cal claims. We begin with an auxiliary result and then
present the proofs of Theorem 2, Theorem 3 and The-

orem 4. To ease notation, since there is no confusion,

we write δJ , λ and λC/A instead of δJ(θ∗), λ(θ∗) and

λC/A(θ∗), respectively.

Lemma 1 Let v ∈ R
d be some vector and let S ≤

d be a positive integer. If we denote by T the indices
of S largest entries of the vector |v|, then ‖vT c‖2 ≤
S−1/2‖v‖1.

Proof Let us denote by T1 the index set of S largest

entries of |vT c |, by T2 the index set of next S largest

entries of |vT c |, and so on. By triangle inequality, one

has ‖vT c‖2 ≤
∑

j≥1 ‖vTj
‖2. On the other hand, one

easily checks that |vℓ|2 ≤ |vℓ| · ‖vTj−1‖1/S for every

ℓ ∈ Tj with the convention T0 = T . This implies that
‖vTj

‖2
2 ≤ ‖vTj

‖1‖vTj−1‖1/S, for every j ≥ 1. After

taking the square root of these inequalities and sum-

ming up over j, we get the desired result in view of the

obvious inequality ‖vTj
‖1 ≤ ‖vTj−1‖1.

Proof of Theorem 2 We set h = ω∗−ω̂ and g = θ∗−θ̂.

Applying Lemma 1 to the vector v = hT c
0

and to the

index set T = T1, we get

‖h(T0∪T1)c‖2 ≤ S−1/2‖hT c
0
‖1. (13)

On the other hand, summing up the inequalities

‖hT c
0
‖1 ≤ ‖(ω∗ − h)T c

0
‖1 + ‖ω∗

T c
0
‖1

and ‖ω∗
T0
‖1 ≤ ‖(ω∗ − h)T0‖1 + ‖hT0‖1, and using the

relation ‖(ω∗ −h)T0‖1 + ‖(ω∗ −h)T c
0
‖1 = ‖ω∗ −h‖1 =

‖ω̂‖1, we get

‖hT c
0
‖1 + ‖ω∗

T0
‖1 ≤ ‖ω̂‖1 + ‖ω∗

T c
0
‖1 + ‖hT0‖1. (14)

Since β∗ satisfies the constraints of the optimization

problem (11) a solution of which is β̂, we have ‖ω̂‖1 ≤
‖ω∗‖1. This inequality, in conjunction with (13) and

(14), implies

‖h(T0∪T1)c‖2 ≤ S−1/2‖hT0‖1 + 2S−1/2‖ω∗
T c
0
‖1

≤ ‖hT0‖2 + 2S−1/2‖ω∗
T c
0
‖1, (15)

where the last step follows from the Cauchy-Schwartz

inequality. Using once again the fact that both β̂ and

β∗ satisfy the constraints of (11), we get h = Ag. There-

fore,

‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2

≤ ‖hT0∪T1‖2 + ‖hT0‖2 + 2S−1/2‖ω∗
T c
0
‖1

= ‖AT0∪T1g‖2 + ‖AT0g‖2 + 2S−1/2‖ω∗
T c
0
‖1

≤ (δT0 + δT0∪T1)‖Ag‖2 + 2S−1/2‖ω∗
T c
0
‖1

= (δT0 + δT0∪T1)‖h‖2 + 2S−1/2‖ω∗
T c
0
‖1. (16)

Since ω∗
T c
0

= ω∗−ω∗
S , the last inequality yields ‖h‖2 ≤(

2S−1/2/(1 − δT0 − δT0∪T1)
)
‖ω∗ − ω∗

S‖1. To complete

the proof, it suffices to observe that

‖β̂ − β∗‖2 ≤ ‖g‖2 + ‖h‖2 ≤ λ−1‖Ag‖2 + ‖h‖2

=
(
λ−1 + 1

)
‖h‖2 ≤ C0‖ω∗ − ω∗

S‖1. ⊓⊔

Proof of Theorem 3 Let us define η = diag(Cθ∗)ξ and
η̂ = Aθ̂ − ω̂. It is clear that these vectors satisfy

‖η‖2 ≤ σ‖Cθ∗‖2 and ‖η̂‖2 ≤ σ‖Cθ̂‖2 (17)

thanks to the condition ‖ξ‖∞ ≤ σ and the constraints

|aT
p θ − ωp| ≤ σcT

p θ, ∀p, which are fulfilled by (θ̂, ω̂).

Furthermore, since under the assumption ‖ξ‖∞ ≤ σ

the vector β∗ satisfies the constraints of the LP (12),
in view of (15), we have

‖hT c
01
‖2 ≤ ‖hT0‖2 + 2S−1/2‖ω∗

T c
0
‖1 (18)

with h = ω∗− ω̂ and T01 = T0∪T1. On the other hand,

since h = Ag + η̂ − η, we have

‖hT c
01
‖2 ≥ ‖AT c

01
g‖2 − ‖η̂T c

01
‖2 − ‖ηT c

01
‖2

and

‖hT0‖2 ≤ ‖AT0g‖2 + ‖η̂T0
‖2 + ‖ηT0

‖2.

Combining last three displays, we get

‖AT c
01

g‖2 ≤ ‖hT c
01
‖2 + ‖η̂T c

01
‖2 + ‖ηT c

01
‖2

≤ ‖hT0‖2 + 2√
S
‖ω∗

T c
0
‖1 + ‖η̂T c

01
‖2 + ‖ηT c

01
‖2

≤ ‖AT0g‖2 + 2√
S
‖ω∗

T c
0
‖1

+ ‖η̂T0
‖2 + ‖ηT0

‖2 + ‖η̂T c
01
‖2 + ‖ηT c

01
‖2.

Using the elementary inequality a + b ≤
√

2(a2 + b2),

the last inequality can be simplified to

‖AT c
01

g‖2 ≤ ‖AT0g‖2 + 2√
S
‖ω∗

T c
0
‖1 +

√
2(‖η̂‖2 + ‖η‖2)

≤ ‖AT0g‖2 + 2√
S
‖ω∗

T c
0
‖1 +

√
2 ǫ,
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(a) (b) (c)

Fig. 6 Fountain-P11 data [24]: (a) One image out of 11. (b) Camera locations and scene points estimated by our method. (c) True
cameras and estimated scene points.

where for keeping formulae short we denoted by ǫ the
expression σ(‖Cθ∗‖2 + ‖Cθ̂‖2). Therefore,

‖Ag‖2 ≤ ‖AT01g‖2 + ‖AT c
01

g‖2

≤ ‖AT01g‖2 + ‖AT0g‖2 + 2√
S
‖ω∗

T c
0
‖1 +

√
2 ǫ

≤ (δT01 + δT0)‖Ag‖2 + 2√
S
‖ω∗

T c
0
‖1 +

√
2 ǫ.

Finally, the chain of inequalities

‖β̂ − β∗‖2 ≤ ‖h‖2 + ‖g‖2 ≤ ‖Ag‖2 + ‖g‖2 + ǫ

≤ (1 + λ−1)‖Ag‖2 + ǫ

≤ 1+λ−1

1−δT01−δT0

(
2√
S
‖ω∗

T c
0
‖1 +

√
2 ǫ

)
+ ǫ

completes the proof of the theorem. ⊓⊔

Remark 6 The values of constants C0 and C1 can be

easily deduced from the proof of Theorem 3. Indeed,

one can see that

C0 =
2(1 + λ−1)√

S(1 − δT0 − δT0∪T1)
, C1 = 1+

√
2(1 + λ−1)

1 − δT0 − δT0∪T1

.

Proof of Theorem 4 Repeating the arguments of the

proof of Theorem 3, we get

‖AT c
01

g‖2 ≤ ‖AT0g‖2 + 2√
S
‖ω∗

T c
0
‖1 +

√
2 ǫ,

with ǫ = σ(‖Cθ∗‖2 + ‖Cθ̂‖2) and g = θ∗ − θ̂. The

triangle inequality implies that ǫ ≤ σ(2‖Cθ∗‖2+‖Cg‖2)

and, setting µS = 2√
S
‖ω∗

T c
0
‖1 +

√
8σ‖Cθ∗‖2, we get

‖AT c
01

g‖2 ≤ ‖AT0g‖2 + µS +
√

2 σ‖Cg‖2. (19)

Using the definition of the matrix norm, one checks that

‖Cg‖2 = ‖C(ATA)−1ATAg‖2 ≤ ‖C(ATA)−1AT‖ · ‖Ag‖2.

This yields

‖Ag‖2 ≤ ‖AT01g‖2 + ‖AT c
01

g‖2

≤ ‖AT01g‖2 + ‖AT0g‖2 + µS +
√

2 σ‖Cg‖2

≤ ‖Ag‖2(δT01 + δT0 +
√

2σλC/A) + µS .

The last inequality can be rewritten as

‖Ag‖2 ≤ µS/(1 − δT01 − δT0 −
√

2σλC/A) (20)

provided that the denominator of the right hand side is

strictly positive. Therefore,

‖g‖2 ≤ λ−1‖Ag‖2 ≤ µS

λ(1 − δT01 − δT0 −
√

2σλC/A)
,

‖h‖2 ≤ ‖Ag‖2 + 2σ‖Cθ∗‖2 + σ‖Cg‖2

≤ (1 + σλC/A)‖Ag‖2 + 2σ‖Cθ∗‖2

≤ (1 + σλC/A)µS

1 − δT01 − δT0 −
√

2σλC/A

+ 2σ‖Cθ∗‖2.

These inequalities, combined with ‖β̂ −β
∗‖2 ≤ ‖g‖2 +

‖h‖2, complete the proof of the theorem. ⊓⊔

Remark 7 The values of constants C′
0 and C′

1 can be

deduced from the proof of Theorem 4. One easily checks
that

C′
0 =

2(1 + λ−1 + σλC/A)√
S(1 − δT0 − δT0∪T1 −

√
2σλC/A)

,

C′
1 =

2
√

2(1 + λ−1 + σλC/A)

1 − δT0 − δT0∪T1 −
√

2σλC/A

+ 2.

Proof of Proposition 1 Let us denote by IN×N,J the

N ×N matrix obtained from the identity matrix IN×N

by zeroing all the rows with indices in J . Then, it holds

δJ(θ) ≤ sup
u∈RM

‖IN×N,JAu‖2

‖Au‖2
= sup

v∈Im(A)

‖IN×N,Jv‖2

‖v‖2

= sup
w∈RRank(A)

‖IN×N,JUw‖2

‖Uw‖2
.

On the one hand, it is clear that IN×N,JU = UJ . On the

other hand, the fact that the columns of U are orthonor-

mal implies that ‖Uw‖2
2 = wTUTUw = wTw = ‖w‖2

2.
Therefore,

δJ(θ) ≤ sup
w

‖UJw‖2

‖Uw‖2
= sup

w

‖UJw‖2

‖w‖2
= ‖UJ‖

and the desired result follows. ⊓⊔
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