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ENERGY DECAY FOR THE DAMPED WAVE EQUATION UNDER A
PRESSURE CONDITION

EMMANUEL SCHENCK

ABSTRACT. We establish the presence of a spectral gap near the real axis for the damped
wave equation on a manifold with negative curvature. This results holds under a dy-
namical condition expressed by the negativity of a topological pressure with respect to
the geodesic flow. As an application, we show an exponential decay of the energy for all
initial data sufficiently regular. This decay is governed by the imaginary part of a finite
number of eigenvalues close to the real axis.

1. INTRODUCTION

One of the standard questions in geometric control theory concerns the so-called sta-
bilization problem: given a dissipative wave equation on a manifold, one is interested in
the behaviour of the solutions and their energies for long times. The answers that can be
given to this problem are closely related to the underlying manifold and the geometry of
the control (or damping) region.

In this paper, we shall study these questions in the particular case of the damped wave
equation on a compact Riemannian manifold (M, g) with negative curvature and dimension
d > 2. For simplicity, we will assume that M has no boundary. If a € C*°(M) is a real
valued function on M, this equation reads

(1.1) (0} — Ay +2a(z)0)u=0, (t,r) ERx M,
with initial conditions
u(0,7) = wo(r) € H!
10;u(0,2) = wi(x) € H.

Here H® = H*®(M) are the usual Sobolev spaces on M. The Laplace-Beltrami operator
Ay = A is expressed in local coordinates by

(1.2) By = Z=00"Vi0,). 5= dety.
We will also denote by dvol = \/gdx the natural Riemannian density, and (u,v) = [,
the associated scalar product.

In all the following, we will consider only the case where the waves are damped, wich
corresponds to take a > 0 with a non identically 0. We can reformulate the above problem
into an equivalent one by considering the unbounded operator

_ 0 Id gyl 0 1 0
B_(—Ag —2ia> cH " xH —- H " x H

uvdvol

with domain D(B) = H? x H', and the following evolution equation :

(1.3) (O +iBu=0, u=(ug,u1) € H' x H°.
1
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From the Hille-Yosida theorem, one can show that B generates a uniformly bounded, strongly
continuous semigroup e~ "5 for ¢+ > 0, mapping any (ug,u;) € H' x H° to a solution
(u(t,z),i0u(t,x)) of ([.3). Since B has compact resolvent, its spectrum SpecB consist
in a discrete sequence of eigenvalues {7, }nen - The eigenspaces E,, corresponding to the
eigenvalues 7, are all finite dimensional, and the sum @, E, is dense in H' x H, see
. If 7 € Spec B, there is v € H' such that

(1.4) u(t,r) = e 1 y(x),
and the function u then satisfies
(1.5) P(t)u=0, where P(r)=—-A—7%—2iar.

From (@), it can be shown that the spectrum is symmetric with respect to the imaginary
axis, and satisfies

—2||lal|oc < ImT, <0

while |ReT,| — 00 as n — oo . Furthermore, if Re7 # 0, we have Im7 € [—||a||, 0], and
the only real eigenvalue is 7 = 0, associated to the constant solutions of (DI)

The question of an asymptotic density of modes has been adressed by Markus and Mat-
saev in [], where they proved the following Weyl-type law, also found later indepen-
dently by Sjstrand in [5]] :

d
Card{n:0 <Rer, <A} = (i> / dxdé + O(\71).,
p=1([0,1])

27
Here p = ¢,(&,€)? is the principal symbol of —A, and dzd€ denotes the Liouville measure
on T*M coming from its symplectic structure. Under the asumption of ergodicity for the
geodesic flow with respect to the Liouville measure, Sjstrand also showed that most of the
eigenvalues concentrate on a line in the high-frequency limit. More precisely, he proved that
given any € > 0,

(1.6) Card{n:7, € MA+1]+i(R\ [-a—¢e,—a+¢e])} = o(X71).

The real number a is the ergodic mean of a on the unit cotangent bundle S*M = {(z,¢) €
T*M, g.(&,€) = 1}. Tt is given by

T—o00

T
a= lim 77! / ao ®'dt, well defined dzdé — almost everywhere on S*M .
0

Hence the eigenvalues close to the real axis, say with imaginary parts in [, 0], 0 > a > —a
can be considered as “exceptional”. The first result we will present in this paper show that
a spectral gap of finite width can actually exist below the real axis under some dynamical
hypotheses, see Theorem [l| below.

The second object studied in this work is the energy of the waves. From now on, we
call H = H° x H' the space of Cauchy data. Let u be a solution of ([.1)) with initial data
w € H. The energy of u is defined by

1
E(u,t) = 5([0ullZ: + [VulZ2) .
As a well known fact, F is decreasing in time, and E(u,t) =% 0. Tt is then natural to ask
if a particular rate of decay of the energy can be identified. Let s > 0 be a positive number,
and define the Hibert space

HE=H"* xH*CH.
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Generalizing slightly a definition of Lebeau, we introduce the best exponential rate of decay
with respect to || - || as

(1.7) p(s) = sup{B € Ry : 3C > 0 such that Yw € H*, E(u,t) < Ce P! |w|n-}

where the solutions u of ([[.]]) have been identified with the Cauchy data w € H*. It is
shown in [Lel] that

p(0) = 2min(G, C(ox)),
where G = inf{—Im7;7 € Spec B\ {0}} is the spectral gap, and

t
C(c0) = lim  inf 1 / 7 a(®*p)ds > 0.
t—oo peT*M t [,

Here ®' : T*M — T*M is the geodesic flow, and 7 : T*M — M is the canonical projection
along the fibers. It follows that the presence of a spectral gap below the real axis is of
significative importance in the study of the energy decay. However, an explicit example
is given in [CeH], where G > 0 while C(c0) = 0, and then p(0) = 0 . This particular
situation is due to the failure of the geometrical control, namely, the existence of orbits of
the geodesic flow not meeting supp a (which implies C(c0) = 0). Hence, the spectrum of B
may not always control the energy decay, and some dynamical assumptions on the geodesic
flow are required if we want to solve positively the stabilization problem. In the case where
geometric control holds [RaTa], it has been shown in various settings that p(0) > 0, see for
instance [BLR|, e, Hif]. In [Chi], a particular situation is analyzed where the geometric
control does not hold near a closed hyperbolic orbit of the geodesic flow: in this case, there
is a sub-exponential decay of the energy with respect to || - || for some ¢ > 0.

Dynamical assumptions. In this paper, we first assume (M, g) has strictly negative
sectional curvatures. This implies that the geodesic flow has the Anosov property on every
energy layer, see Section @ below. Without loss of generality, we suppose that the injec-
tivity radius satisfies r > 2. Then, we drop the geometric control assumption, and replace it
with a dynamical hypothese involving the topological pressure of the geodesic flow on S* M,
which we define now. For ervery e > 0 and T > 0, a set S C S*M is (g, T)—separated if
p,0 € S implies that d(®'p, ®'0) >  for some ¢ € [0,T], where d is the distance induced
from the adapted metric on T*M. For f continuous on S*M, set

T-1
Z(f,T,e) = sup > exp ) fodk(x)

peES k=0

The topological pressure Pr(f) of the function f with respect to the geodesic flow is defined
by
Pr(f) = lim lim sup 1 log Z(f,T,e).
e—0 700 T
The pressure Pr(f) contains useful information on the Birkhoff averages of f and the com-
plexity of the geodesic flow, see for instance [@] for a general introduction and further
properties. The particular function we will deal with is given by

1
1
(1.8) a“:peS*Mw— a"(p) = —/ T ao ®*(p)ds + glog,]“(p) eR
0

where J%(p) is the unstable Jacobian at p for time 1, see Section @ In this paper, we will
always assume that

(1.9) Pr(a") <O0.
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Main results. Under the condition Pr(a®) < 0, we will see that a spectral gap of finite
width exists below the real axis. As a consequence, there is an exponential decay of the
energy of the waves with respect to || - ||+ for any x > d/2, and if G < |Pr(a®)|, we have
p(k) = 2G. We begin by stating the result concerning the spectral gap.

Theorem 1. (Spectral gap) Suppose that the topological pressure of a* with respect to
the geodesic flow on S*M satisfies Pr(a™) < 0, and let € > 0 be such that

Pr(a®) + ¢ < 0.
Then, there exisits eg(e) > 0 such that for any T € Spec B with |Re 1| > eo(g), we have
Im7 < Pr(a") +e.

The presence of a spectral gap of finite width below the real axis is not obvious a priori
if geometric control does not hold, since there may be a possibility for |Im7,| to become
arbitrary small as n — 0o : see for instance [], Theorem 1.3. However, this accumulation
on the real axis can not occur faster than a fixed exponential rate, as it was shown in ]
that

1
3C > 0 such that V7 € Spec B, Im7 < el e ClRer|

Let us mention a result comparable to Theorem I in the framework of chaotic scattering
obtained recently by Nonnenmacher and Zworski [NoZw], in the semiclassical setting. For a
large class of Hamiltonians, including P(h) = —hA+V on R? with V' compactly supported,
they were able to show a resonance-free region near the energy E:

39, > 0 such that Res(P(h)) N ([E — 6, E + 0] —i[0,vh]) = 0 for 0 < h < hs .

This holds provided that the hamiltonian flow ® on the trapped set Kg at energy E is
hyperbolic, and that the pressure of the unstable Jacobian with respect to the geodesic flow
on Kg is strictly negative. We will adapt several techniques of [] to prove Theorem EI,
some of them coming back to [Anal], AnNd].

In a recent paper, Anantharaman [Ana2| studied the spectral deviations of Spec B with
respect to the line of accumulation Im z = —a appearing in (@) In the case of constant
negative curvature, she obtained an upper bound for the number of modes with imaginary
parts above —a , and showed that for o € [—a, 0[, there exists a function H(«) such that
(1.10)

Ve > 0.¥e >0, limsup log Card{r, : Ret, € A—c,\+¢|, Im7, > a+¢} <

A—00 10g A

H(a).
H(«) is a dynamical quantity defined by

H(a) =sup{hrs(p), p€ Ma, /adu = —a}

where M 1 denotes the set of ®!—invariant measures on S*M, and his stands for the
Kolmogorov—Sinai entropy of . As a consequence of Theorem El, the result of Anantharaman
is not always optimal : H(«) # 0 for o € [—a,0[, but if Pr(a*) < 0, there is no spectrum
in a strip of finite width below the real axis, i.e. the limsup in ([L.1(]) vanishes for some
a = a(a) # 0.

The operator B being non-selfadjoint, its eigenfunctions may fail to form a Riesz basis
of H. However, if a solution u of (@) has initial data sufficiently regular, it is still pos-
sible to expand it on eigenfunctions which eigenmodes are close to the real axis, up to an
exponentially small error in time :
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Theorem 2. (Eigenvalues expansion) Let ¢ > 0 such that Pr(a") +¢ <0, and k > £.
There ezists eg(e) > 0, n = n(e) € N and a (finite) sequence 1y, ..., Tn—1 of eigenvalues of
B with
Tj € [_60(5)5 60(5)] + I[Pr(a’u) +¢, 0]7 .] € [[O,TL - 1ﬂ ’

such that for any solution u(t,z) of ) with initial data w € H", we have

n—1

u(t,r) =Y e u(t,z) +r,(t ), t>0.

§=0

The functions uj,r, satisfy
luj (¢, )z < O™ wlla and [|ea(t, )l < Ce e TEFD e,

where m; denotes the multiplicity of 7;, the constants C' > 0 depends only on M and a,
while Cz > 0 depending on M,a and ¢.

A similar eigenvalues expansion can be found in [, where no particular assumption
on the curvature of M is made, however the geometric control must hold. Our last result
deals with an exponential decay of the energy, which will be derived a consequence of the
preceding theorem :

Theorem 3. (Exponential energy decay) Let € > 0, (7j)o<j<n(c)—1, K and u as in
Theorem E Set by convention 1o = 0. The energy E(u,t) satisfies

2
n—1

E(ut) < [ 3 et ¢ C|wlp + Ce e P+ |l 5

Jj=1

where m; denotes the multiplicity of 7;. The constants C > 0 depends only on M and a,
while C. > 0 depending on M,a and €. In particular, p(k) = 2min(G, | Pr(a*) 4+ ¢]) > 0.

Remark. In our setting, it may happen that geometric control does not hold, while Pr(a*) <
0. In this particular situation, it follows from [BLR] that we can not have an exponential
energy decay uniformly for all Cauchy data in H, where by uniform we mean that the
constant C' appearing in (E) does not depend on uw. However, if for k > %l we look at
p(k) instead of p(0), our results show that we still have uniform exponential decay, namely

p(k) > 0 while p(0) = 0.

1.1. Semiclassical reduction. The main step yielding to Theorem (EI) is more easily
achieved when working in a semiclassical setting. From the eigenvalue equation ([L.5), we
are lead to study the equation

P(r)u=0
where Im7 = O(1). To obtain a spectral gap below the real axis, we are lead to study
eigenvalues with arbitrary large real parts since SpecB is discrete. For this purpose, we
introduce a semiclassical parameter i €0, 1], and write the eigenvalues as

1

T=—-+0().

7+ 0()
If we let 2 go to 0, the eigenvalues 7 we are interested in then satisfy 7h 220, Putting
T= % and z = \?/2, we rewrite the stationary equation

(—hZTA —z— ihqz> u=0, g.(z)=v2za(x).
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Equivalently, we write
(1.11) (P(z,h) —2)u=10

where P(z,h) = — 'LIZTA —ihg,. The parameter z plays the role of a complex eigenvalue of the
non-selfadjoint quantum Hamiltonian P. It is close to the “energy” E = 1/2, while Im z is
of order & and represents the “decay rate” of the mode. In order to recall these properties,
we will often write

(1.12) z = % +h¢, ¢e€C and |¢| =0(1).

In most of the following, we will deal with the semiclassical analysis of the non-selfadjoint
Schrdinger operator P(z, h) and the associated Schrdinger equation

(1.13) 79,0 = P(2,))T  with ||| = 1.

The basic facts and notations we will use from semiclassical analysis are recalled in Appendix
E. The operator P has a principal symbol equal to p(x,§&) = %gm (£,€) , and a subprincipal
symbol given by —ig,. Note that the classical Hamiltonian p(z, &) generates the geodesic
flow on the energy surface p~! (%) = S§*M. The properties of the geodesic flow on S*M which
will be useful to us are summarized in the next section, where is also given an alternative
definition of the topological pressure more adapted to our purposes. We will denote the
quantum propagator by
U = e*%P,
so that if U € L2(M) satisfies ([.1J), we have ¥(t) = Y*¥(0). Using standard methods
of semiclassical analysis, one can show that U* is a Fourier integral operator (see ,
chapter 10) associated with the symplectic diffeomorphism given by the geodesic flow ®°.
Since we assumed that a > 0, it is true that ||[U*| p2_ 2 <1, Vt > 0.
Denote

1
Ty={z= 5+ O(h) € C, 3V € L*(M), (P(z,h) — 2)¥ = 0}.
IfzekX 1 and ¥ is such that () holds, the semiclassical wave front set of ¥ satisfies
WEL(¥) C S*M.

This comes from the fact that ¥ is an eigenfunction associated with the eigenvalue % of a
pseudodifferential operator with principal symbol p(z,§) = % 9:(&,€). Using these semiclas-
sical settings, we will show the following key result :

Theorem 4. Let z € Xy, and € > 0 be such that Pr(a") + & < 0. There exists ho = ho(e)
such that

I
h<hy = %SPr(a“)+5.

From ([L.12)), we also notice that the above equation implies Im7 < Pr(a*) 4+ € + O(h)
since 7 = h~'y/2z, and then Im7 = Im ¢ + O(h). Tt follows by rescaling that Theorem [ is
equivalent to Theorem m

2. QUANTUM DYNAMICS AND SPECTRAL GAP
2.1. Hyperbolic flow and topological pressure. We call
ot =y . T*M — T*M
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the geodesic flow, where H), is the Hamilton vector field of p. In local coordinates,

dcf Op
Z agzamz - 8_ {p7 }

where the last equality refers to the Poisson bracket with respect to the canonical symplectic
form w = Zle d&; A dzx;. Since M has strictly negative curvature, the flow generated by
H,, on constant energy layers £ = p~!(E) C T*M, E > 0 has the Anosov property: for any
p € &, the tangent space T,& splits into flow, stable and unstable subspaces

T, = RH, ® E*(p) & E*(p).
The spaces E*(p) and E“(p) are d — 1 dimensional, and are stable under the flow map:
VEER, dOL(E(p) = BX(®@'(p)), d®L(E"(p)) = E(@"(p)).
Moreover, there exist C, A > 0 such that
i) [ld®L)[| < Ce ™ |Jv]l, forallve E*(p), t >0
(2.1) i) |d®, (v)|| < Ce M |v||, for all v € E*(p), t > 0.
One can show that there exist a metric on T*M call the adapted metric, for which one can

takes C' = 1 in the preceding equations. At each point p, the spaces E¥(p) are tangent to

the unstable manifold W*(p), the set of points p* € £ such that d(®*(p*), ®!(p)) =2 0
where d is the distance induced from the adapted metric. Similarly, E*(p) is tangent to the

stable manifold W*(p), the set of points p* such that d(®¢(p*), ®(p)) =% 0.

The adapted metric induces a the volum form €2, on any d dimensional subspace of
T (T, M). Using Q,, we now define the unstable Jacobian at p for time ¢. Let us define the
weak-stable and weak-unstable subspaces at p by

E*%(p) = E°(p) ©RH,, E"°(p) = E"(p) ®RH,.
We set

Qp(dDTvy A--- N dDPry)

Ji'(p) = det dq)_t|Eu’°(<I>t(p)) = Qe (p) (V1 A -+ Avg)

where (v1,...,v4) can be any basis of E*“%(p). While we do not necessarily have J“(p) < 1,
it is true that J*(p) decays exponentially as ¢t — +o0.

The definition of the topological pressure of the geodesic flow given in the introduction,
although quite straighforward to state, is not really suitable for our purposes. The alterna-
tive definition of the pressure we will work with is based on refined covers of S* M, and can
be stated as follows. For § > 0, let £ = p~![3 — 4, 3 + 6] be a thin neighbourhood of the
constant energy surface p~*(3), and V = {Va}aer an open cover of £. In what follows, we

shall always choose 0 < 1/2. For T' € N*, we define the refined cover V() made of the sets
Vs = ﬂ d*W,), B=boby...bp_1 eI’

It will be useful to coarse-grain any continuous function f on £° with respect to V(T) by
setting
T—1

(f)rs = sup ¥ _ fo®(p)

peEVS i—0
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One then define

ZT(v,f):iéle > exp((f)irp) : BrcI', € c ] Vs
BeBr BEBT

The topological pressure of f with respect to the geodesic flow on £° is defined by :

Pra(f> - dia}rilr\l/l—@ Thl}})o % 10g ZT(‘/’ f) '
The pressure on the unit tangent bundle S*M is simply obtained by continuity, taking the
limit Pr(f) = lims_o Pr‘;( f). To make the above limits easier to work with, we now take
f =a" and fix ¢ > 0 such that Pr(a*)+e < 0. Then, we choose the width of the energy layer
§ €]0,1[ sufficiently small such that | Pr(a*) — Pr’(a%)| < £/2. Given a cover V = {V4 }acu
(of arbitrary small diameter), there exist a time ¢y depending on the cover V such that

3
<=,

1
N log Zto (V7 au) - Pr5(au)
to 2

Hence there is a subset of to—strings By, C A™ such that {Va}aeBm is an open cover of £°
and satisfies

(2.2) > exp((a)eq.0) < exp (to(Prf(a") + 5)) < exp (to(Pr(a) +2)) -
BEBy,

For convenience, we denote by {Wg}sen,, = {Vs}ses,, the sub-cover of V() such that
(@) holds. Note that in this case, the diameter of V, t; and then W depends on €.

2.2. Discrete time evolution. Let {@ﬁ}ﬁeBm be a partition of unity adapted to W, so
that its Weyl quantization ¢ def I (see Appendix @) satisfy

WF;(Il) C €9, 15 = Tlg, ZH[’ =1 microlocally near £%/2.
B
We will also consider a partition of unity {@,}aca adapted to the cover V, and its Weyl

AW

quantization e %)
and

. In what follows, we will be interested in the propagator ¢~Nto+1 |

N=Tlogh ™', T >0.
It is important to note that 7" can be arbitrary large, but is fixed with respect to /. The
propagator UM is decomposed by inserting EﬁeB, Il at each time step of length tg.
‘0

Setting first Us = U T, we have (microlocally near £%/2) the equality U = > sUp, and
then

(2.3) uNto = > Usy ... Uz, , near E92,

B1,82,--,BNEByy

2.3. Proof of Theorem . We begin by choosing x € C§°(T*M) such that supp xy € &°
and x = 1 on £%/4, and considering Opy,(x). Applying the Cauchy-Schwartz inequality, we
get immediately

(2.4) [N Opy (x| < > [Upy - - Us, U Opp ()| + Oz 12 (B).
B1,B2,....08 EBY
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Unless otherwise stated, the norms || - || always refer to || - ||p2_r2 or || - ||r2, according to
the context. The proof of Theorem (E) relies on the following intermediate result, proven
much later in Section E

Proposition 5. (Hyperbolic dispersion estimate) Let ¢ > 0, and 6,V,ty be as in
Section @ For N = Ttyglogh™', T > 0, take a sequence B1,...0Bn and Wy, ..., Ws, the
associated open sets of the refined cover W. Finally , let Opg(x) be as above. There exists
a constant C > 0 and ho(e) €]0, 1[ such that

N
h<hy = |UTls, .. . U"TIgU" Op,(x)| < Ch= 2] el o

j=1

where (a%)t,,5 = SUP ey, sz’:’ol a% o ®7(p). The constant C' only depends on the manifold
M.

We also state the following crucial consequence :

Corollary 6. Take ¢ > 0 such that Pr(a®) + ¢ < 0. There exists C > 0 and ho(e) €]0,1]
such that

h<hy= ||L{Nt°+1 Op,(X)|| < Ch—% eNto(Pr(a®)+e)

The constant C' only depends on M.

Proof. Given € > 0, we choose 6§, V,ty, VW as in the preceding proposition. Using (@), we
then have

2Nt Opy ()

IN

N
ct ¥ ([[enn w00
Br..ByeEBY \i=1
N

d

Chma | Y el*os )+ O(h).
BEB,,

IN

To get the second line, notice that the number of terms in the sum is of order (Card B;, )" =
p~TlogCard Biy - From our choice of & and 8, we can use (2.9), and for i small enough, rewrite
this equation as

”uNtoJrl Oph(X)” < Oﬁi% eNto(Pré(au)+g/2)
< Oh—% eNto(Pr(au)-i-a)
where C' > 0 only depends on the manifold M. |

Let us show how this result implies Theorem [f. We assume that ¥ satisfies ([L.11]), and
therefore | UNF1Y|| = e Notice also that we have
Op,(x)¥ = ¥ + O(r>)
since WFR(¥) C S*M, and then
Ut Opy ()W = U1+ O(r) = oMt Im= L O(r%)
It follows from the corollary that

4

e% Im 2 <Ch 2 eNto(Pr(q“)+e) —I—O(ﬁm)v
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where m can be arbitrary large. Taking the logarithm, this yields to

Imz logC 1
< — log h + Pr(¢“ O(—).
RS Ni,  ang el Prl@") e+ O(5)

But given € > 0, we can take N = T'logh~! with T arbitrary. Hence there is fig(g) €]0, 1]
and T sufficiently large, such that

I
h < ho(e) = % < Pr(q") + 2e.

Since the parameter € can be chosen as small as wished, this proves Theorem .

3. EIGENVALUES EXPANSION AND ENERGY DECAY
3.1. Resolvent estimates. To show the exponential decay of the energy, we follow a stan-
dard route from resolvent estimates in a strip around the real axis. Let us denote

2
Q(z,h) = —%A — 2z —1hV2za(x) = P(z,h) — =

The following proposition establish a resolvent estimate in a strip of width |Pr(a®) + €|
below the real axis in the semiclassical limit. This is the main step toward Theorems E and
f, see also [NoZwJ] for comparable resolvent estimates in the chaotic scattering situation :

Proposition 7. Let € > 0. Choose v < 0 such that
Pr(a“)+e <y <0,
and z = % + h¢, with |(| = O(1) satisfying
¥y<Im¢<0.
There exists hp(e) > 0, Cc > 0 depending on M, a and € such that
h<hole) = ||Q(z,h) Y pempe < CohimtHeotmC oo =1

_ d
where ¢y = PR CRE=E

Proof. Given € > 0, we fix hg(¢) so that Corollary E holds. Finally, we define
Pr(a*)™ = Pr(a“) + .

In order to bound Q(z,h)~!, we proceed in two steps, by finding two operators which
approximate @~': one on the energy surface £°, the other outside £°. Let x be as in
Section E, and choose also Let y € C§°(T* M) with supp X € supp x, such that we also have
X = 1 near S*M. We first look for an operator Ay = Ag(z, i) such that

QAo = (1 = Opg(x)) + Or2—2(h>).
For this, consider Q(z, i) +10p(X) def Qo (~z, ). Because of the property of y, the operator
Qo is elliptic. Hence, there is an operator Ag, uniformly bounded in L?(M), such that
QoAo =Id+Op2, 12 (E).
The operator Ay we are looking for is obtained by taking Ag = [10(1 — Opp(x))- Indeed,
Q(z,h)Ag(z,h) = 1—0ps(x) —i0p,(X)Ao(1 — Opy(x)) + Opa_2(h™)
= 1—0pu(x) +Op2_p2(h™)

since x and 1 — x have disjoints supports by construction.
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We now look for the solution on £%. From Corollary E, we have an exponential decay of
the propagator UV if N becomes large. To use this information, we set

; Th i
A1(z,h,Ty) = % Ut e Opy(x) dt
0
where T} has to be adjusted. Hence,
Q(z 1) Av (2,1, Th) = Opy(x) = U €2 |i=r, Opy(x) = Opy(x) + Br

Since Im z/h = Im ¢ = O(1), we have
(3.1) [Ra]| = e~ e Opy ()|
From Corollary [§, we know that for N = Ttolog h~' with & < A,

”uNtoJrl Oph(X)” < Ci‘f% eNto Pr(a*)* '
We observe that this bound is useful only if does not diverge as i — 0, which is the case if

d def

T> .

~ 2tg| Pr(a¥)*|
Let us define

3.2 T = Totologh ' 4+ 1 = logh ' +1.
h

4

2| Pr(a*)*|

If Ty, = Tlog h~ 'ty + 1, with T > Tp chosen large enough, we find
IR < CRT oY =5 —Tto Pr(a O™

with m = m(Ty) > 0, since v — Pr(a*)™ > 0. Consequently, there is T} = Ti(g) > 0 such
that T} = Titolog h™! + 1 satisfies m(T}}) = 0. This means that for T, > T}, we have

Q(z,h)(Ao(z,h) + A1(2, 1, T1)) = 1+ Op2_,12(1),

in other words, Ay + A; is “close” to the resolvent Q' . Hence, we impose now T} > T,il7
and evaluate the norms of Ay and A;. By construction, ||Aq|| = O(1). For A;, we have to
estimate an integral of the form

ut

Th
Iry = [t Opy ()
0

Let us split the integral according to T}, and use the decay of U* Opy,(x) for t > T} :

Ir,| < Tge—T§1m<+0h—%/ e—tIm¢ 4(¢=1) Pr(a)* g
T3
< TPeTRImC(1 4 O # e TRDPraT
< CET,ge’TgImC.

Using (B.9), this gives
|A1(2, b, Tp)|| < Coh™ ' Heo ™ Clog
where C; > 0 depends now on M, a and € while
d

(33) Co = W
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We now translate these results obtained in the semiclassical settings in terms of 7. Recall
) 1
P(r) = —A — 7% = 2iar = ﬁQ(z, h).

and set R(1) of P(7)~1. The operator R(7) is directly related to the resolvent (7 — B)~! :

a straightforward computation shows that

-1 [ R(T)(=2ia—71) —R(7)
(r=B)~ = < R(T)(2iar —72) —R(7)T ) )

Proposition 8. Let e > 0 be such that Pr(a*) + ¢ < 0, and v < 0 satisfying
Pr(a")+e <y <0.

Let 7 € C\ SpecB be such that v < Im7 < 0. Set also () = (1+ |7|2)2. There exists a
constant C' > 0 depending on M,a and € such that for any k > d/2, we have

(@) R()lp2—r2 < Celr) ™17 log(r)
(@) |R()p2—m < Ce(r)' ™7 log(7)
(@ii) R~ —mr < Ce

(i) TR s —po < C-.

~

<

Proof. (i) follows directly from rescaling the statements of the preceding proposition. For
(47), observe that

[R(T)ullg> < C(||[R(T)ul| L2 + [[AR(T)ull2), € > 0.

But

IAR(T)ull 2 < |lullzz + 7% + 27 ial[| R(T)ul 2,
so using (7), we get

[R(r)ullgz < C (A + 7% + 2iar])|R(T)ul 2 + [Jull 12) < Ce(r)! =7 log(7) [[ull .2 -
To arrive at (iii), we start from the following classical consequence of the Hlder inequality :
(3.4) IR(T)ullFp-s < |R(T)ull’|R(T)ull 5, s> 0.
From (i) and (i7), we obtain
IR(T)ull pri-s < Cefr)= 00+ log(r) lul| 2
If we choose s > —vyco, we get ||R(7)|| go—g1-s < Ce.. Hence, for any s’ > 0 we have
VRO s < Ce.

Taking s’ = s shows (iii), where we must have £ > —vyco. In view of (B.3), and the fact
that v > Pr(a™) + £, this condition is satisfied as soon as k > d/2. The last equation (iv) is
derived as (iii), by considering

ITR(yullFp-e < [rPIR(ull " [ R()ull 2, s> 0,

and choosing s so that ||[7R(7)||%0_ y1-. < Ce. O



ENERGY DECAY FOR THE DAMPED WAVE EQUATION UNDER A PRESSURE CONDITION 13

3.2. Eigenvalues expansion. We now prove Theorem E Let us fix € > 0 so that Pr(a®) +
€ < 0. From Theorem EI we know that

Card (Spec BN (R + i[Pr(a") + ¢,0])) of n(e) < oo.
Hence there is eg(g) > 0 such that Spec BN (R + i[Pr(a*) + €]) C Q, where
Q = Q(e) = [—eo, e0] +i[Pr(a*) + ¢,0].
We then call {79,...,7,)—1} = Spec BN, and set by convention 79 = 0. We define as

above Pr(a")™ = Pr(a") + £. Since we look at the eigenvalues 7 € €, let us introduce the
spectral projectors on the generalized eigenspace E; for j € [0,n — 1] :

1
RDIT

55 (r—B)~tdr, TI; € L(H,D(B>)),

where y; are small circles centered in 7;. We also denote by

I=> "1
§=0
the spectral projection onto @?:0 E;. We call Ey the eigenspace corresponding to the
eigenvalue 79 = 0. It can be shown ] that Ej is one dimensional over C and spanned by
(1,0), so
IIyw = (¢(w),0) with c¢(w) € C.

Let now w = (wp,w1) be in H*. Near a pole 7; of (1 — B)~!, we have

_ I; < (B—7)kF 1
T—B)1= I+ E J L+ Hj(r
( ) T—Tj Pt (T—Tj)k ]()

where H; is an operator depending holomorphically on 7 in a neighbourhood of 7;, and m; is
the multiplicity of 7;. Since II € L(H, D(3*°)), we have the following integral representation
of e~ 1B Tlw, with absolute convergence in H:
) 1 “+oo+ia .
(3.5) e 1P w = — e (1 — B) Mlwdr, t>0, a>0.
2im —oo+ia

The integrand in the right hand side has poles located at 7, j € [0,n — 1], so that
1 - I,
Z—, y§ [ ——Y 7
r 2im J,, T—Tj
it def it
Ze thTj(t)wEZe i (t) .
J J

The operators p,(t) appearing in the residues are polynomials in ¢, with degree at most
m;, taking their values in L(H, D(B>)). It follows that for some C' > 0 depending only on
M and a,

e—ltB Tw

[l (@)l < CE™ [|wlln -
The remainder term appearing in Theorem Eis now identified :
r,(t) =e 1Bl - Mw.
To conclude the proof, we have therefore to evaluate ||r,|#. To do so, we will use in a

crucial way the resolvent bounds below the real axis that we have obtained in the preceding
section. We consider the solution u(t, z) of ([L.1]) with initial data u = (ug,u1) = (1 — Iw,
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with w € H", kK > d/2. Let us define x € C*(R), 0 < x < 1, such that y =0 for ¢t < 0 and
x =1 for t > 1. If we set v = yu, we have

(3.6) (02 — A+ 2a0;)v = g1
where
(3.7) g1 = X"u~+2x'0u + 2axu .

Note also that supp g1 C [0,1] x M, and v(¢) = 0 for ¢ < 0. Let us denote the inverse Fourier
transform in time by

Fiosr iu— () = / e T u(t)dt.
R
Applying F;_._, (in the distributional sense) to both sides of (B.6) yields to
P(r)o(r,z) = g1(r,x) .

We then remark that R(7)g1 (7, x) is the first component of

i(r — B) U F () (w104
From the properties of II, it is clear that the operator (7 — B)~!(1 — II) depends holomor-
phically on 7 in the half-plane Im 7 > Pr(a*)*. From (u,idu) = ¢~ *8(1 — II)w, we then
conclude that i(7 — B) " F_._, (X'(t)(u,i0;u)) depends also holomorphically on 7 in the
half plane Im 7 > Pr(a*)™. Hence #(r,z) = R(7)J1(7, z) and an application of the Parseval
formula yields to

—tPr(a*)t -~ : U
H e tP (a®) U(t,CL‘)HL2(R+)H1) = HU(T —|—1Pr(a )+||L2(R,H1)

|R(T +iPr(a")")g1 (T + iPr(a“)Jr,x)HLz(R_’HU
Cellgn(r +iPr(a™)", @)l L2 (r, 1)
Cellgr (tax)||L2(R+,H~) .

where we have used Proposition E The term appearing in the last line can in fact be
controlled by the initial data. From (B.7), we have

IAIA

(3.8) lg1ll L2y smey < C (JlullL2qo,1);8) + 10¢ull L2(j0,1);87)) -
A direct computation shows

Oullullzes < ClllullFe + 10eullFs + [ Vullzge) -
The Gronwall inequality for ¢ € [0, 1] gives

¢ (nu(o, W+ [ ou(s) + ||Vu<s>||i1~>ds)

O[3

IN

lut, )7

IN

since the k—energy
1
E*(tu) = S (10ulf + [Vl 7)
is also decreasing in t. Coming back to (B.g), we see that lgill2@ymey < Cllw|la= and
then,
1™ PrED*D ot 2)| Lo, mry < Ccllwllen
This is the exponential decay we are looking for, but in the integrated form. It is now easy

to see that
[u(t, )l < Ce e FHaIT) |l
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We have to check that the same property is valid for d;u. Using the same methods as above,
we also have

P(r)Fies—r (Opv) = =71 (7),
and then, 7y, (0yv) = —7R(7)§1(7). It follows that
e P gt @) 2, oy = B0 +iPr(a") || p2ge o)
= ||[7R(t +iPr(a*)")g1 (7 +iPr(a*)T, )| L2 (R, HO)
Cellg (7 +1Pr(a*) ™, @)l 2 (r v
Cellgr(t, o) L2, vy -

IAIA

Grouping the results, we see that
[l < Ce P T2 o]

and this concludes the proof of Theorem .

3.3. Energy decay. We end this section with the proof of the Theorem E, which gives the
exponential energy decay. This is an immediate consequence of the following lemma, that
tells us that the energy can be controlled by the H! norm of u, for ¢ > 2:

Lemma 9. There exists C > 0 such that for any solution u of (1) and E(u,t) the
associated energy functional, we have

E(w,T) < Cllulizqr_origmy T =2

Proof. This is a standard result, we borrow the proof from [} For T' > 2, we choose
X2 € C®(R), 0 < x2 < 1 such that x2(t) =1 for t > T and x2(t) =0 if t <T — 1. Setting
ua(t, ) = x2(t)u(t, ), we have

(0F — A+ 2a0;)uz = g2
for ga = x5u + 2x50:u + 2axhu. Note that go is compactly supported in ¢. Define now
1
Es(u,t) = 5/ (|0puz|? + |Vua|?)dvol
M

and compute

Ei(u,t) = (0}ug, Oyuz) — (Aug, dyusz)
= —2(alsus, Oruz) + (g2, Oruz)

< [ Jowal(orul + [ul)dvol
M

< C(Eg(u,t)+/M(|8tu|2+|u|2)dv01) .

We remark that Fa(u,T — 1) = 0 and Es(u,T) = E(u,T), so the Gronwall inequality on
the interval [T' — 1, T gives

(3.9) E(u,T)<C (Hatu”%%[Tfl,T];L?) + HUJH%?([Tfl,T];L?)) :

To complete the proof, we need to bound the term ||8tu||%2([T7LT];L2). For this purpose,
we choose x3 € C°(R), 0 < x3 < 1 such that x3(¢t) =1 fort € [T'— 1,7] and x3(¢t) = 0 if
t<T—2and t>T+ 1. From ([.1), we get
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T+1
0 = / (x3u, 0fu — Au + 2ad;u)dt

T—2
T+1
= | 00,0 — 2. ) + 26w a0 + 3G, -
T—2
whence
0cull L2(r—1,1;2) < CllullL2(r—2.741); 1)
Substituting this bound in (B.9) yields to the result. O

The Theorem B follows now from the preceding lemma. Let us denote by u;(t, z) and and
7 (t, ) the first component of p, (t)w and e "5(1 — II)w respectively. We learned above
that

n
u(t,x) = et x) + ra(t,z)
j=0
with |Ju;(t, )| < Ct™||w]3n, and ||ra(t, )| < Ceet®r@)+22) ||| |94. Suppose first
that the projection of w on E; vanishes, i.e. Iljw = 0. Then, from the preceding lemma we
clearly have

n

Bl )} < 3o sl )l + Cee ™29 ol

This shows Theorem E when Ilpw = 0. But the general case follows easily: we can write
u(t,x) = u(t,x) — How for which we have the expected exponential decay, and notice that
E(a,t) = E(u,t) since Ipw is constant.

4. HYPERBOLIC DISPERSION ESTIMATE

This last section is devoted to the proof of Proposition ﬂ Let &,6,V,W and Opy(x) be
as in Section E We also set N =Tlogh™', T > 0.

4.1. Decomposition into elementary Lagrangian states. Recall that each set Ws =
Wh...by, 1 in the cover W has the property

(4.1) DR (W5) C Vs, , k€ [0,t0 — 1]

for some sequence by, b1,...,b,,—1. We will say that a sequence sequence (3, ...03n of sets
W, is adapted to the dynamics if the following condition is satisfied :

Yk € [1,N —1], ®Fo(Ws)nWs,,, # 0.

In this case, we can associate to the sequence {3;} a sequence 71,...,vny, of sets V,, CV
which are visited at the times 0, ..., Nty—1 for some points of Wj3,. We will only consider the
sequences adapted to the dynamics. Indeed, it is clear from standard results on propagation
of singularities that

[Upx - - Up, [| = O(r)

if the sequence is not adapted (see Appendix @)7 and in this case, Propositionﬁ is obviously
true.
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We now decompose further each evolution of length ty in (@) by inserting additional
quantum projectors. To unify the notations, we define for j € [1, Ntg] the following projec-
tors and the corresponding open sets in T*M :

(4.2) p. _ s ifj—1=kto, kEN W, ifj-1=kto, keN
' T, ifj-1#0 modty 7 |V, ifj—1#0 modt.

We will also denote by F., € C§°(T*M) the function such that suppF, C V., and P, = FY.

Let us set up also a notation concerning the constants appearing in the various estimates
we will deal with. Let ¢, K € N be two parameters (independent of h), and e, ez, e3 > 0
some fixed numbers. For a constant C' depending on M and derivatives of x, a, ®* (for ¢
bounded) up to order e;£ + ex K + e3, we will write C“5) (M, x), or simply C) (M, x) if
only one parameter is involved. If the constant C' depends also on the cutoff functions F,
and their derivatives, we will write

C = CUIO(M, X, V).

This is to recall us the dependence on the cutoff function x supported inside £, and the
refined cover V. We will sometimes use the notation C“-) (1M, V) when no dependence on
X is assumed. Note that V depends implicitely on € since its diameter was chosen such that

(-2) holds.

Using ([.1), standard propagation estimates give
U'Tlg, =UP,, ... UP,, + O 2(h®), U=U",
and similar properties for Y*°Ilg,, k > 1. Finally,
(4.3) Upy,, - - Us,UOpp(x) = UP~, .. .UP,UOD,(X) + Op212(h™).

Take now ¥ € L?(M). In order to show Proposition [, we will write Opy;(x)¥ as a linear
decomposition over some elementary Lagrangian states, and study the individual evolution
of such elementary states by UN%o+!. This type of method comes back to ] and is the
key tool to prove Proposition E The decomposition of Op;(x)¥ is obtained by expliciting
the action of Opy(x) in local coordinates (see Appendix [A]). When applying Op,(x) to ¥
using local charts labelled by ¢, we get

Op(¥@) = 3 gy [ T T mea)ona) o)
£

— 5% . (@)W (20)dzo
> JEELTE

where we have defined

def 1 (ne—zg) X+ Z
S,z (1) W/e Y ) % n)pe(z0)de(x)dn .

This is a Lagrangian state, which Lagrangian manifold is given by
N ETEMNE T M.

Geometrically, A° corresponds to a small, connected piece taken out of the union of spheres
{T:x M np (3 +v), |v| <8} If we project and evolve ¥ according to the operator
appearing in the right hand side of ({.), we get :
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[e4° Py, - - - UP», U OpL (X) ¥ < Zsupllutpmo---PMU%ZOII/MI\P(x)IdI
) z

(4.4)

IN

CY sup [UPy, - Pl W]

¢ z
where C' > 0 depends only on the manifold M. Hence we are lead by this superposition
principle to study in detail states of the form U'P,, ... UP, US! _ , for n € [1, Nto] and
t € [0, 1]. For simplicity, because the local charts will not play any role in the following, we
will omit them in the formulze.

4.2. Evolution of Lagrangian states and their Lagrangian manifolds.

4.2.1. Ansatz for short times. In this section we investigate the first step of the sequence of
projection—evolution given in (@) our goal is to describe the state U*d, ., with ¢ € [0, 1].
Since U" is a Fourier integral operator, we know that ¢4*d, ., is a Lagrangian state, supported
on the Lagrangian manifold

A1) € B1(A9), ¢ e o,1].

Because of our assumptions on the injectivity radius, the flow ®' : A%(s) — A%(¢) for
1 >t >s >0, induces on M a bijection from wA%(s) to 7A%(t). In other words, A°(t)
projects diffeomorphically on M for ¢ €]0,1], i.e. kerdm|po) = 0 : in this case, we will say
that A°(t) is projectible. This is the reason for introducing a first step of propagation during
a time 1 : the Lagrangian manifold A°(0) is not projectible, but as soon as t €]0,1], A°(t)
projects diffeomorphically. Treating separately this evolution for times ¢ € [0, 1] avoid some
unnecessary technical complications.

The remark above implies that the Lagrangian manifold A°(¢), ¢ €]0,1] is generated by
the graph of the differential of a smooth, well defined function Sy :

A°(t) = {(x,dsSo(t,x, 20)) : 1 >t>0, x € nd(AY)}.

This means that for ¢ €]0, 1], we have the Lagrangian Ansatz :

VOt z,20) E Uy (2)
1 i Solt:zoz0) ~ k1,0 K R0
(4.5) = G T M) £ W B |
k=0

The functions bY(t,z,z) are smooth, and x € 7AY(¢). Furthermore, given any multi index
¢, they satisfy

(4'6) Haﬁbg(tv " ZO)” <Curk

where the constants Cy j, depends only on M (via the Hamiltonian flow of p), the damping a,
the cutoff function x and their derivatives up to order 2k + ¢. However, note that Co o only
depends on M. The remainder satisfies | B%|| < Cx where the constant C also depends
on M, a, x and is uniformly bounded with respect to x, zo. The base point zy will be fixed
until section @, so it will be ommited in the following to simplify the notations.
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4.2.2. Further evolution. In the sequence of projection—evolution (@), we then have per-
formed the first step, and obtained an Ansatz for U'd,,, t €]0, 1] up to terms of order A ~/2,
for any K > 0. The main goal of the next paragraphs consist in finding an Ansatz for the
full state

def

(4.7) v(t,x) = UP, UP,, .. . UPL UG, , t€[0,1], n>1.

The 3; are defined according to j —1 mod ¢y as in the preceding section, but here n is
arbitrary in the interval [1, Nty]. Because the operator U'P is a Fourier integral operator,
vI(t,z), j > 1is a Lagrangian state, with a Lagrangian manifold which will be denoted
by AJ(t). This manifold consist in a small piece of ®/Tt(A%), because of the successive
applications of the projectors P, between the evolution operator ¢/. If j = 1, the Lagrangian
manifold A'(0) is given by
A(0) = A"(1) N Vs,

and for ¢t € [0, 1] we have A'(t) = ®!(A(0)). For j > 1, AJ(t) can be obtained by a similar
procedure: knowing A771(1), we take for AJ(t), t € [0,1] the Lagrangian manifold

AO) A1) NV, and A(t) = B'(AT(0)).

Of course, if the intersection A7~*(1) NV, is empty, the construction has to be stopped,
since by standard propagation estimates, v/ will be of order O(A>). But this situation will
not happen since the sequence {(;} is adapted to the dynamics. It follows that

Vi€ [1,n], AI(0)#0.

One can show (see [AnNd], Section 3.4.1 for an argument) that the Lagrangian manifolds
AJ(t) are projectible for all j > 1. This is mainly because M has no conjugate points. In
particular, any A’(t) can be parametrized as a graph on M of a differential, which means
that there is a generating function S;(¢, ) such that

N (t) = {z,d.S;(t,2)} .

By extension, we will call a Lagrangian state projectible if its Lagrangian manifold is.
Let us introduce now some notations that will be often used later. Suppose that z €
wAI(t), j > 1. Then, there is a unique y = y(x) € 7A7(0) such that

7o ®'(y,d,S;(0,y)) = .
If we denote for ¢ € [0, s] the (inverse) induced flow on M by
¢§f(s) s € TN (s) = 10 (2,d,S;(s, 7)) € TA (s — t),
we have y(x) = qﬁgjt(t) (z). If z € wAI(t), then by construction
O (x,d, S (t,x)) € ATTFO0) c ATTFTE1), ke 0,5 —1].
By definition, we will write
Osly (1) =@~ (e, d,Sj(t ) and  dgf(z) = 7@ (2, d,S5(1, 1))

To summarize, our sequence of projections and evolutions can be cast into the following
way:

R Py Pa Pr ut

(48) 5X —M>UO(17') Ul(ov') U1(17') — _>,Un(07.) —>vn(ta')
20— 201y M A1) —E ) e ey 2 An(y)
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On the top line are written the successive evolutions of the Lagrangian states, while the
evolution of their respective Lagrangian manifolds is written below (the notation |y denotes
a restriction to the set V. C T*M).

4.3. Evolution of a projectible Lagrangian state. Let V., and P, be as in (@) The
next proposition contains an explicit description of the action of the Fourier integral oper-
ators U'P on projectible Lagrangian states localized inside V..

Proposition 10. Let V. and P, = FY be as in Section @ Let wi(z) = w(ac)elhw(””) be a
projectible Lagrangian state, supported on a projectible Lagrangian manifold

A = {z,dyto(z)} C V.

Assume also that A(t) L PN s projectible for t € [0,1]. We have the following asymptotic
developement :

. K-1
(4.9) U'Pywp](x) = en ") N " Brwy(t,2) + Wi (¢, @)

k=0

where (t,-) is a generating function for A(t). The amplitudes wy can be computed from
the geodesic flow (via the function . ), the damping q and the function F.. Moreover, the
following bounds hold :

l|wg || e Cokllwlcerar

<
<

Irillce OE,K”chtZ+2K+d

where the constants depend on ., a, F, and their derivatives up to order {+2K +d, namely

Cor = CR) (M, V). An explicit expression for wy, will be given in the proof.

Proof. The steps we will encounter below are very standard in the non-damping case, i.e.
q = 0. If the diameter of the partition V of £° is chosen small enough, we can assume
without loss of generality the existence of a function ¢, € C*°([0,1] x R? x R?%) which
generates the canonical transformation given by the geodesic flow on V., for times ¢ € [0, 1],
in other words :

(4.10) Y(y,m) € Vy, @ (y,n) = (2,8) & & = 0oy (t,2,m) and y = Oy, (L, 2,7) .

Furthermore, ., satisfies det (’ﬁmgpV # 0, and solves the following Hamilton-Jacobi equation

Orpy + p(z,dyipy) =0
0y (0,2,m) = (n,2) .

We first look for an oscillatory integral representation:

K-1
1 i _
(411)utP»YU)h(I) = W//VQE(WW@@W) (y,m+(y)) g hkag(t,z,y7n)w(y)dydn
k=0

+Orp2 (hK)

C bt ) + W (), (k] = OQ1),

with (y,n) € V., . For simplicity, we will omit the dependence on 7 in the formulae. We
have to determine the amplitudes aj. For this, we want by to solve
Oby _ i,
ot 2

q)bn
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up to order A*. Direct computations using (@) show that the functions ¢ and aj must
satisfy the following equations :

o + p(w,dep) =0 (Hamilton-Jacobi equation)
(4.12) Orap + qao + Xlaog) + %ao divy, X =0 (0-th transport equation)
drar + qar, + X[ap] + ap divg X = %Agak,l (k — th transport equation)

with initial conditions

¢(0,z,m) = (z,n)
a’O(Ov'rvya 77) = F(#a 77)

ax(0,z,y,m) =0 for k > 1.

The variables y and 7 are fixed in these equations, so they will play the role of parameters
for the moment and will sometimes be skipped in the formulze. X is a vector field on M
depending on ¢, and divy X its Riemannian divergence. In local coordinates,

1 .
—0i(VgX").
VI
The Hamilton-Jacobi equation is satisfied by construction. To deal with the transport
equations, we notice that X corresponds to the projection on M of the Hamiltonian vector

field Hy, at (z,dy(t,z,m)) € T*M. Let us call first
Ary = {(z, dup(t, x,m)), 2 € T®'A}, 1 fixed.

X = g"(2)0y,(t, ) On, = O¢,p(x, 0pp(t, )0y, and divy X =

This Lagrangian manifold is the image of the Lagrangian manifold Ao, = {(y,n) : y € mA}
by the geodesic flow ®'. The flow % on M generated by X can be now identified with the
geodesic flow restricted to A, -

KL mAs, D @ @ (@, Opp(t,2,m)) € TA4ts -

S

The inverse flow (x%)~1 will be denoted by _,. Let us extend now the flow ! of X on M

to the flow Kt generated by the vector field X = 9; + X on R x M :
. {R x M —Rx M
(s,m) — (s +t,ki(2)).
We then identify the functions aj with Riemannian half-densities on Rx M — see , :
ak(t, @) = ax(t, 2)/didvol(x) = ax(t,)\/5@) ldtdalt € C=(R x M,2y).
Since we have
L (apVdtdvol) = (X[ag] + %ak div, X)Vdtdvol ,
the 0—th transport equation takes the simple form of an ordinary differential equation:
EX(ao\/M) + qaox/m =0.

This is the same as

d
7 (KY*agV dtdvol = —qagVdtdvol,

agVdtdvol = e~ Jo 19K ds (jc=t)* 40\ /dtdvol .

We now have to make explicit the coordinates dependence, which yields to

which is solved by

l t s—t
ao(t,2)\/g(x) ? |dadt|2 = e~ Joaomi ™ @ds g0, kit (2))y/ gk (z))| det dpry t|2 |dadt]|? .
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Consequently,

gk " (x))
Vg(x)

ao(t, z) = e~ Jo 9o @ds g (0 gt (2)) | det dyry |2 .

Since
kit e T (@, 0p0(t, 1,m)) = Ope(t,x,m),

it is clear that |det d,x; '(z)| = |det 82, ¢(t,x,n)|. For convenience, we introduce the fol-
lowing operator 7! transporting functions f on M with support inside 7A; , to functions
on ™A1, while damping them along the trajectory :

(ks (@)
V()

THf) (@) = e Jo R £kt (x)

This operator plays a crucial role, since we have
(413) aO(ta ) = %t(ao(oa )) = %tFa

from which we see that ao(t,-) is supported inside 7A;,. By the Duhamel formula, the
higher order terms can now be computed, they are given by

an(t,) = /Ot Tt (%Agak_l(s)) ds.

The ansatz by (t, x) constructed so far satisfies the approximate equation

ob . i it
a—: = (1hAy — q)by — 571}( //eﬁs(t’ 1Y) w(y)Agarx—1(t,z,y,n) dydn.

The difference with the actual solution U*P is bounded by
thHAgaK_lH S CthK N

where C' = CCK) (M, V), so (.11]) is satisfied.

As noticed above, for time ¢ > 0, the state U*Pwy, is a Lagrangian state, supported on
the Lagrangian manifold A(t) = ®'A. By hypothese, A(t) is projectible, so we expect an
asymptotic expansion for by (t, ), exactly as in (JLJ). To this end, we now proceed to the
stationary phase developement of the oscillatory integral in ([.11)). We set

1 i
1) = Gy //eﬁwmm)_<y’">+w(y” ax(t, @, y, n)w(y)dydn.
The stationary points of the phase are given by
¥'(y) =n
aﬁsp(tv €, 77) =Y,

for which there exists a solution (ye,7.) € A(0) in view of ([L10). Moreover, this solution
is unique since A(t) is projectible: y. = y.(z) € wA(0) is the unique point in 7A(0) such
that z = 7®'(y., ¥’ (y.)) , and then 1. = ¢’ (y.) is the unique vector allowing the point y. to
reach x in time ¢. The generating function for A(¢) we are looking for is then given by

1/)(15735) = S(tvxvyc-,(x)vnc(x))'
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Applying now the stationary phase theorem for each I, (see for instance @], Theorem 7.7.6,
or [, Lemma 4.1 for a similar computation), summing up the results and ordering the
different terms according to their associated power of i, we see that ( holds with

— i B®) ao(t, T, Yes e .
wolt, =) =e | det(1 — 872777()0(15, T,ne) 0 ¢//(yc))|% w(ye), Be€CTR),
and
k
(4.14) wi(t,x) = 3 Azi(w, D) (an—i(t, 2,5, M) ()= (gene) -
=0

Ag; denotes a differential operator of order 2i, with coefficients depending smoothly on ¢,

1 and their derivatives up to order 2i 4+ 2. This yields to the following bounds :
lwillee < Copllwllgesas

where Cy = C“F)(M,V). The remainder terms rx(t,z) is the sum of the remainders
coming from the stationary phase developement of I up to order K — k. Each remainder
of order K — k has a C* norm bounded by Cy g xh ~%||w|| ce420x-r)+a S0 We see that

IrKlloe < Corc|wlgerercia, C=CEEN(M,Y).

The principal symbol wqy can also be interpreted more geometrically. As in Section @,
denote by ¢1;(tt) the following map

S WA(t) — FA(O)
(bw(t) N — W‘I)it(-f, dﬂ/)(tvﬂ?)) :

Let us write the differential of ®* : (y,n) — (z,€) as d®*(dy,6n) = (dx, 5€). Using ([L.10),

we have

oy = 857790517—#8,27"90577
0 = 85190596—1—6%,790577,

and then, since 8277@ is invertible,
( oz ) _ ( 02,0 —0%, 0 000 ) ( 3y )
8¢ 02,002,071 02,0 — Ouapd2, 0 0%, 0 on
If we restrict ®* to A(0), we have dn = 9" (y)dy, which means that for z € wA(t),
A7t () = 02,0t 1e) (1 — BByt me) " ()
It follows from ({.14) that

9(¢

wot,r) = PO w(ye)F(ye,ne) e B W0t O qer dgt, (a) 4| L
g

[V

. o —t+s )V ds _
= RO (o )F(ye,ne) e 1T Jac(dgyt, (@)

3

where Jac(f) denotes the Jacobian of f : M — M measured with respect to the Riemannian
volume. g
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4.4. Ansatz for n > 1. In this paragraph, we construct by induction on n a Lagrangian
state b"(t, ) supported on A”(t), in order to approximate v"(t,z) up to order A% —4/2,

Proposition 11. There exists a sequence of functions
{bp(t,x),Sp(t,z) : n>1, k<K, x € M, t€[0,1]}

such that Sy (t,x) is a generating function for A"™(t), and

K—1
1 j Sult)

4.15 " (t,x) = e' ﬁkb"t:z +rE-2 Ry t,x
(4.15) (t, ) 23 1;) ) x (£, )
where R}, satisfies

n K-1
(4.16) ||R H < CK 1+ Ch)" <Z HbZ 1 HCQ(K k)+d +C>

=2 k=0

where C' = CE)N (M, x), Cx = CE) (M, x,V) and C > 0 is fized.

Proof. The construction of the amplitudes b} for all & > 0 is done by induction on n,
following step by step the sequence (f.g). In Sect1on [.9 we obtained U 1§, as a projectible
Lagrangian state:

)_.

1 : )

WO(1,z) = Pl REOY (1, ) + KK =42 BY. (1, z)
k=0
def 1 0 K—d/2 0
= 7(27rﬁ)d/2b (Lx)+h Ry (1,2),

and we know that b°(1,-) satisfies the hypotheses of Proposition E, which will be used to
describe U'P., v9(1,-). More generally, suppose that the preceding step has lead for some
n>1to

K—1
1 ~Sn1()
n—1 _ i e lin kpn—1 K—d/2 pn—1
v t,x) = e heby (t,x) +h Ry (t,x
00 = G > 1 o) (t.2)
1

= A + pE—d/2gn=1 t,x
23 (t,z) + Kk ()
where b"~1(t,) is a Lagrangian state, supported on the Lagrangian manifold A"~1(¢), and
R’;(_l is some remainder in L?(M). We now apply Proposition [L(| to each Lagrangian state
endn—1(L2) pkp?=1(1 2) appearing in the definition of b"~'. Because of the term A*, if we
want an Ansatz as in ([L.15), it is enough to describe U*P, v} "'(1,-) up to order K — k,
which gives a remainder of order C_h%=F||b? (1, -)||c2x—r+a. Grouping the terms
corresponding to the same power of i when applying Proposition E to each (vz_l)og;KK_l
yields to
U*Po, b (@) = en 5 N T RN (1, @) + W B (1) 0" (¢, 2) + W Bt ),
k=0

where S, (¢, z) is a generating function of the Lagrangian manifold

A" () = LA™ (1) NV,,).



ENERGY DECAY FOR THE DAMPED WAVE EQUATION UNDER A PRESSURE CONDITION 25

The coefficients b} are given by

k k—i
(4.17) bp(t,e) = Agia)™,_ (t 2y, b (L) (g =(yerne)
i=0 [=0
where y, = gb;j(t) (2), ne = dySn—1(1,y.). In particular, b3 (¢, x) = D, (¢, 2)by *(1,¥.), with
1
_rt s—t T s _ b
(4.18) Dy (t,2) = e~ o 1050 gac(dg gt ) (@))] eF PO F, (e, o)
for some f3,,(t) € C*°(R). The remainder B} satisfies
K—1
(4.19) 1B @) < Cx D 167 (LMl cracnva , Cre = CUO (M, x, V).
k=0
Hence, we end up with
1 . Sp(le
o (Lz) = et Z KRR (1, 2) + BE (B (1, 2) + UMP., BY1(1))
(27h)2 =
1
def 0" (1, x) + B2 R (1, 2)
(2mh)2
where R} (1,z) = (2m)~ % (B (1,2) + U'P., Ry 1(1,+)). Again, b" satisfies the hypotheses
of Proposition [L(}, so we can continue iteratively. To complete the proof, we now have to
take all the remainders into account. From the discussion above, we get :
UP, 0" N1, = (20h) T RUP, 0L, ) + B YAUP, (R, )

= (27h)"% (0"(t,-) + WEBRE(t)) + B Y2UP, (REL(1, )
= (@rh) 260(t, ) + KNP RY (¢, )
where we defined Rj = (2m)~% By, +U'P,, (Ry"). Since |F,,| <1, we have
U P, | 12r2 <14 Ch, C > 0.

This implies that [|U*P,, (R} (1,)|| < (1 + Ch)|R%1(1,-)||, and finally R} satisfies
(4.20) IR < 1+ CR)™ (1Bl + 1B + - - 1Bk || + 1| B )
In view of ([.19) and ([L.H), this concludes the proof. O

Given v"1(1, ), we have then constructed v" (¢, ) as in ([L.1§), but it remains to control
the remainder R% in L? norm : from () and ), we see that it is crucial for this to
estimate properly the C* norms of the coefficients b) for j > 1 and k € [0, K — 1].

Lemma 12. Let n > 1, and define

D, = sup Dp—i( , Dyg=1
zemAn(1) H )) 0
If x € wA™(1), the principal symbol by is given by
(4.21) b (1, ) H Di—j(1,057 () | b3(1, 65" (x)).

For k € [0, K — 1], the functions b} satisfy
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(122) B3, Yler < ol + 1D,

where Cy o = COR) (M, x, V). It follows that

(4.23) IBE(1, ) < Cxn®f 79Dy

(4.24) IRE (D) < Cx(+Ch)"Y j*+D;
j=1

where C > 0 and Ci = CY) (M, x,V). On the other hand, if x ¢ TA™(1), we have b} (z) = 0
for ke [0, K —1].

Proof. First, if x ¢ wA™(1), then there is no p € V., such that 7®'(p) = z, and then
v"(1,2) = O(h*). In what follows, we then consider the case z € wA™(1). We first see
that ([.21]) simply follows from ([.1§) applied recursively. If p, = (z,,&,) € A™(1), we call
pj = (zj,&) = ®~"(p,) € A¥(1) if j > 0. In other words,

Vj € [[1,”]], Tj—1 = (bgjl(l'j).
It will be useful to keep in mind the following sequence, which illustrates the backward
trajectory of p, € A™(1) under ®* k € [1,n] and its projection on M :

—1 —1

po € A°(1) <—p1 e AY(1) <— - S —p 1 € APTI(1) <—p, € A™(1)

Trl/ Trl Trl/ Fl
45! ¢35, 51 95,

T 1 e Tp—1 Ty

We denote schematically the Jacobian matrix dqﬁgji = 88%;1 for 1 < i < j < n. Since for

any £ > 0, the sphere bundle 7*M N p~1(E) is transverse to the stable direction ,
the Lagrangians A" C ®"A° converge exponentially fast to the weak unstable foliation as
n — oo. This implies that ®!|,0 is asymptotically expanding as ¢t — oo, except in the flow
direction. Hence, the inverse flow ®*|y» acting on A™ and its projection qﬁgnt on M have
a tangent map uniformly bounded with respect to n,t. As a result, the Jacobian matrices
O0xj_;/0z; are uniformly bounded from above : for 1 < i < j < n there exists C = C(M)
independent of n such that

Oxj—;
4.25 <.
( ) ' al'j B
It follows that if we denote D; = sup, D;(1,z;), there exists C' = C(M) > 0 such that
(4.26) ct<D;<C.

Note also that
n—1 n—1
sup | [[ Pn-s(1. 65 (@))| = ][] Dn-j = Da.
zeTA™(1) J=0 §=0
We first establish the following crucial estimate :

Lemma 13. Let n > 1, and k € [1,n]. For every multi index o of length |a| > 2, there
exists a constant Co > 0 depending on M such that

H aaxn_k

(4.27) < Cukt

ox&
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Proof. We proceed by induction on k, from & =1 to k = n. The case k = 1 is clear. Let us
assume now that

Haang%k/ <C K, K el k—1]
and let us show the bound for k' = k. For simplicity, we will denote
ag o 0%z, = 0%;
ox§ 0xs4
In particular, ||0%z;|| < C,. We also recall the Fa di Bruno formula : let II be the set of
partitions of the ensemble {1, ..., ||}, and for 7 € II, write 7 = { By, ...By} where B; is some
subset of {1,...,|a|}. Here |a| > k > 1, and we denote |7| = k. For two smooth functions

g :R%— R% and f: R? — R such that f o ¢ is well defined, one has
(4.28) *fog=Y_ 0"lf(g) ] 0%9.
well Berm

The term in the right hand side is written schematically, to indicates a sum of derivatives
of f of order |r|, times a product of || terms, each of them corresponding to derivatives of
g of order |B|. It is important for our purpose to note that Y |B| = |a|. Continuing from
theses remarks, we compute

def

X = Optn-r = O0Tn_ 10, Tn_pt1
B def
+ g oz, ), H Oy Tn—pt1 = OTp_pXp—1 + Yi_1.
mell,|m|>1 Ben

By the induction hypothesis,
(4.29) IYi|| < Coi®™?

since the partitions 7 involved in the sum contains at least two elements. Setting M1 =
0x,_1 , we have

Xy = Mg 1...Mi X1+ Mg_o...MYT + My _3... M Y5
+-+ MYy g
From the chain rule we have
8:1?j71' - 8Ij,i 8Ij,1
6$j - 8xj_i+1 al'j ’

and (f.29) yields to ||[M;_1... M| = O(1) for 2 < i < k. Adding up all the terms con-
tributing to X and taking (j.29) into account yields to

[ Xk S Ca(l4+1072 42972 4o (k= 1)72) < Cuk !
and the lemma is proved. 0

We now prove () For this, we will proceed in two steps. First, we show the bounds
for the principal symbol bfj. Then, we treat the higher order terms b7,k > 1 using the
bounds on ||b%||ce for any £. For b2, The CY norm estimate follows directly from ([£.21]).
From now on, we denote for convenience

Do(,To) d:Cf bg(l, LL‘Q).

Computing
0465 (xn) = 0y, (D () . .. D1 (w1)Do(x0))
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we will obtain a sum of terms, each of them of the form

Man...ao = 6§"Dn6§"*an_1 .. .aalDla,‘f“Do,

n

with a, + -+ + ap = £. Note that if ¢ is fixed with respect to n, most of the multi-indices
a; vanish when n becomes large : actually, at most |[¢| are non-zero, and we will denote
them by «;,,...,q;,, k < |€|. Hence the above expression is made of long strings of D; ,
alternating with some derivative terms 05¢D; which number depends only on £. We can
then write

||8g” Dil Ce 87011%71,Dik,1
Di...D

On *D;

(1.30) 1Mo, cqllco < Dy x e

ik

Let us examinate each terms 99D; appearing in the right hand side individually. By the Fa
di Bruno formula and Lemma , we have for i # 0

(4.31) 95Di(xi) = Y 0 D; [] 0F2s < Con 17l < Cun?

g Bem
where C,, = CGK)(M, x, V). Of course, if i = 0, |03Do(20)||co < Cull05bY||co for some
constant C, > 0. Now, for a fixed configuration of derivatives {a} = {a,,...a;, } we have

to choose i1, ..., i indices among n+1 to form the right hand side in (), and the number
of such choices is at most of order O((n + 1)*). Hence,

o Xip ¢ (%}
809D, .. O D, 9D, (o
Di ... D,

167,05 l|co

°
1]
™

< Dpd Caln+ D)+ (n+1)™!
{a}
(4.32) < CDn(n+1)°

where C; = C“)(M, x, V). For higher order terms (b7, k > 0), we remark from (f.17) that

we can write

k
(4.33) bi (xn) = Dn(xn)bz_l(xn—l) + Z Z I (@) 5—152’:}(%—1) ‘

J=1Ja|<2j

The function I'},, can be expressed with the flow, the damping and the cutoff function F,, .
It follows that the norms ||I'},[|c¢ are uniformly bounded with respect to n:

”F?,Oz”ce = C(Z)K) (Mu X V)

In order to show the bounds ([.29) for k > 0, we will proceed by induction on the index k.
The case k = 0 has been treated above. Suppose now that for any ¢ and &’ € [0,k — 1] we
have proven

040 |co < Ce(n +1)*¥ D, Cp = CHE) (M, x, V).

As above, to treat the case k' = k, we begin by the situation where £ = 0. To shorten the
formulee, we introduce for 1 < ¢ < j < n the functions

k
Tn) = Y > T ()0 by (i)

J=1Ja|<2j

J(zn) = Dj(x;)Dj-1(xj—1)... Di(xi)
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where the z;, i < n have to be considered as functions of x,, namely x; = ¢§:“(xn)
Tterating ({.3) further, we have :

b (zn) = szzil(xn—l) +mr
= Jn(InIiby  (wa2) + TR 4 T
= Jr b () F JETT R TR
(4.34) = T (xo) + JETYE 4 gk 4 g bR ek
By the induction hypothesis and ([£.2), each term T'**, i > 0 satisfies
IT" "o < Ci(n — i) ' Dry

hence adding up all the terms we get
n—1
[ lco < CiPa(B(ao) + 3 (n = %) < CyDy(n + 1)
i=0

and we obtain the bounds ({.23) for £ = 0. To evaluate 0}, ¢ > 1, we start from the
expression () We notice first that

opTT T = Y Z > (O (wn i) (0220°b = (wn—i1))-
B1+B2=0 j=1 |a|<2j

Using the Fa di Bruno formula and Lemma B, we get
Haﬁlrn b k(fpn Z)HCU < Cg, i 71 and ”876128(1(72:;71(1771 i— 1)“()0 < OB ik 1+62

and this implies _
||851-m71,k”00 < Cﬁi3kfl+ﬁ.

Then, exactly the same strategy used to derive (J.39) shows that
gy
aZJ I\i,k 0 < Cln3kfl+f'
H i+1 C
Using these estimates and () yields to
18707 oo < Ce(n + )01 < Cy(n+ 1)+,

where the constant Cy is such that C, = C“F) (M, x, V).
O

4.5. The main estimate : proof of Proposition E As noted before, the Lagrangians
A™ converge exponentially fast as n — oo to the weak unstable foliation. This implies that

for z € mAI(1), the Jacobians Jg, () 4 det (;55 (@)| satisfy
Vi > 2, V(a6 e M), |54l < e /O ¢ = (M) >0
Tsu(a.6) (@)

Here, S* generates the (Lagrangian) local weak instable manifold at point (x,&). Moreover,
theses Jacobians decay exponentially with j as j — oo. This means that uniformly with
respect to n,

n—1 n—1
I 7s._, (057 (@) < C(M) [ Tsw (@ e (057 (2)) -
j=0 j=0

The Jacobian Jgu(,¢)(z) measures the contraction of ®~! along the unstable subspace
E*(®1(p)), where ®!(p) = (z,€), and z € M serves as coordinates to compute this Jacobian

(via the projection 7). The unstable Jacobian J*(p) = ef |det (d® ™! |puo(a(p)) ) | defined in
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Section EI express also this contraction, but in different coordinates: for n large enough,
the above inequality can then be extended to

n—1 n—1 n—1
(4.35) I 7s.-, (657 (2)) < C T Jsw@-s (e (65 (@) < C T] J“(@ 7 (p)) -
=0 =0 =0

where C,C only depends on M. As noted above, because of the Anosov property of the
geodesic flow, the above products decay exponentially with n. Together with the fact that
the damping function is positive, it follows that the right hand side in () also decay
exponentially with n. Recall now that 1 < n < Nty and N = T'logh~!. Using (}£.24), we
then see that the remainders R% in () are uniformly bounded : they satisfy

uniformly in n and zp, the point on which d, ., was based. From the very construction of
b™ (¢, x), we then have

1
(2mh)4/2

But the bounds on the symbols b}, k > 0 given in Lemma @ tells us that () also holds if
we replace the full symbol b™ by the principal symbol bf, provided & is chosen small enough
—say h < hg(e). Hence, for h < hg,

(4.36) ||M1P'yn . -U1P71u15x - b (1, )|l < Crhf—4/2,

6P UPL US| < TR E (L) + Creh
Now, using ([£21]), (£:35) and the fact that |F.| < 1, we conclude that for a* as in ([L.g),

by (L, 2)|| < Ce"@™ sup  exp Y a" o & (z,dpSn(1,x))

zemA™(1) j=1

Here, C'= C(M) depends only on the manifold M. Let us consider now the particular case
n = Nty with N = T'logh~!. It follows immediately that

Nito N to—1
sup  exp Z avo® I (z,d,Sn(1,z) < H sup | exp Z a" o ®7(p)
zemrANto(1) j=1 k=1 PEWs, 7=0

By the superposition principle already mentionned in (@), we then obtain for some C =
C(M) > 0 depending only on M:

Z,00

[Py, - - UPL U ODL ()| < C sup [UP,y,, ... P UL, ||
¢ 0

< Ch—d/2Hb61H + CKhK_d/2
LN to—1 ‘
< Ch™ 2 H sup | exp Z a" o ' (p)
k=1PEWay, =0

To get the last line, we have noticed that K can be chosen arbitrary large: since n <
Ttologh~!, we see that for A small enough, the main term in the right hand side of the
second line is larger than the remainder Crh% =42, and eN*©M) = O(1). This completes
the proof of Proposition E
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APPENDIX A. SEMICLASSICAL ANALYSIS ON COMPACT MANIFOLDS

In this appendix we gather standard notions of pseudodifferential calculus on a compact,
d dimensional manifold M endowed with a Riemannian structure coming from a metric g.
As usual, M is equiped with an atlas {f¢, Vi }, where {V;} is an open cover of M and each
fe is a diffeomorphism form V; to a bounded open set W, C R¢. Functions on R¢ can be
pulled back via f; : C>®°(W;) — C*(V;). The canonical lift of f; between T*V; and T*W,
is denoted by f[l

(‘Tag) ET™ Vi — fz(l‘,f) = (fg(ib), (fo(x)_l)Tg) ETW,,

where AT denotes the transpose of A. Its corresponding pull-back will be denoted by
fi: C®(T*Wy) — C®(T*V,). A smooth partition of unity adapted to the cover {V;} is a
set of functions ¢, € C°(V;) such that Y, ¢, =1 on M.

Any observable (i.e. a function a € C°°(T*M)) can now be split into a = ), a; where
ap = ¢ga, and each term pushed to ay = (f[l)*ag € C®(T*Wy). If a belongs to a standard
class of symbols, for instance

ae 5™k = st((g)™) < {a=an e C=(M), 192000l < Caph ("],

each ay can be be Weyl-quantized into a pseudodifferential operator on S(R) via the formula

- 1 Py £ ~
Vu € S(RY), Op¥ (ar)u(z) = T /eh< b8 g, (

To pull-back this operator on C°(V}), one first takes another smooth cutoff ¢, € C°(V})
such that ¢ = 1 in a neighbourhood of supp ¢,. The quantization of a € S™* is finally
defined by gluing local quantizations together, yielding to

Yu € C*°(M),Opy(a)u =Y 1hy x f7 0 Opy(ae) o (f; )" (veu)
¢

) () dy e

The space of pseudodifferential operators obtained from S*™ by this quantization will be
denoted by U™F. Although this quantization depends on the cutoffs, the principal symbol
map o : Uk — gmk /gm.k=1 ig intrinsically defined and do not depend on the choice of
coordinates. The residual class is made of operators in the space U ~°°. As an example, the
(semiclassical) Laplacian —h?A, € %2 is a pseudodifferential operator, and its principal
symbol is given by o(—=h?Ay) = [[€]|2 = g.(£,§) € S*°.

In this article, we are concerned with a purely semiclassical theory and then deal only with
compact subsets of T*M. If A € U™k we will denote by WF(A) the semiclassical wave
front set of A. A point p € T*M belongs to WF (A) if for some choice of local coordinates
near the projection of p, the full symbol of A is in the class S"™~>°. WFj(A) is a closed
subset of T*M, and WF,(AB) C WF,(A) N WF(B). In particular, if WF,(A) = 0, then
A is a negligible operator, i.e. A € U™~ If ¥ € L2(M), we also define the semiclassical
wave front set of U by :

WE(0) = {(2,€) : 3ae 5™, a(x,§) #0, || Ops(a) ¥ L2(ary = O(h)}°

where the superscript © indicates the complementary set. We will often make use of the
following fundamental propagation property : if U? is a Fourier integral operator associated
to a symplectic diffeomorphism ®¢ : T*M — T*M, then

WE,(U') = & (WF(T)).
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