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e-mail: Firstname.Lastname@imag.fr

LSR-IMAG Laboratory BP 72, 38402 St. Martin d’Hères, France

Abstract

Mobile environments are characterized by high vari-
ability (e.g. variable bandwidth, disconnections, dif-
ferent communication prices) as well as by limited
mobile host resources. Such characteristics lead to
high rates of transaction failures and variable execu-
tion costs. To raise the success rate of transactions and
to have a minimal control on resources consumption
we claim that both application design and transaction
management should be environment aware. This pa-
per proposes an Adaptable Mobile Transaction model
(AMT) that allows defining transactions with several
execution alternatives associated to a particular con-
text. When an AMT is launched, the appropriate ex-
ecution alternative is initiated depending on the cur-
rent environment state. The goal is to adapt trans-
action execution to context variations. Our model re-
laxes atomicity and isolation properties but preserves
conflict-serializability. A specification of the AMT
model in ACTA (formalism based on the first order
logic) is presented. An analytical study shows that
using AMTs increases commit probabilities and that
it is possible to choose the way transactions will be
executed according to their costs.

1 Introduction

The omnipresence of mobile devices such as cell
phones, PDAs, smartcards, sensors and laptops, to-
gether with the development of different kinds of net-
works (local, wireless, ad-hoc, etc.) lead to a true mu-
tation in the use, design and development of future
information systems. Our work is related to the topics
of ubiquitous and pervasive computing where techno-
logical improvements allow users to access data and
perform transactions from any type of terminal and
from anywhere using a wired or a wireless network.
Applications that we have in mind cover a wide area.
They might be personal ones, where clients want to
access public data (e.g. weather forecast, stock ex-
change, road traffic) or professional ones, where mo-
bility is inherent (e.g. mobile vendors/clients, health
services, mobile offices, transport). We consider that
mobile and fixed hosts can be clients or servers.
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Figure 1: Mobile environment global architecture.

We consider a mobile computing environment with
a network consisting of fixed and mobile hosts (FH,
MH), see Figure 1. MHs could be of different nature
ranging from PDAs to personal computers. Shared
data are distributed over several database servers run-
ning, generally, on FHs. MH may run database man-
agement system (DBMS) modules and may provide
some services to other hosts. While in motion, an MH
may retain its network connection through a wireless
interface supported by some FHs which act as Base
Stations (BS). The geographical area covered by a BS
is a cell. Each MH communicates with the BS cover-
ing its current cell. The process during which an MH
enters into a new cell is called hand-off.

We make no specific assumptions about the data-
base model (relational, object) but we place ourselves
in a multidatabase environment assuming that data
are managed by autonomous and possible heteroge-
neous DBMSs.

Applications in mobile environments are confronted
to particular characteristics and limitations imposed
by hardware such as: low and variable bandwidth, fre-
quent disconnections, high communication prices, vari-
able hardware configuration (due to plug-in compo-
nents), limited display, battery autonomy, processing
power and data storage. These limitations/variations
lead to a lot of potential failure modes that affect
data management process (e.g. queries, replication,
caching, transactions, etc.).

In this paper, we are particularly interested on mo-



bile transaction management. Focusing on this notion,
we adopt a quite general definition: a mobile transac-
tion is a transaction where at least one mobile host
takes part in its execution. Mobile transactions are
considered as long lived ones because of the probabil-
ity of disconnections.

As an example, let us introduce an e-shopping ap-
plication that allows people to browse products in an
e-mall, to select, to book and to buy items. We as-
sume also that secured e-payment is available based on
credit cards or e-money. Application execution – as a
set of transactions – will not be the same if they are
launched from a (fixed) terminal office, from a PDA
while traveling in a train or from home using a laptop.
Thus, under this context:

• transactions may succeed but with different execu-
tion times (bandwidth capacity is highly variable)
and communication prices (prices vary among wire-
less network providers/technologies/time-access);

• energy consumption is affected by low bandwidth
(more battery is consumed);

• failures may occur due to unexpected disconnections
or battery breakdown.

In traditional environments, application designers
do not care about host and network characteristics.
Nevertheless, in mobile applications we claim the ne-
cessity of being environment aware to overcome the
infrastructure variability and to react to variations sat-
isfying application and user requirements.

Several works concerning mobile transactions have
been introduced (e.g. [10, 27, 9, 19, 27, 20, 26, 15,
18, 16, 6]). In the analysis made in [24], we found
out that the majority of these proposals are particu-
lar solutions oriented to specific application contexts.
Moreover, most of these works do not take into account
the importance of mobile environment variability and
therefore environment awareness.

The contribution of this paper is an Adaptable
Mobile Transaction (AMT) model. The general idea
is to define mobile transactions (TAMT ) with several
execution alternatives associated to a particular mo-
bile environment state. When a TAMT transaction is
launched, the appropriate execution alternative is ini-
tiated depending on the current mobile environment.
We argue that adapting transaction executions im-
proves commit rate, execution costs, response times
and application availability, in short, the application’s
quality of service. We propose a formal specification
of the AMT model using ACTA [7, 8]. The goal is
to specify the properties and behaviour of the AMT
model with a well defined and accepted formalism. Fi-
nally, we make an analytical study that shows how the
AMT model increases transaction commit probability
according to expected costs.

This paper is organized as follows: Section 2
presents the adaptable mobile transaction model and
Section 3 its formal specification. Section 4 gives an
analytical study of its performances. Section 5 dis-
cusses related work and Section 6 concludes this arti-
cle.

2 Adaptability for Mobile Transac-
tions

2.1 Overview

Traditionally, transactions are defined independently
of execution infrastructure. This approach is well
suited for centralized and distributed systems where
the execution characteristics have acceptable, pre-
dictable and controlled state variations. As the mobile
environment is highly variable, transaction execution
can be unpredictable.

We consider that in order to optimize resources,
both transaction design and management should be
made taking into account environment awareness. Our
proposal is done along these lines. For each mobile
transaction, application programmers give execution
alternatives suitable to a particular environment con-
text. For instance, a transaction distributed over a
fixed and a mobile host will be launched if a good con-
nection is available, whereas, a local execution will be
preferable if there is no connection or if only a very
low bandwidth is available.

To allow context aware transaction executions we
propose an Adaptable Mobile Transaction (AMT)
model [23, 25]. This model offers concepts to design
mobile transactions (TAMT ). Generally speaking, a
TAMT is composed of at least one execution alterna-
tive involving one or several mobile or fixed hosts. Ex-
ecution alternatives may be semantically equivalent.
The successful execution of one of them, represents a
correct execution of the TAMT . A TAMT also contains
environment descriptors which express the state of the
mobile environment required to execute each alterna-
tive. When a TAMT is launched, the mobile environ-
ment state is checked and the appropriate execution
alternative is chosen – only one alternative must be
active by TAMT . If the environment state does not
allow the execution of any alternative, the execution
of the TAMT may be deferred. As soon as an accept-
able environment state will be detected, an execution
alternative will be triggered.

2.2 Mobile Environment Awareness

Mobile environments include the wireless network
(WN), MHs involved in mobile transactions and MH
locations. Several dimensions – connection state,
bandwidth-rate or communication price – character-
ize the state of a mobile environment. As said be-
fore, the variability of such environment may affect



Dimension States Unit

WN connection-state connected, disconnected
bandwidth-rate high, medium, low kbytes/s
communication-price free, cheap, expensive Euros/time

MH available-battery full, half, low hh:mm:ss
available-cache full, half, low kbytes
available-persistent-memory full, half, low kbytes
processing-capacity high, medium, low mhz/s
estimated-connection-time t hh:mm:ss
location

Table 1: Mobile environment characteristics.

transaction execution and impact resources consump-
tion. Environment descriptors introduced here reflect
the execution context and its potential state varia-
tions. Thus, transaction designers who know the ap-
plication characteristics and requirements for quality
of service, specify different execution alternatives and
the required execution context for each of them.1

The set of relevant dimensions is specific to the ap-
plication environment. It depends on the mobile net-
work, on the nature of MHs or on user behavior. For
instance, network bandwith is important under packet-
switched networks (e.g. UMTS) and not under circuit-
switched ones (e.g. GSM) where bandwidth is guar-
anteed if the connection is available. Also, commu-
nication price is not relevant under WLAN networks
but may be crucial in other environments. In addi-
tion, user-defined dimensions can be introduced, for
instance, specific “quality” of data.

The basic set of dimensions we consider is intro-
duced in Table 1. To simplify, States are divided in
levels of quality – high, medium, low – nevertheless,
they can be defined according to each specific dimen-
sion.

Environment descriptors (ED) indicate dimensions
and states as follows.

Definition 1 An Environment Descriptor ED =
{dimension=state(s)} contains a set of dimensions
with their respective states at a given instant.

For instance, to execute an alternative involving
large data transfer, the required environment state
may be:

Example 1 ED = {connection-state = connected,
bandwidth-rate = high, communication-price= free,
cheap}.

Notice that several hosts may be involved in a trans-
action. In that case, ED may or may not specify the
required state for each involved host.

2.3 The AMT Model

This model allows to describe mobile transactions hav-
ing one or more execution alternatives (EAk), each of
them is associated to an EDk. EAks may take the

1This might put the burden on the application designer. Fu-
ture work should be oriented to develop computer aided envi-
ronments for application developers.

form of any of the following execution types: the mo-
bile transaction (1) is initiated by an MH and entirely
executed on FHs, (2) is initiated by an MH/FH and
entirely executed on an MH, (3) execution is distrib-
uted among MHs and FHs, and (4) execution is dis-
tributed among several MHs. So, a wide variety of
mobile transactions is addressed.

An EAk contains a set of component transactions
(tki) which must respect ACID properties. They can
be traditional flat, distributed or close nested transac-
tions. Compensating transactions may be associated
to component transactions. They will be executed in
case of failures. An EAk may be aborted if a com-
ponent transaction aborts or if the mobile environ-
ment changes and the new state does not satisfy its
environment descriptor. The EAs and the TAMT are
coordination units, data access is made only by com-
ponent transactions. Making the analogy with multi-
databases, component transactions are local transac-
tions participating into global transactions.

Next, we present a semi-formal definition of the
AMT model. A formal specification in ACTA [7, 8]
is presented in Section 3.

Definition 2 An adaptable mobile transaction is a
TAMT = 〈EAk〉 where:

• 〈EAk〉, k > 0, is a list of execution alternatives for
TAMT where EAk has higher priority than EAk+1.

• EAk = (EDk, EPk), an execution alternative has an
execution plan EPk to be executed if the actual mo-
bile environment satisfies the environment descrip-
tor EDk.

• EDk describes the environment state for the suitable
execution of EPk.

• EPk = {(tki, ctki,HostId)}, is a set of triplets in-
troducing a component transaction, its compensat-
ing one and the host where they have to be executed.
Let RD be a relationship dependence over EPk, such
that:
∀(tki, ctki, HostIdx), (tkl, ctkl, HostIdy) ∈ EPk;
(tki, ctki,HostIdx)RD(tkl, ctkl, HostIdy).

HostId indicates a database and the MH/FH re-
sponsible for the execution. Such host must execute
only one component transaction per execution alter-
native. In RD, we consider parallel or sequential exe-
cution dependencies.

Compensating transactions (ctki) are semantically
equivalent to physical rollbacks and are defined to
undo already committed component transactions.
They recover semantically the database and avoid cas-
cading aborts. Defining a ctki to compensate a tki is
not always possible, thus, ctki will not always appear
in EPk.



AMT example

To continue with the example introduced in Section 1,
consider an MH client with storage capacity, and an e-
mall with two servers on the wired network: CatalogS
and PurchaseS. The first site allows to query the store
catalog whereas the second one takes purchase orders
and payments.

We define the TAMTshopping with the following com-
ponent transactions:

• GetCatalog allows clients to get a catalog;

• SelectItems allows clients to select items from a local
copy of the catalog;

• Order-Pay allows clients to send the purchase order
and payment to the store;

• AutoPay allows clients to pay on the MH (with e-
money) without contacting other host;

• Order allows clients to send a purchase order (no
payment included);

• Select-AutoPay = SelectItems + AutoPay

In Table 2, TAMTshopping proposes three execution
alternatives to be triggered according to the environ-
ment state. In this example, wireless network dimen-
sions that determine the choice of an alternative are:
connection availability, bandwidth and communication
price. The presence of the catalog on the MH is an ap-
plication defined dimension. It takes the states miss-
ing (the catalog is not available on the MH) present
(a version, probably out of date or incomplete, is on
the MH) or uptodate (an up to date version is on the
MH). Dimensions not appearing in environment de-
scriptors are not considered as relevant for the context
application.

In this example, the priorities between EAks are de-
termined by the communication cost. Executing EA1

is cheaper than executing EA2. In EA1 the MH has
an up to date catalog, this allows saving communi-
cation messages. EA1 may be launched even in dis-
connected mode and Order-Pay can be deferred un-
til reconnection. EA2 will be launched provided that
the communication quality is acceptable (bandwidth-
rate = high, medium and communication-price=cheap).
EA3 is executed even under bad communication rates
(bandwidth-rate=low). The advantage of this alter-
native is that Select-AutoPay can be made in discon-
nected mode because the payment is in the MH. Order
will be launched at reconnection.

Defining compensating transactions for this exam-
ple is easy. They would mainly include operations to
refund and cancel orders.

EAk EDk EPk

k=1 {catalog-state= uptodate} {(SelectItems, MH), (Order-Pay,
PurchaseS)}

k=2 {connection-state=connected, {(GetCatalog, CatalogS)
bandwidth-rate = high, medium, (SelectItems, MH),
communication-price=cheap, (Order-Pay, PurchaseS)}
catalog-state=present, missing}

k=3 {connection-state=connected, {(GetCatalog, CatalogS),
bandwidth-rate=low, (Select-AutoPay, MH),
catalog-state=missing} (Order, PurchaseS)}

Table 2: TAMTshopping example.

2.4 AMT Properties

A TAMT can be considered at three different levels: the
TAMT itself, the execution alternatives and the com-
ponent transactions. For the last ones we assume that
ACID properties are guaranteed, nevertheless, as we
will see latter, durability is conditioned by the success
of the corresponding execution alternative.

An execution alternative (actually the associated
EPk) is a kind of sagas [13] containing a set of trans-
actions which execution may be distributed among mo-
bile and fixed hosts. The RD defined inside the alter-
native describes the possibility of a parallel or sequen-
tial execution of component transactions. Integrity
constraints can be defined and verified at tki level, un-
der the responsibility of the underlying DBMS. Global
data integrity constraints are not considered but value
dependencies between tkis (of the same EAk) are al-
lowed.

Atomicity and isolation for EAk

Considering the restrictions of mobile environments,
the AMT model relaxes atomicity by adopting seman-
tic atomicity [12] (as in sagas).

Definition 3 Semantic atomicity of an EAk

Each EAk ensures semantic atomicity if either:
1. all tkis defined in EAk commit if EAk commit

2. all tkis defined in EAk are compensated or rolled
back if EAk aborts.

The goal is to avoid blocking participant hosts and
to allow MH disconnections. This is obtained with
local commits where partial results are shared before
the EAk commits. The durability of locally commit-
ted transactions is conditioned to the commit of the
EAk. In case of abortion, compensating transactions
are used.

To address critical applications with non-
compensatable transactions, resources are blocked.
Thus, when transactions terminate, resources are re-
tained until a global decision (EAk commits/aborts)
is made. Hence, compensating transactions are not
needed. If no participant commit locally, compensat-
ing transactions will be unnecessary and traditional
atomicity is obtained.

Since dependency values between tkis of the same
EAk are allowed, a correct global ordering must be



Property tki EAk TAMT

Atomicity
√

Semantic atomicity Semi-atomicity
Consistency

√
Semantic consistency

Isolation
√

Relaxed (local commits)
Durability

√
conditioned Underlying DBMS

Correctness Serializability Global serializability

Table 3: Summary of AMT properties.

ensured. That is because concurrent execution of sev-
eral alternatives might introduce indirect interference
between value dependent transactions. The criterion
used to control the correctness of concurrent execu-
tion alternatives is global serializability.2 Global seri-
alizability states that transactions of each EAk must
have the same relative serialization order in their cor-
responding underlying DBMS.

Even though a global serializable order is preserved,
semantic consistency [12] is provided – due to semantic
atomicity.

Atomicity and Isolation for TAMT

We mentioned in Section 2.3 that EAks defined in a
TAMT may be semantically equivalent. A TAMT is
correctly executed if one of its EAks is successfully
executed. This results in semi-atomicity [28] which is
guaranteed for TAMT s as follows.

Definition 4 Semi-atomicity of a TAMT

Each TAMT garantees semi-atomicity if either:
1. the commit of a TAMT implies the commit of only

one EAk and the abortion or compensation of all
component transactions of other EAl

2. the abortion of a TAMT implies the abortion or com-
pensation of all other component transactions of the
EAk in progress.

Serializability of TAMT s is offered trough the seri-
alizability of execution alternatives.

Definition 5 Global serializability of EAk

A set of EAk ensures global serializability:

1. if the execution order of component transactions en-
sures a serializable order in each site and

2. if EAk ensures also a serializable order on all sites.

Regarding the durability property, once the corre-
sponding EAk commits (and consequently the TAMT ),
durability of component transactions is provided by
the underlying DBMS. Table 3 summarizes properties
at all levels (tki, EAk, TAMT ).

In [25, 23], we define a middleware (named Trans-
Mobi) that implements the AMT model with appro-
priate protocols. Due to space constraints it is not
presented here. TransMobi uses a client/agent/server

2In this paper, serializability is actually conflict-
serializability.

architecture. It manages environment awareness based
on events that are generated thanks to sensors that
supervise MH and wireless communication capacities.
Roughly speaking, applications request AMT execu-
tions to TransMobi which verifies the mobile environ-
ment state and decides the way transactions will be
executed (it chooses the appropriate execution alter-
native).

As a middleware between application code and ex-
isting DBMSs, TransMobi coordinates the execution
of TAMT s. We assume the existence of DBMS func-
tionalities on fixed and mobile hosts. TransMobi relies
on them for the execution – ensuring ACID properties
– of component and compensating transactions. EAk

and TAMT properties are ensured as follows. Con-
cerning EAk, semantic atomicity is guaranteed by the
CO2PC protocol that we propose.3 Semantic consis-
tency is a consequence of the execution of compen-
sating transactions. As the AMT model is an open
nested transaction, isolation at EAk and AMT levels
is relaxed. To guarantee global serializability, we pro-
pose to use the Optimistic Ticket Method [14] that is
used in multidatabase systems. Finally, as each TAMT

has only one EAk active, the commit/abort of EAk

ensures the semi-atomicity of TAMT .

3 AMT Formal Specification

This section proposes a specification of the AMT
model in ACTA [7, 8]. ACTA is a formalism based
on first order logic that allows defining and comparing
principal characteristics of extended transaction mod-
els. With ACTA, it is possible to specify the effects of
extended transactions on each other and on objects.
We use ACTA because it is a well-accepted formal-
ism and its capabilities of expression and extension
are enough to specify the AMT properties.

This section is organized as follows. Firstly, an ax-
iomatic definition of the AMT model (Section 3.1) is
proposed. Secondly, in order to obtain the properties
of the TAMT transactions, we analyze existing axioms
(Section 3.2).

3.1 AMT axiomatic definition

Dependencies introduced in ACTA are not sufficient
to specify the AMT model. Nevertheless, due to the
extensibility capability of the formalism, we propose
the following dependency:

Unique Begin Dependency (tj UBD ti): ti can
begin, if any other tj has not begun:

(beginti ∈ H) ⇒ ¬(begintj ∈ H)

3[3, 2] introduce a comparison of CO2PC with other valida-
tion protocols for mobile environments.



Notation
Next, we show the elements and sets used in the AMT
axiomatic definition.

• TAMT defines an Adaptable Mobile Transaction that
contains a list of Execution Alternatives EAk.

TAMT = 〈EA1, ..., EAn〉, n > 0

• An execution alternative EAk is composed of a set
of component transactions tki.

EAk = {tk1, ..., tkn}, n > 0

EAk 6= EAl

Here, we make abstraction of environment descrip-
tor EDk and execution site SiteId described in De-
finition 2.

• EAk organize its tki in two sets, CTk et NTk, where
CTk contains compensables tki and NTk contains
non-compensables tki.

CTk ∩NTk = φ

Compensables and non-compensables transaction
sets must de disjoints.

• STk denotes the tki list that must be executed se-
quentially:

(STk ⊆ CTk)∨((tki, ..., tkn−1 ⊆ CTk)∧(tkn ∈ NTk))

where 1 ≤ i ≤ n, tki ∈ STk

Only compensable transactions can be executed se-
quentially, except for the last one.

• ctki denotes a compensating transaction for
tki: ∀tki ∈ CTk ∃ ctki.

All compensable transactions must have a compen-
sating transaction.

• t denotes tki or ctki.

• Su denotes the transaction set that is executed on
site u. EAk can execute only one component trans-
action by site.

Annex A.1 presents the types of dependencies used
in the next axiomatic definition of the AMT model.

Definition 6 Axiomatic definition of the AMT
model

1. SETAMT = SEEA = SEt =
{begin, commit, abort}

2. IETAMT
, IEEA, IEt = {begin}

3. TETAMT
, TEEA, TEt = {commit, abort}

4. t satisfies the fundamental axioms I to IV (c.f. An-
nex A.2)

5. V iewTAMT = φ

6. V iewEA = φ

7. V iewt = H(Su)

8. ConflictSetTAMT
= φ

9. ConflictSetEA = φ

10. ConflictSett = {pt′ [ob] | t′ 6= t, t′, t ∈
Su, Inprogress(pt′ [ob])}

11. ∀ob ∃p (pt[ob] ∈ H) ⇒ (ob is atomic)
ob is correct and serializable.

12. (committ ∈ H) ⇒ ¬(t C∗ t)
t can commit locally if it is not part of a cycle.

13. ∃ob ∃p (committ[pt[ob]] ∈ H) ⇒ (committ ∈ H)
if pt[ob] commits t must commit.

14. (committ ∈ H) ⇒ ∀ob ∀p ((pt[ob] ∈ H) ⇒
(committ[pt[ob]] ∈ H))
If t commits all its operations must commit.

15. ∃ob ∃p (abortt[pt[ob]] ∈ H) ⇒ (abortt ∈ H)
If pt[ob] aborts t must abort.

16. (abortt ∈ H) ⇒ ∀ob ∀p ((pt[ob] ∈ H) ⇒
(abortt[pt[ob]] ∈ H))
If t aborts all its operations must abort.

17. (commitEA ∈ H) ⇒ ¬(EAR∗ EA)
EA commits globally if it is not part of a cycle.

18. post(beginTAMT
) ⇒ (((beginEAk

∈ H) ⇒
ConditionEnvironment) ∧

((EAl UBDEAk) ∈ DepSetct)∧
(tki BD EAk))

where 1 ≤ k ≤ m, 1 ≤ l ≤ m, k 6= l

EAk begins if it satisfies the environment condition.
Only one EAk of a TAMT must be initiated. A tki

cannot begin if its EAk has not begun.

19. post(beginEAk
) ⇒ (((TAMTADEAk) ∈ DepSetct)∧

((EAk AD TAMT ) ∈ DepSetct) ∧
(tki ∈ TSk) ⇒
((tki BCD tki−1) ∈ DepSetct))

where 1 ≤ k ≤ m,

If EAk aborts TAMT must abort and if TAMT aborts
EAk must abort. Component transactions of STk

are executed sequentially, other tki can be executed
concurrently.

20. post(begintki
) ⇒ (((EAk AD tki) ∈ DepSetct) ∧

((tki ∈ CTk) ⇒
((tki WD EAk) ∈ DepSetct) ∧
((ctki BCD tki) ∈ DepSetct)) ∧
((tki ∈ NTk) ⇒
((tki AD EAk) ∈ DepSetct)))

where 1 ≤ i ≤ n, 1 ≤ k ≤ m



If tki aborts EAk aborts. For compensable transac-
tions, if EAk aborts tki must abort (if tki has not
committed) and ctki can begin only if tki has com-
mitted. For non-compensable transactions (NTk),
if EAk aborts tki must abort. tki commit is delayed
until EAk commit (tki wait for an EAk abort until
EAk commits).

21. post(committki
) ⇒ (((ctkiBADEAk) ∈ DepSetct)∧

((ctki CMD EAk) ∈ DepSetct))

where 1 ≤ i ≤ n, 1 ≤ k ≤ m

ctki can begin if EAk aborts and if EAk aborts after
tki commits, ctki must commit.

3.2 Deductions and analysis of the axioms

This section deduces the properties of TAMT transac-
tions from axioms of Definition 6.

Axioms 1-3 specify significant events of the AMT at
three levels (TAMT , EA and t). Axiom 4 states that
component and compensating transactions (t) must re-
spect fundamental axioms (c.f. Annex A.2). Axioms
5-6 show that TAMT and EAk are control points which
do not access data. Thus, Axioms 8-9 specify that
there are not possible conflicts for TAMT and EAk.
Axiom 7 states that the view of t is limited to the
projection of history H on Su (set of transactions ex-
ecuting on site u). Therefore, in Axiom 10 the set of
conflicts of t is composed of all operations executed by
other transactions in Su.

In Axiom 18, dependency ((beginEAk
∈ H) ⇒

ConditionEnvironment), introduces a beginning con-
dition for EAk. The goal is to launch the al-
ternative when ConditionEnvironment is satisfied.
ConditionEnvironment becomes true when the en-
vironment descriptor (ED) of EAk (c.f. Section 2.3)
matches with the current mobile environment state.

Next section (3.2.1), shows properties of com-
ponent and compensating transactions. Sections
3.2.2 and 3.2.3 deduce semantic atomicity and
global serializability of EAk respectively. Finally, Sec-
tion 3.2.4 shows the semi-atomicity property of TAMT .

3.2.1 tki and ctki properties

This section shows that component and compensat-
ing transactions are atomic (Lemma 2) so with AID
properties.

Lemma 1 If ti ∈ TAMT , ti is failure atomic

Proof of Lemma 1:

ti is failure atomic if it satisfies both conditions of
Definition 2 (c.f. Annex A.3).

1. Condition 1 (all clause) is derived from Axioms 13
and 14.

2. Condition 2 (nothing clause) is derived from Axioms
15 and 16.

Lemma 2 If ti ∈ TAMT , ti is an atomic transac-
tion

Proof of Lemma 2 :

ti is an atomic transaction if it satisfies both conditions
of Theorem 1

1. Condition 1 (failure atomic) is derived from Lemma
1.

2. Condition 2 (serializable) is derived from Axioms 11
and 12.

Since atomic transactions satisfy AID properties
(c.f. Theorem 1), component and compensating trans-
actions are AID transactions.

3.2.2 Semantic atomicity of EAk

This section shows that execution alternatives have the
semantic atomicity property.4 We begin by introduc-
ing the commitment (Lemma 3) and abortion (Lemma
4) of EAk. Next, we obtain the semantic atomicity of
EAk (Lemma 5).

Lemma 3 Commitment of an EAk

Let H be the history of an execution alternative EAk

with n component transactions.
((commitEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n (committki
∈ H))

The commitment of an execution alternative EAk

implies the commitment of all associated component
transactions tki.

Proof of Lemma 3:

If EAk commits, its set of component transactions
must commit due to the abort dependency of EAk

on tki of the Axiom 20 (the first one) and the funda-
mental Axiom III:
∀i, 1 ≤ i ≤ n ((aborttki

∈ H) ⇒ (abortEAk
∈ H)) ⇔

((commitEAk
∈ H) ⇒ (committki

∈ H))

Lemma 4 Abortion of an EAk

Let H be a history of an EAk with n component trans-
actions.
(abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, i 6= j
((aborttki

∈ H) ∧ (committkj
→ commitctkj

))

If EAk aborts, associated component transactions
must be aborted or compensated.

4Semantic atomicity expression is similar to the one intro-
duced in [7].



Proof of Lemma 4:

Case 1. If EAk aborts when tki is in progress, tki

aborts due to the WD or AD dependencies of tki

on EAk (Axiom 20). Due to fundamental Axiom II,
it is not necessary to specify that only transactions
that have begun are aborted. Similarly, due to fun-
damental Axiom III, it is not necessary to specify
that only non committed transactions are aborted.
Due to the BCD dependency of ctki on tki (Axiom
20) ctki does not begin in this case:
(abortEAk

) ⇒ ∀i, 1 ≤ i ≤ n (aborttki
∈ H)

Only tki ∈ CTk can commit due to the WD depen-
dency. By its side, tki ∈ NTk commit until EAk

commit due to the abortion dependence of tki on
EAk. Thus, all tki ∈ NTk in progress are aborted if
EAk aborts.

Case 2.

1. If EAk aborts after tki commits and before a
tkj begins, ctki must commit due to the CMD
dependency of Axiom 21:
(abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ m (commitctki
)

2. Due to the existence of BCD dependency of ctki

on tki on axiom 20, if ctki begins, tki has been
committed:
(beginctki

∈ H) ⇒ (committki
→ beginctki

)
By fundamental Axiom II:
(commitctki

∈ H) ⇒ (beginctki
→ commitctki

)
Thus, by the semantics of the dependency rela-
tion the commit of ctki is done after the commit
of tki:
(commitctki

∈ H) ⇒ (committki
→

commitctki
)

3. From 1 and 2:
((abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤
m (commitctki

)) ∧
((commitctki

∈ H) ⇒ (committki
→

commitctki
))

Simplifying:
(abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n(committki
→

commitctki
)

Case 3. If an EAk aborts when a tki is in progress
(Case 1) and after a tkj has committed (Case 2):
(abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, i 6=
j
((aborttki

∈ H) ∧ (committkj
→ commitctkj

))

Lemma 5 Each EAk ensures semantic atomic-
ity

Each EAk ensures semantic atomicity if conditions
of definition 3 are ensured. 5

5[23] presents a specification in ACTA of Definitions 3,4 and
5.

Proof of Lemma 5:

1. Condition 1 of Definition 3 (if EAk commits, all tki

transactions must commit) is ensured by Lemma 3.

2. Condition 2 of Definition 3 (if EAk aborts, all tki

transactions must abort or compensate) is ensured
by Lemma 4.

3.2.3 Global serializability of EAk

This section specifies that execution alternatives are
globally serializable. From some axioms and Definition
6, it is possible to deduce the global serializability of
EAk (Lemma 6).

Lemma 6 EAk ensures global serializability

Proof of Lemma 6:

To provide global serializability both conditions of De-
finition 5 must be ensured:

1. Condition 1 is derived from Axiom 12.

2. Condition 2 is derived from Axiom 17.

3.2.4 Semi-atomicity of TAMT

This section states that TAMT have the semi-atomicity
property. We begin by introducing the commitment of
TAMT (Lemmas 7 and 8) as well as its abortion (Lem-
mas 9 and 10). Next, we obtain the semi-atomicity of
TAMT (Lemma 11).

To obtain those properties, we define firstly the
commitment (complete) of a TAMT (Lemma 8). For
this, we specify the commitment (simple) of a TAMT

(Lemma 7) and the commitment of an EAk (Lemma
3). Similarly, we define the abortion of a TAMT (Lem-
mas 10, 9 and 4).

Lemma 7 Commitment of a TAMT

Let H be the history of a TAMT and EAk an execution
alternative associated to a TAMT .
((commitTAMT

∈ H) ⇒ ∃k, 1 ≤ k ≤ m (commitEAk
∈

H))

This Lemma expresses that if the history contains
the commit of a TAMT it contains also the commit of
an associated execution alternative k.

Proof of Lemma 7:

1. If TAMT commits, EAk must also commit due to
the abort dependency of TAMT on EAk specified in
Axiom 19 (the first one) and the fundamental Axiom
III, which says that a transaction must commit or
abort:

∀k, 1 ≤ k ≤ m ((abortEAk
∈ H) ⇒ (abortTAMT

∈
H)) ⇔ ((commitTAMT ∈ H) ⇒ (commitEAk

∈ H))



2. Only one EAk commits due to the UBD dependency
of the Axiom 18 where only one EA must begin:
∀k, 1 ≤ k ≤ m, ∀l, 1 ≤ l ≤ m, l 6= k

(beginEAk
∈ H) ⇒ ¬(beginEAl

∈ H)

3. From 1 and 2
((commitTAMT

∈ H) ⇒ ∃k, 1 ≤ k ≤
m (commitEAk

∈ H))

Lemma 8 Complete commitment of a TAMT

Let H be the history of a TAMT with n component
transactions and EAk an execution alternative asso-
ciated to TAMT .
((commitTAMT

∈ H) ⇒ ∃k, 1 ≤ k ≤ m (commitEAk
∈

H)) ∧
((commitEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n (committki
∈ H))

Simplifying:
(commitTAMT

∈ H) ⇒ ∃k, 1 ≤ k ≤ m ∀i, 1 ≤ i ≤
n, (committki

∈ H)

Proof of Lemma 8:

This Lemma follows from Lemmas 7 et 3.

Lemma 9 Abortion of a TAMT

Let H be the history of a TAMT and EAk an execu-
tion alternative associated to TAMT .
((abortTAMT

∈ H) ⇒ ∃k, 1 ≤ k ≤ m ((abortEAk
∈

H))

This Lemma expresses the history in which the
abortion of a TAMT implies the abortion of the EAk

in progress.

Proof of Lemma 9:

1. If TAMT aborts, EAk must also abort due to the
abort dependency of EAk on TAMT of Axiom 19:
(abortTAMT

∈ H) ⇒ (abortEAk
∈ H)

2. Only one EAk aborts due to the UBD dependency
of the Axiom 18 where only one EAk must begin,
see 2 in Lemma 7

Lemma 10 Complete abortion of a TAMT

Let H be the history of a TAMT with n component
transactions and EAk an execution alternative associ-
ated to TAMT .
((abortTAMT

∈ H) ⇒ ∃k, 1 ≤ k ≤ m((abortEAk
∈

H)) ∧
(abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, i 6= j
((aborttki

∈ H) ∧ (committkj
→ commitctkj

))

Simplifying:
(abortTAMT

∈ H) ⇒ ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, i 6= j
((aborttki

∈ H) ∧ (committkj
→ commitctkj

))
This Lemma expresses the history in which the

abortion of a TAMT implies the abortion of the EAk

in progress and the compensation or abortion of com-
ponent transactions associated to EAk.

Proof of Lemma 10:

This Lemma follows from Lemmas 9 and 4.

Thanks to the analysis made, we can state that:

Theorem 1 The execution of a TAMT produces
one of the following histories:

1. ((commitTAMT
∈ H) ⇒ ∃k, 1 ≤ k ≤

m (commitEAk
∈ H)) ∧

((commitEAk
∈ H) ⇒ ∀i, 1 ≤ i ≤ n (committki

∈
H))

2. ((abortTAMT
∈ H) ⇒ ∃k, 1 ≤ k ≤ m((abortEAk

∈
H)) ∧
(abortEAk

∈ H) ⇒ ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, i 6=
j
((aborttki

∈ H) ∧ (committkj
→ commitctkj

))

Proof of Theorem 1:

This Theorem follows from Lemmas 8 and 10.

Lemma 11 Each TAMT guarantee the semi-
atomicity
Each TAMT guarantees semi-atomicity if both condi-
tions of Definition 4 are satisfied.

Proof of Lemma 11:

1. Condition 1 of Definition 4 (all transactions in EAk

commit) is satisfied by Lemma 8.

Abortion or/and compensation of all component
transactions of other EAl is not necessary due to
UBD dependence of Axiom 18.

2. Condition 2 of Definition 4 (all transactions in TAMT

are aborted or compensated) is satisfied by Lemma
10.

Theorem 2 Each TAMT has the following prop-
erties:

(1) ti has the AID properties,

(2) EAk ensures semantic atomicity,

(3) EAk ensures global serializability,

(4) TAMT ensures semi-atomicity.

Proof of Theorem 2

(1) follows from Lemma 2, (2) follows from Lemma 5,
(3) follows from Lemma 6 and (4) follows from Lemma
11.

Definition 7 The management schema of a TAMT is
correct if it follows the Definition 6.



4 Impact of Environment Awareness:
Analytical Study

This section provides an analytical study of the capa-
bilities allowed by the AMT model. In Section 4.1, we
use a probabilistic model to analyze several execution
alternatives one by one – separated of the AMT model.
For each of them, we evaluate its initiation probability
and its execution cost. Section 4.2 highlights the ben-
efits expected from environment awareness and AMT
adaptable facilities. It is shown that the TAMT initi-
ation probability is always greater than the initiation
probability of one alternative. In addition, it is shown
how the AMT model allows the designer to define the
best TAMT according to the required quality of ser-
vice: low cost without complete guarantee of success
or at the opposite success any time at any cost. The
TAMTshopping example (introduced in Section 2.3) is
used all along this section to illustrate the analytical
study. A short concluding discussion is proposed in
Section 4.3.

4.1 Analytical Study of an Execution Alter-
native

Mobile Environment Model

As mentioned in previous sections, a mobile environ-
ment state can be seen as a set of dimensions. An EAk

is initiated only if the environment state satisfies the
acceptable states for each dimension.

Example 2 The environment descriptors used by
TAMTshopping include the following dimensions and
states:

j = 1 Good j = 2 Medium j = 3 Bad
i = 1 connection-state connected disconnected
i = 2 bandwidth-rate high medium low
i = 3 communication-price cheap expensive
i = 4 catalog-state uptodate present missing

Definition 8 Let pij be the probability of dimension i
to be in state j.

In the resulting matrix P = (pij), ∀i,
∑

j pij = 1.
Next example shows that this matrix depends on the
considered mobile environment.

Example 3 An example of the matrix probability of
an environment like the one introduced in the example
2 could be :

P = (pij) =

[
0.8 0 0.2
0.7 0.2 0.1
0 0.4 0.6

0.2 0.3 0.5

]

Here, the probability of being connected is given by
p11, the probability of having an uptodate catalog is
given by p41 and so on. p31 has 0 probability because
in the considered environment, communication is never
free.

Environment Description Matrix

Definition 9 For each EAk=(EDk, EPk) we denote
by ∆k the boolean matrix where:

δk
ij =

{
1 if the state j of dimension i is

acceptable for EAk

0 otherwise

Example 4 The ∆k matrix for the three proposed al-
ternatives of TAMTshopping (see Table 2) are:

∆1 =

[
1 0 1
1 1 1
0 1 1
1 0 0

]
∆2 =

[
1 0 0
1 1 0
0 1 0
0 1 1

]
∆3 =

[
1 0 0
0 0 1
0 1 1
0 0 1

]

If a dimension i does not appear in EDk, any state
is suitable: if i /∈ EDk then ∀j, δk

ij = 1. ∆1 and ∆3

illustrate this case.

Cost Matrix

Definition 10 Let Ck be the matrix where ck
ij is the

cost of the EPk execution in state j of dimension i.

ck
ij must be defined by the designer according to

application needs in cost improvement. Example 5
shows some particular definitions of cost.

Example 5 For the TAMTshopping one could iden-
tify the memory utilization as a cost associated to
the dimension catalog-state or the CPU consumption
as a cost associated to the dimension connection-state
(since in disconnected mode more operations are done
on the MH). Let us focus on communication price
and battery utilization respectively associated to dimen-
sion communication-price and bandwidth-rate (band-
width limitations increase battery consumption). The
considered wireless network is UMTS which uses a
packet-switched communication where bandwidth rate
goes from 144 kbps (vehicular mobility), 384 kbps
(pedestrian mobility) to 2 mbps for indoor traffic.
These bandwidth rates correspond to high, medium and
low states. Communication price depends on the size
of transmitted data (packets). For instance, the exe-
cution of EP1 requires three wireless logical messages.
First, a transaction request (kind of login), then the
purchase order (component transaction Order-Pay) and
finally, a message is received by the MH to confirm the
order (acknowledgment). The execution of EP2 and
EP3 requires an extra message to ask for the catalog
which is received through another message (GetCata-
log).

Three different sizes of messages may be identi-
fied: small messages (login, ack and ask for catalogue),
medium ones (for Order-Pay and Order) and large ones
(for GetCatalog). Let us assume that small, medium
and large messages are composed respectively of 1, 10
and 20 packets. So, if the execution plan of EAk sends
ns small, nm medium and nl large messages then np



is the number of packets sent or received6 by the MH
during the EPk execution, np = ns + 10nm + 20nl.

To evaluate communication cost (communication
price and battery consumption), we assume that:

• Sending a single packet in the state cheap (resp. ex-
pensive) costs 1 unit of price (resp. 2 units).

• If bandwidth is high (resp. medium, low) send-
ing/receiving a single packet uses 0.1% (resp. 0.2%,
0.4%) of the battery capacity. In this case, the cost
associated to the dimension bandwidth-rate is the
battery consumption.

Under these assumptions we have:

C
k =

[
0 0 0

0.1np 0.2np 0.4np
0 np 2np
0 0 0

]

where ck
2j is the battery consumption of the EPk exe-

cution when the bandwidth-rate is in state j. ck
3j is the

price of the EPk execution when the communication-
cost is in state j. In TAMTshopping, np = 12 for EP1

and np = 33 for EP2 and EP3, so:

C
1 =

[
0 0 0

1.2 2.4 4.8
0 12 24
0 0 0

]
C

2 = C
3 =

[
0 0 0

3.3 6.6 13.2
0 33 66
0 0 0

]

Mean Cost of an EAk

The execution plan of EAk is launched by the system
when the mobile environment is in the state j of the
dimension i with the probability:

δk
ijpij∑
j δk

ijpij

So, the mean cost due to dimension i of the EPk

execution is given by:

ck
i =

∑
j δk

ijc
k
ijpij∑

j δk
ijpij

Example 6 With previous P , ∆k and Ck we can
compute:

c
3
2 =

13.2 ∗ 0.1

0.1
= 13.2%

c
3
3 =

33 ∗ 0.4 + 66 ∗ 0.6

0.4 + 0.6
= 52.8

This means that the average of battery consumption
of EA3 is 13.2% with an average price of c3

3 = 52.8
units, whereas c1

2 = 1.8%, c1
3 = 19.2 units and c2

2 =
4.03%, c2

3 = 33 units.

6Eventually, it could be interesting to distinguish between
sending or receiving messages.

EAk Initiation Probability

Definition 11 Let qk be the probability for EAk of
being selected for execution. qk will be called the EAk

initiation probability. Since the probability that dimen-
sion i has an acceptable state for EAk is given by∑

j δk
ijpij, we have:

qk =
∏

i

(
∑

j

δk
ijpij)

So the execution plan of an EAk has a chance to be
initiated (qk > 0) iff ∀i, ∃j such that δk

ij = 1.

Comparing EAs

Example 7 In order to study EAs in different types
of environment, performances indices are studied in re-
gard to the probability of the bandwidth to be low (p23):

P =

[
0.8 0 0.2

(1 − p23)/2 (1 − p23)/2 p23
0 0.4 0.6

0.2 0.3 0.5

]

Fig. 2 shows the EAk initiation probability and
Fig. 3 the battery consumption associated to each EAk

in TAMTshopping. It can be seen that if the band-
width is often low (e.g. p23 = 0.8) then EA3 is the
alternative with the highest battery consumption (see
Fig. 3) whereas it has the best initiation probability
(see Fig. 2). q1 is constant because it does not de-
pends on the bandwidth to be low but only on the
probability for the catalog to be uptodate.

4.2 Analytical Study of a TAMT

As mentioned in Section 2, mobile environment aware-
ness allows the system to choose an EAk if the en-
vironment state corresponds to the associated EDk.
EAk has higher priority than EAk+1; this allows us to
assume without lost of generality that:

Property 1 If a state of the environment is suitable
for an EAk it should not be suitable for an EAk′ of
the same TAMT . That is: ∀(k, k′), k 6= k′, ∃i such that
∀j, δk′

ij 6= δk
ij

TAMT Initiation Probability

Definition 12 Let qAMT be the TAMT initiation
probability. Thanks to property 1, we have: qAMT =∑

k qk

Mean Cost of a TAMT

Definition 13 Let ci be the mean cost (associated to
dimension i) of the execution of TAMT . Under the
assumption that the environment is stable during the
execution, EAk is initiated with the probability qk so
the cost of the whole TAMT is ck

i with the probability
qk, hence:

ci =
∑

k ck
i qk

∑
k qk
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As an example, we study the mean bat-
tery consumption and the initiation probability of
TAMTshopping in regards to the probability of the band-
width to be low (p23).

Fig. 2 shows that the TAMTshopping initiation prob-
ability never reaches 1. This is due to the fact that
for certain states no alternative is defined. For in-
stance, if the MH is disconnected with a missing cata-
log TAMTshopping can not be initiated. This figure also
shows that the initiation probability of a single EAk

is smaller than the initiation probability of the whole
TAMTshopping.

Fig. 3 shows that the mean battery consumption
of the TAMTshopping increases when the probability of
the bandwidth to be low is going up. This is due to
the fact that EA3 initiation probability is bigger than
the one of EA2 (see Fig. 2).

Fig. 4 shows performance parameters for
TAMTshopping and a variant without EA3. This
new transaction is called TAMT12. It can be seen
that TAMTshopping has a better initiation proba-
bility whereas TAMT12 has a better mean battery
consumption.

4.3 Discussion

This section showed that compared to non-adaptable
approaches, adaptability in transaction execution im-
proves performances and allows choosing the way the
transaction will be executed according to execution
costs. Without environment awareness, a transaction
is defined in a standard way (the execution plan is
fixed). The system will try to execute this transac-
tion whatever the state of the environment is. If the
current state does not allow the execution, the trans-
action will fail even if another execution alternative
could have been successful. In the same way, the envi-
ronment state may lead to a costly execution without
considering cheaper alternatives. Allowing the system
to choose the execution plan in regards to the current
environment state is a way to ensure better perfor-
mances.

With n different execution plans, environment
awareness and AMT facilities allow to choose among n!
different TAMT (each one including n alternatives) de-

pending upon the user optimization criteria, e.g. min-
imal costs or execution time. The definition of the
TAMT that provides best initiation probability does
not depends on the number of defined EAks but on
the capacity to overcome environment variations.

To ensure a better quality of service with TAMT

execution, specific tools based on this analytical model
could be used to define optimized TAMT s.

Environment awareness allows to define the TAMT

that fits the best to the quality of service required
by the application, for instance, a trade-off between
reducing costs and relaxing quality of service can be
done.

5 Related Work

The AMT model was inspired from DOM [4] and Flex
[11] where the general idea is to define equivalent trans-
actions for being executed in case of failures. The
DOM transaction model allows close and open nested
transactions. Compensating transactions as well as
contingency ones can be specified for being executed
if a given transaction fails. In the Flex transaction
model, contingency transactions are defined in terms
of functionally equivalent transactions. A failure order
is defined where the execution of a transaction depends
on the failure of another one. Unlike AMT, DOM and
Flex transactions are not defined to deal with mobile
environments and the notion of context awareness is
not considered.

The panorama of mobile transactions is vast. A de-
tailed analysis of several works is given in [24]. In
general, the adaptability vision is very limited, al-
most all studied systems adapt their behavior to sup-
port disconnections. That is the case in Clustering
[21], Two-tier replication [15], HiCoMo [18], IOT [22],
Pro-motion [26], Prewrite[20], MDSTPM[27] and Pre-
serialization [9]. Only Moflex [16] addresses execution
adaptability when hand-off occur. On the contrary,
our proposition – AMT model – allows adaptation to
any defined environment characteristic.

Concerning execution types, several works consider
transaction initiated by an MH and completely ex-
ecuted on FHs. For instance, KT [10], MDSTPM,
Moflex and Pre-serialization. Other proposals focus



on transaction execution on an MH: HiCoMo, IOT
and Pro-motion. Only clustering and Two-tier repli-
cation consider two execution types, (1) on an MH
(during disconnections) and (2) distributed among an
MH and FHs (during connections). None of analyzed
proposals face distributed executions among several
MHs or among mobile and fixed hosts. TCOT [17]
and UCM [1] consider those kind of distributed execu-
tions even though these works address principally the
transaction validation process. With the AMT model
it is possible to define transactions following the five
execution types mentioned here. Indeed, supporting
different execution types facilitates AMT adaptation
to mobile environments.

Although data replication is not necessarily a trans-
actional issue, it is at the heart of several works on mo-
bile transactions. Propositions like Clustering, Two-
tier replication and IOT consider that MHs contain
replicated data. During disconnections, copies are
modified trough a kind of second class transactions.
At reconnection, different reconciliation process are
proposed (re-executions with first class transactions,
synchronization of copies, etc.). Our work does not ad-
dress replication aspects, we separate transaction and
replication issues. We consider a multidatabases sys-
tem where each site (mobile or fixe) is independent of
each other. A similar approach is taken in KT [10],
Pre-serialization, MDSTPM and Moflex. Neverthe-
less, in these works the multidatabases environment
is composed only of DBMSs installed on FHs. MHs
are considered only to request transactions.

Finally, the principal difference of the AMT model
and existent works is that the description of the envi-
ronment execution is attached to the transaction defi-
nition.

6 Conclusion and Perspectives

This paper addressed mobile transactions and made
several contributions: (1) We proposed the AMT
model inspired by previous extended transaction mod-
els. However, we put a special emphasis on envi-
ronment awareness by considering specific dimensions,
e.g. bandwidth rate, connection state, mobile host re-
sources, etc. The model concerns transactions involv-
ing several heterogeneous DBMS running on mobile or
fixed hosts. (2) We introduced a formal specification
of the proposed model, this will allow to compare our
proposal with other advanced transaction models. (3)
We provided an analytical study that can be viewed
as a semi automatic tool to optimize mobile transac-
tion design and executions. This is done by an a priori
study of several execution alternatives and their re-
spective probabilities of success.

Research perspectives include: (1) The implemen-
tation of an application developer utility in order to
facilitate the design of AMT transactions. Environ-
ment awareness can be used to profile the application

environment and users habits. Once the environment
profiled, an analytical calculus – like the one presented
here – could be done to dynamically optimize TAMT in
regards to required quality of service. (2) The analysis
of the suitability of adapting transactions not only at
the beginning (as done in our current proposal) but
also during their execution; aspects related to reusing
work already done by the adapted transaction have to
be explored. (3) Applying the AMT model to peer-to-
peer and network ad-hoc environments; as the mobile
environment they are characterized by high variability.
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Annex A
A.1 Types of dependencies used in the AMT
specification

Here there is a review of the types of dependencies
used in axioms of the AMT model.

Begin Dependency (tj BD ti): tj cannot begin
executing until ti has begun:

(begintj
∈ H) ⇒ (beginti

→ begintj
).

Abort Dependency (tj AD ti): if ti aborts then
tj aborts:

(abortti
∈ H) ⇒ (aborttj

∈ H).
Begin-on-Commit Dependency (tj BCD ti): tj

cannot begin executing until ti commits:
(begintj

∈ H) ⇒ (committi
→ begintj

).
Weak-Abort Dependency (tj WD ti): if ti

aborts and tj has not committed then tj must abort:
(abortti ∈ H) ⇒ (¬(committj → abortti) ⇒

(aborttj
∈ H)).

Begin-on-Abort Dependency (tj BAD ti): tj
cannot begin executing until ti aborts:

(begintj ∈ H) ⇒ (abortti → begintj ).
Force-Commit-on-Abort Dependency

(tj CMD ti): if ti aborts, tj must commit:
(abortti ∈ H) ⇒ (committj ∈ H).

A.2 Fundamental axioms

Definition 1 Fundamental axioms of transac-
tions

I ∀α ∈ EIt (α ∈ Ht) ⇒ β ∈ EIt (α → β)
A transaction cannot be initieted by two different
events.

II ∀δ ∈ ETt ∃α ∈ EIt (δ ∈ Ht) ⇒ (α → δ)
If a transaction has terminated, it must have been
preiously initiated.

III ∀γ ∈ ETt (γ ∈ Ht) ⇒ δ ∈ ETt (γ → δ)
A transaction cannot be terminated by two different
events.

IV ∀ob ∀p (pt[ob] ∈ H) ⇒ ((∃α ∈ EIt(α → pt[ob])) ∧
(∃γ ∈ ETt(pt[ob] → γ)))
Only in progress transactions can invoke operations
on objects.

A.3 Failure atomicity
Definition 2 Failure atomicity

A transaction t is failure atomic if :
1. ∃ob ∃p (commit[pt[ob]] ∈ H) ⇒
∀ob′ ∀q ((qt[ob′] ∈ H) ⇒ (commit[qt[ob′] ∈ H))

2. ∃ob ∃p (abort[pt[ob]] ∈ H) ⇒
∀ob′ ∀q ((qt[ob′] ∈ H) ⇒ (abort[pt[ob′]] ∈ H))

Theorem 1 Properties of atomic transactions:

1. If t is an atomic transaction, t is failure atomic,
2. A set T of committed atomic transactions is serial-

izable.

Proof of Theorem 1

The proof is donne in [5].


