
HAL Id: hal-00415162
https://hal.science/hal-00415162v2

Preprint submitted on 3 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chromatic PAC-Bayes Bounds for Non-IID Data:
Applications to Ranking and Stationary β-Mixing

Processes
Liva Ralaivola, Marie Szafranski, Guillaume Stempfel

To cite this version:
Liva Ralaivola, Marie Szafranski, Guillaume Stempfel. Chromatic PAC-Bayes Bounds for Non-IID
Data: Applications to Ranking and Stationary β-Mixing Processes. 2009. �hal-00415162v2�

https://hal.science/hal-00415162v2
https://hal.archives-ouvertes.fr


Journal of Machine Learning Research () Submitted ; Published

Chromatic PAC-Bayes Bounds for Non-IID Data:

Applications to Ranking and Stationary β-Mixing Processes

Liva Ralaivola liva.ralaivola@lif.univ-mrs.fr

Marie Szafranski marie.szafranski@lif.univ-mrs.fr

Guillaume Stempfel guillaume.stempfel@lif.univ-mrs.fr

Laboratoire d’Informatique Fondamentale de Marseille

CNRS, Aix-Marseille Universités

39, rue F. Joliot Curie, 13013 Marseille, France

Editor:

Abstract

Pac-Bayes bounds are among the most accurate generalization bounds for classifiers
learned from independently and identically distributed (IID) data, and it is particularly
so for margin classifiers: there have been recent contributions showing how practical these
bounds can be either to perform model selection (Ambroladze et al., 2007) or even to di-
rectly guide the learning of linear classifiers (Germain et al., 2009). However, there are
many practical situations where the training data show some dependencies and where the
traditional IID assumption does not hold. Stating generalization bounds for such frame-
works is therefore of the utmost interest, both from theoretical and practical standpoints.
In this work, we propose the first – to the best of our knowledge – Pac-Bayes generalization
bounds for classifiers trained on data exhibiting interdependencies. The approach under-
taken to establish our results is based on the decomposition of a so-called dependency graph
that encodes the dependencies within the data, in sets of independent data, thanks to graph
fractional covers. Our bounds are very general, since being able to find an upper bound
on the fractional chromatic number of the dependency graph is sufficient to get new Pac-
Bayes bounds for specific settings. We show how our results can be used to derive bounds
for ranking statistics (such as Auc) and classifiers trained on data distributed according
to a stationary β-mixing process. In the way, we show how our approach seemlessly allows
us to deal with U-processes. As a side note, we also provide a Pac-Bayes generalization
bound for classifiers learned on data from stationary ϕ-mixing distributions.

Keywords: Pac-Bayes bounds, non IID data, ranking, U-statistics, mixing processes.

1. Introduction

1.1 Background

Recently, there has been much progress in the field of generalization bounds for classi-
fiers, the most noticeable of which are Rademacher-complexity-based bounds (Bartlett
and Mendelson, 2002; Bartlett et al., 2005), stability-based bounds (Bousquet and Elis-
seeff, 2002) and Pac-Bayes bounds (McAllester, 1999). Pac-Bayes bounds, introduced by
McAllester (1999), and refined in several occasions (Seeger, 2002a; Langford, 2005; Audib-
ert and Bousquet, 2007), are some of the most appealing advances from the tightness and
accuracy points of view (an excellent monograph on the Pac-Bayesian framework is that of
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Catoni (2007)). Among others, striking results have been obtained concerning Pac-Bayes
bounds for linear classifiers: Ambroladze et al. (2007) showed that Pac-Bayes bounds are a
viable route to do actual model selection; Germain et al. (2009) recently proposed to learn
linear classifiers by directly minimizing the linear Pac-Bayes bound with conclusive results,
while Langford and Shawe-taylor (2002) showed that under some margin assumption, the
Pac-Bayes framework allows one to tightly bound not only the risk of the stochastic Gibbs
classsifier (see below) but also the risk of the Bayes classifier. The variety of (algorithmic,
theoretical, practical) outcomes that can be expected from original contributions in the
Pac-Bayesian setting explains and justifies the increasing interest it generates.

1.2 Contribution

To the best of our knowledge, Pac-Bayes bounds have essentially been derived for the
setting where the training data are independently and identically distributed (IID). Yet,
being able to learn from non-IID data while having strong theoretical guarantees on the
generalization properties of the learned classifier is an actual problem in a number of real
world applications such as, e.g., bipartite ranking (and more generally k-partite ranking)
or classification from sequential data. Here, we propose the first Pac-Bayes bounds for
classifiers trained on non-IID data; they constitute a generalization of the IID Pac-Bayes
bound and they are generic enough to provide a principled way to establish generalization
bounds for a number of non-IID settings. To establish these bounds, we make use of simple
tools from probability theory, convexity properties of some functions, and we exploit the
notion of fractional covers of graphs (Schreinerman and Ullman, 1997). One way to get a
high level view of our contribution is the following: fractional covers allow us to cope with
the dependencies within the set of random variables at hand by providing a strategy to
make (large) subsets of independent random variables on which the usual IID Pac-Bayes
bound is applied. Note that we essentially provide bounds for the case of identically and
non-independently distributed data; the additional results that we give in the appendix
generalizes to non-identically and non-independently distributed data.

1.3 Related Results

We would like to mention that the idea of dealing with sums of interdependent random
variables by separating them into subsets of independent variables to establish concentra-
tion inequalities dates back to the work of Hoeffding (1948, 1963) on U-statistics. Explicity
using the notion of (fractional) covers – or equivalently, colorings – of graphs to derive such
concentration inequalities has been proposed by Pemmaraju (2001) and Janson (2004) and
later extended by Usunier et al. (2006) to deal with functions that are different from the
sum. Just as Usunier et al. (2006), who used their concentration inequality to provide gen-
eralization bounds based on the fractional Rademacher complexity, we take the approach of
decomposing a set of dependent random variables into subsets of dependent random vari-
ables a step beyond establishing concentration inequality to provide what we call chromatic
Pac-Bayes generalization bounds.

The genericity of our bounds is illustrated in several ways. It allows us to derive gen-
eralization bounds on the ranking performance of scoring/ranking functions using two dif-
ferent performance measures, among which the Area under the Roc curve (Auc) . These
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bounds are directly related to the work of Agarwal et al. (2005), Agarwal and Niyogi (2009),
Clémençon et al. (2008) and Freund et al. (2003). Even if our bounds are obtained as simple
specific instances of our generic Pac-Bayes bounds, they exhibit interesting peculiarities.
Compared with the bound of Agarwal et al. (2005) and Freund et al. (2003), our Auc

bound depends in a less stronger way on the skew (i.e. the imbalance between positive and
negative data) of the distribution; besides it does not rest on (rank-)shatter coefficients/VC
dimension that may sometimes be hard to assess accurately; in addition, our bound directly
applies to (kernel-based) linear classifiers. Agarwal and Niyogi (2009) base their analysis
of ranking performances on algorithmic stability, and the qualitative comparison of their
bounds and ours is not straightforward because stability arguments are somewhat different
from the arguments used for Pac-Bayes bounds (and other uniform bounds). As already
observed by Janson (2004), coloring provides a way to generalize large deviation results
based on U-statistics; this observation carries over when generalization bounds are con-
sidered, which allows us to draw a connection between the results we obtain and that of
Clémençon et al. (2008).

Another illustration of the genericity of our approach deals with mixing processes. In
particular, we show how our chromatic bounds can be used to easily derive new generaliza-
tion bounds for β-mixing processes. Rademacher complexity based bounds for such type
of processes have recently been established by Mohri and Rostamizadeh (2009). To the
best of our knowledge, it is the first time that such a bound is given in the Pac-Bayes
framework. The striking feature is that it is done at a very low price: the independent
block method proposed by Yu (1994) directly gives a dependency graph whose chromatic
number is straightforward to compute. As we shall see, this suffices to instantiate our chro-
matic bounds, which, after simple calculations, leads to appropriate generalization bound.
For sake of completeness, we also provide a Pac-Bayes bound for stationary ϕ-mixing pro-
cesses; it is based on a different approach and its presentation is postponed to the appendix
together with the tools that allows us to derive it.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 recalls the standard IID Pac-Bayes bound.
Section 3 introduces the notion of fractional covers and states the new chromatic Pac-
Bayes bounds, which rely on the fractional chromatic number of the dependency graph of
the data at hand. Section 4 provides specific versions of our bounds for the case of IID data,
ranking and stationary β-mixing processes, giving rise to original generalization bounds. A
Pac-Bayes bound for stationary ϕ-mixing based on arguments different from the chromatic
Pac-Bayes bound is provided, in the appendix.

2. IID Pac-Bayes Bound

We introduce notation that will hold from here on. We mainly consider the problem of
binary classification over the input space X and we denote the set of possible labels as
Y = {−1,+1} (for the case of ranking described in section 4, we we use Y = R); Z denotes
the product space X × Y. H ⊆ RX is a family of real valued classifiers defined on X :
for h ∈ H, the predicted output of x ∈ X is given by sign(h(x)), where sign(x) = +1 if
x ≥ 0 and −1 otherwise. D is a probability distribution defined over Z and Dm denotes
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the distribution of an m-sample; for instance, Dm = ⊗m
i=1D = Dm is the distribution of an

IID sample Z = {Zi}
m
i=1 of size m (Zi ∼ D, i = 1 . . . m). P and Q are distributions over

H. For any positive integer m, [m] stands for {1, . . . ,m}.
The IID Pac-Bayes bound, can be stated as follows (McAllester, 2003; Seeger, 2002a;

Langford, 2005).

Theorem 1 (IID Pac-Bayes Bound) ∀D, ∀H, ∀δ ∈ (0, 1], ∀P , with probability at least
1− δ over the random draw of Z ∼ Dm = Dm, the following holds:

∀Q, kl(êQ(Z)||eQ) ≤
1

m

[

KL(Q||P ) + ln
m+ 1

δ

]

. (1)

This theorem provides a generalization error bound for the Gibbs classifier gQ: given a dis-
tribution Q, this stochastic classifier predicts a class for x ∈ X by first drawing a hypothesis
h according to Q and then outputting sign(h(x)). Here, êQ is the empirical error of gQ on
an IID sample Z of size m and eQ is its true error:

êQ(Z) := Eh∼Q
1

m

m
∑

i=1

r(h,Zi) = Eh∼QR̂(h,Z) with R̂(h,Z) := 1
m

∑m
i=1 r(h,Zi)

eQ := EZ∼Dm êQ(Z) = Eh∼QR(h) with R(h) := EZ∼DmR̂(h,Z),

(2)

where, for Z = (X,Y ),

r(h,Z) := IY h(X)<0.

Note that we will use this binary 0-1 risk function r throughout the paper and that a
generalization of our results to bounded real-valued risk functions is given in appendix.
Since Z is an (independently) identically distributed sample, we have

R(h) = EZ∼DmR̂(h,Z) = EZ∼Dr(h,Z). (3)

For p, q ∈ [0, 1], kl(q||p) is the Kullback-Leibler divergence between the Bernoulli distribu-
tions with probabilities of success q and p, and KL(Q||P ) is the Kullback-Leibler divergence
between Q and P :

kl(q||p) := q ln
q

p
+ (1− q) ln

1− q

1− p

KL(Q||P ) := Eh∼Q ln
Q(h)

P (h)
,

where kl(0||0) = kl(1||1) = 0. All along, we assume that the posteriors are absolutely
continuous with respect to their corresponding priors.

It is straightforward to see that the mapping klq : t 7→ kl(q||q + t) is strictly increasing
for t ∈ [0, 1 − q) and therefore defines a bijection from [0, 1 − q) to R+: we denote by kl−1

q

its inverse. Then, as pointed out by Seeger (2002a), the function kl−1 : (q, ε) 7→ kl−1(q, ε) =
kl−1
q (ε) is well-defined over [0, 1) ×R+, and, by definition:

t ≥ kl−1(q, ε) ⇔ kl(q||q + t) ≥ ε.
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This makes it possible to rewrite bound (1) in a more ‘usual’ form:

∀Q, eQ ≤ êQ(Z) + kl−1

(

êQ(Z),
1

m

[

KL(Q||P ) + ln
m+ 1

δ

])

. (4)

We observe that even if bounds (1) and (4) apply to the risk eQ of the stochastic clas-
sifier gQ, a straightforward argument gives that, if bQ is the (deterministic) Bayes classifier
such that bQ(x) = sign(Eh∼Qh(x)), then R(bQ) = EZ∼Dr(bQ, Z) ≤ 2eQ (see for instance
(Herbrich and Graepel, 2001)). Langford and Shawe-taylor (2002) show that under some
margin assumption, R(bQ) can be bounded even more tightly.

3. Chromatic Pac-Bayes Bounds

The problem we focus on is that of generalizing Theorem 1 to the situation where there may
exist probabilistic dependencies between the elements Zi of Z = {Zi}

m
i=1 while the marginal

distributions of the Zi’s are identical. As announced before, we provide Pac-Bayes bounds
for classifiers trained on identically but not independently distributed data. These results
rely on properties of a dependency graph that is built according to the dependencies within
Z. Before stating our new bounds, we thus introduce the concepts of graph theory that will
play a role in their statements.

3.1 Dependency Graph, Fractional Covers

Definition 2 (Dependency Graph) Let Z = {Zi}
m
i=1 be a set of m random variables

taking values in some space Z. The dependency graph Γ(Z) = (V,E) of Z is such that:

• the set of vertices V of Γ(Z) is V = [m];

• (i, j) 6∈ E (there is no edge between i and j) ⇔ Zi and Zj are independent.

Definition 3 (Fractional Covers, Schreinerman and Ullman (1997)) Let Γ = (V,E)
be an undirected graph, with V = [m].

• C ⊆ V is independent if the vertices in C are independent (no two vertices in C are
connected).

• C = {Cj}
n
j=1, with Cj ⊆ V , is a proper cover of V if each Cj is independent and

⋃n
j=1Cj = V . It is exact if C is a partition of V . The size of C is n.

• C = {(Cj , ωj)}
n
j=1, with Cj ⊆ V and ωj ∈ [0, 1], is a proper exact fractional cover of

V if each Cj is independent and ∀i ∈ V ,
∑n

j=1 ωjIi∈Cj
= 1; ω(C) =

∑n
j=1 ωi is the

chromatic weight of C.

• The (fractional) chromatic number χ(Γ) (χ∗(Γ)) is the minimum size (chromatic
weight) over all proper exact (fractional) covers of Γ

A cover is a fractional cover such that all the weights ωi are equal to 1 (and all the results
we state for fractional covers apply to the case of covers). If n is the size of a cover, it means
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that the nodes of the graph at hand can be colored with n colors in a way such that no two
adjacent nodes receive the same color.

The problem of computing the (fractional) chromatic number of a graph is Np-hard
(Schreinerman and Ullman, 1997). However, for some particular graphs as those that come
from the settings we study in Section 4, this number can be evaluated precisely. If it cannot
be evaluated, it can be upper bounded using the following property.

Property 1 (Schreinerman and Ullman (1997)) Let Γ = (V,E) be a graph. Let c(Γ)
be the clique number of Γ, i.e. the order of the largest clique in Γ. Let ∆(Γ) be the maximum
degree of a vertex in Γ. We have the following inequalities:

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1.

In addition, 1 = c(Γ) = χ∗(Γ) = χ(Γ) = ∆(Γ) + 1 if and only if Γ is totally disconnected.

If Z = {Zi}
m
i=1 is a set of random variables over Z then a (fractional) proper cover of

Γ(Z), splits Z into subsets of independent random variables. This is a crucial feature to
establish our results. In addition, we can see χ∗(Γ(Z)) and χ(Γ(Z)) as measures of the
amount of dependencies within Z.

The following lemma (Lemma 3.1 in (Janson, 2004)) will be very useful in the following.

Lemma 4 If C = {(Cj , ωj)}nj=1 is an exact fractional cover of Γ = (V,E), with V = [m],
then

∀t ∈ Rm,

m
∑

i=1

ti =

n
∑

j=1

ωj
∑

k∈Cj

tk.

In particular, m =
∑n

j=1 ωj|Cj |.

3.2 Chromatic Pac-Bayes Bounds

We now provide new Pac-Bayes bounds for classifiers trained on samples Z drawn from
distributions Dm where dependencies exist. We assume these dependencies are fully deter-
mined by Dm and we define the dependency graph Γ(Dm) of Dm to be Γ(Dm) = Γ(Z). As
said before, the marginal distributions of Dm along each coordinate are the same and are
equal to some distribution D.

We introduce additional notation. Pefc(Dm) is the set of proper exact fractional covers
of Γ(Dm). Given a cover C = {(Cj , ωj)}

n
j=1 ∈ Pefc(Dm), we use the following notation:

• Z(j) = {Zk}k∈Cj
;

• D
(j)
m , the distribution of Z(j): it is equal to D|Cj | = ⊗

|Cj |
i=1D (Cj is independent);

• α = (αj)1≤j≤n with αj = ωj/ω(C): we have αj ≥ 0 and
∑

j αj = 1;

• π = (πj)1≤j≤n, with πj = ωj|Cj|/m: we have πj ≥ 0 and
∑

j πj = 1 (cf. Lemma 4).

In addition, Pn and Qn denote distributions over Hn, P jn and Qjn are the marginal distri-
butions of Pn and Qn with respect to the jth coordinate, respectively.

We can now state our main results.
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Theorem 5 (Chromatic Pac-Bayes Bound (I)) ∀Dm, ∀H, ∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}
n
j=1 ∈

Pefc(Dm), ∀Pn, with probability at least 1− δ over the random draw of Z ∼ Dm, the fol-
lowing holds:

∀Qn, kl(ēQn(Z)||eQn) ≤
ω

m





n
∑

j=1

αj KL(Qjn||P
j
n) + ln

m+ ω

δω



 , (5)

where ω stands for ω(C), and

ēQn(Z) :=
n
∑

j=1

πjEh∼Qj
n
R̂(h,Z(j)),

eQn := EZ∼Dm ēQn(Z).

Proof Deferred to Section 3.4.

We would like to emphasize that the same type of result – using the same proof techniques
– can be obtained if simple (i.e. not exact nor proper) fractional covers are considered.
However, as we shall see, the ‘best’ (in terms of tightness) bound is achieved for covers
from the set of proper exact fractional covers, and this is the reason why we have stated
Theorem 5 with a restriction to this particular set of covers.

The empirical quantity ēQn(Z) is a weighted average of the empirical errors on Z(j) of

Gibbs classifiers with respective distributions Qjn. The following proposition characterizes
eQn = EZ∼Dm ēQn(Z).

Proposition 6 ∀Dm, ∀H, ∀C = {(Cj , ωj)}
n
j=1 ∈ Pefc(Dm), ∀Qn: eQn = EZ∼Dm ēQn(Z)

is the error of the Gibbs classifier based on the mixture of distributions Qπ =
∑n

j=1 πjQ
j
n.

Proof From the definition of π, πj ≥ 0 and
∑n

j=1 πj = 1. Thus,

EZ∼Dm ēQn(Z) = EZ∼Dm

∑

j

πjEh∼Qj
n
R̂(h,Z(j))

=
∑

j

πjEh∼Qj
E
Z(j)∼D

(j)
m
R̂(h,Z(j)) (marginalization)

=
∑

j

πjEh∼Qj
n
R(h) (E

Z(j)∼D
(j)
m
R̂(h,Z(j)) = R(h),∀j)

= E
h∼π1Q1

n+...+πjQ
j
n
R(h) = Eh∼QπR(h).

Where, in the third line, we have used the fact that the variables in Z(j) are identically
distributed (by assumption, they are IID).

Remark 7 The prior Pn and the posterior Qn enter into play in Proposition 6 and Theo-
rem 5 through their marginals only. This advocates for the following learning scheme. Given
a cover and a (possibly factorized) prior Pn, look for a factorized posterior Qn = ⊗n

j=1Qj
such that each Qj independently minimizes the usual IID Pac-Bayes bound given in The-
orem 1 on each Z(j). Then make predictions according to the Gibbs classifier defined with
respect to Qπ =

∑

j πjQj.
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The following theorem gives a result that readily applies without choosing a specific
cover.

Theorem 8 (Chromatic Pac-Bayes Bound (II)) ∀Dm, ∀H, ∀δ ∈ (0, 1], ∀P , with prob-
ability at least 1− δ over the random draw of Z ∼ Dm, the following holds

∀Q, kl(êQ(Z)||eQ) ≤
χ∗

m

[

KL(Q||P ) + ln
m+ χ∗

δχ∗

]

, (6)

where χ∗ is the fractional chromatic number of Γ(Dm), and where êQ(Z) and eQ are as
in (2).

Proof This theorem is just a particular case of Theorem 5. Assume thatC = {(Cj , ωj)}
n
j=1 ∈

Pefc(Dm) such that ω(C) = χ∗(Γ(Dm)), Pn = ⊗n
j=1P = Pn and Qn = ⊗n

j=1Q = Qn, for
some P and Q.

For the right-hand side of (6), it directly comes that
∑

j

αj KL(Qjn||P
j
n) =

∑

j

αj KL(Q||P ) = KL(Q||P ).

It then suffices to show that ēQn(Z) = êQ(Z):

ēQn(Z) =
∑

j

πjEh∼Qj
n
R̂(h,Z(j)) =

∑

j

πjEh∼QR̂(h,Z
(j))

=
1

m

∑

j

ωj |Cj|Eh∼Q
1

|Cj |

∑

k

r(h,Zk) (πj =
ωj |Cj |
m ,∀j)

= Eh∼Q
1

m

∑

j

ωj
∑

k

r(h,Zk)

= Eh∼Q
1

m

∑

i

r(h,Zi) (cf. Lemma 4)

= Eh∼QR̂(h,Z) = êQ(Z).

A few comments are in order.

• A χ∗ worsening. This theorem says that even in the case of non IID data, a Pac-Bayes
bound very similar to the IID Pac-Bayes bound (1) can be stated, with a worsening
(since χ∗ ≥ 1) proportional to χ∗, i.e proportional to the amount of dependencies
in the data. In addition, the new Pac-Bayes bounds is valid with any priors and
posteriors, without the need for these distributions to depend on the chosen cover (as
is the case with the more general Theorem 5).

• χ∗: the optimal constant. Among all elements of Pefc(Dm), χ
∗ is the best constant

achievable in terms of the tightness of the bound (6) on eQ: getting an optimal coloring
gives rise to an ‘optimal’ bound. Indeed, it suffices to observe that the right-hand side
of (5) is decreasing with respect to ω when all Qjn are identical (we let the reader
check that). As χ∗ is the smallest chromatic weight, it gives the tightest bound.
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(a) Γ1-edge (b) Γu

Figure 1: Γu is the subgraph induced by Γ1-edge – which contains only one edge, between u
and v – when u is removed: it might be preferable to consider the distribution corresponding
to Γu in Theorem 8 instead of the distribution defined wrt Γ1-edge, since χ

∗(Γ1-edge) = 2 and
χ∗(Γu) = 1 (see text for detailed comments).

• Γ(Dm) vs. induced subgraphs. If s ⊆ [m] and Zs = {Zs : s ∈ s}, it is obvious
that Theorem 8 holds for |s|-samples drawn from the marginal distribution Ds of Zs.
Considering only Zs amounts to working with the subgraph Γ(Ds) of Γ(Dm) induced
by the vertices in s: this might provide a better bound in situations where χ∗(Ds)/|s|
is smaller than χ∗(Dm)/m (this is not guaranteed, however, because the empirical
error êQ(Zs) computed on Zs might be larger than êQ(Z)). To see this, consider a
graph Γ1-edge = (V,E) of m vertices where |E| = 1, i.e. there are only two nodes, say
u and v, that are connected (see Figure 1). The fractional chromatic number χ∗

1-edge of
Γ1-edge is 2 (u and v must use distinct colors) while the (fractional) chromatic number
χ∗
u of the subgraph Γu of Γ1-edge obtained by removing u is 1: χ∗

1-edge is twice as big
as χ∗

u while the number of nodes only differ by 1 and, for large m, this ratio roughly
carries over for χ∗

1-edge/m and χ∗
u/(m− 1).

This last comment outlines that considering a subset of Z, or, equivalently, a subgraph
of Γ(Dm), in (6), might provide a better generalization bound. However, it is assumed that
the choice of the subgraph is done before computing the bound: the bound does only hold
with probability 1− δ for the chosen subgraph. To alleviate this and provide a bound that
takes advantage of several induced subgraphs, we have the following proposition:

Proposition 9 Let {m}#k denote {s : s ⊆ [m], |s| = m − k}. ∀Dm, ∀H, ∀k ∈ [m],
∀δ ∈ (0, 1], ∀P , with probability at least 1− δ over the random draw of Z ∼ Dm: ∀Q,

eQ ≤ min
s∈{m}#k

{

êQ(Zs) + kl−1

(

êQ(Zs),
χ∗
s

|s|

[

KL(Q||P ) + ln
|s|+ χ∗

s

χ∗
s

+ ln

(

m

k

)

+ ln
1

δ

])}

. (7)

where χ∗
s is the fractional chromatic number of Γ(Ds), and where êQ(Zs) is the empirical

error of the Gibbs classifier gQ on Zs, that is: êQ(Zs) = Eh∼QR̂(h,Zs).

Proof Simply apply the union bound to equation (6) of Theorem 8: for fixed k, there are
( m
m−k

)

=
(m
k

)

subgraphs and using δ/
(m
k

)

makes the bound hold with probability 1 − δ for

all possible
(m
k

)

subgraphs (simultaneously). Making use of the form (4) gives the result.

This bound is particularly useful when, for some small k, there exists a subset s ⊆ {m}#k

such that the induced subgraph Γ(Ds), which has k fewer nodes than Γ(Dm), has a fractional
chromatic number χ∗

s that is smaller than χ∗(Dm) (as is the case with the graph Γ1-edge of

9
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Figure 1, where k = 1). Obtaining a similar result that holds for subgraphs associated with
sets s of sizes larger or equal to m − k is possible by replacing ln

(m
k

)

with ln
∑k

κ=0

(m
κ

)

in
the bound (in that case, k should be kept small enough with respect to m, e.g. k = Om(1),
to ensure that the resulting bound still goes down to zero when m→ ∞).

3.3 On the Relevance of Fractional Covers

One may wonder whether using the fractional cover framework is the only way to establish
a result similar to the one provided by Theorem 5. Of course, this is not the case and
one may imagine other ways of deriving closely related results without mentioning the idea
of fractional/cover coloring. (For instance, one may manipulate subsets of independent
variables, assign weights to these subsets without referring to fractional covers, and arrive
at results that are comparable to ours.)

However, if we assume that singling out independent sets of variables is the cornerstone
of dealing with interdependent random variables, we find it enlightning to cast our approach
within the rich and well-studied fractional cover/coloring framework. On the one hand, our
objective of deriving tight bounds amounts to finding a decomposition of the set of random
variables at hand into few and large independent subsets and taking the graph theory point
of view, this obviously corresponds to a problem of graph coloring. Explicitly using the
fractional cover/coloring argument allows us to directly benefit from the wealth of related
results, such as Property 1 or, for instance, approaches as to how compute a cover or
approximate the fractional chromatic number (e.g., linear programming). On the other
hand, from a technical point of view, making use of the fractional cover argument allows
us to preserve the simple structure of the proof of the classical IID PAC-Bayes bound to
derive Theorem 5.

To summarize, the richness of the results on graph (fractional) coloring provides us with
elegant tools to deal with a natural representation of the dependencies that may occur
within a set of random variables. In addition, and as showed in this article, it is possible to
seamlessly take advantage of these tools in the PAC-Bayesian framework (and probably in
other bound-related frameworks).

3.4 Proof of Theorem 5

A proof in three steps, following the lines of the proofs given by Seeger (2002a) and Langford
(2005) for the IID Pac-Bayes bound, can be provided.

Lemma 10 ∀Dm, ∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}
n
j=1, ∀Pn distribution over Hn, with proba-

bility at least 1 − δ over the random draw of Z ∼ Dm, the following holds (here, ω stands
for ω(C))

Eh∼Pn

n
∑

j=1

αje
|Cj | kl(R̂(hj ,Z

(j))||R(hj)) ≤
m+ ω

δω
, (8)

where h = (h1, . . . , hn) is a random vector of hypotheses.

10
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Proof We first observe the following:

EZ∼Dm

∑

j

αje
|Cj | kl(R̂(hj ,Z

(j))||R(hj)) =
∑

j

αjEZ(j)∼D
(j)
m
e|Cj | kl(R̂(h,Z(j))||R(h))

≤
∑

j

αj(|Cj |+ 1) (Lemma 20, Appendix)

=
1

ω

∑

j

ωj(|Cj |+ 1)

=
m+ ω

ω
, (Lemma 4)

where using Lemma 20 is made possible by the fact that Z(j) is an IID sample. Therefore,

EZ∼DmEh∼Pn

n
∑

j=1

αje
|Cj | kl(R̂(hj ,Z(j))||R(hj)) ≤

m+ ω

ω
.

According to Markov’s inequality (Theorem 22, Appendix),

PZ



Eh∼Pn

∑

j

αje
|Cj | kl(R̂(hj ,Z

(j))||R(hj)) ≥
m+ ω

ωδ



 ≤ δ.

Lemma 11 ∀Dm, ∀C = {(Cj , ωj)}
n
j=1, ∀Pn, ∀Qn, with probability at least 1 − δ over the

random draw of Z ∼ Dm, the following holds

m

ω

∑n

j=1
πjEh∼Qj

n
kl(R̂(h,Z(j))||R(h)) ≤

∑n

j=1
αj KL(Qjn||P

j
n) + ln

m+ ω

δω
. (9)

Proof It suffices to use Jensen’s inequality (Theorem 21, Appendix) with ln and the fact

that EX∼Pf(X) = EX∼Q
P (X)
Q(X)f(X), for all f, P,Q. Therefore, ∀Qn:

lnEh∼Pn

∑

j

αje
|Cj | kl(R̂(hj ,Z

(j))||R(hj)) = ln
∑

j

αjEh∼P j
n
e|Cj | kl(R̂(h,Z(j))||R(h))

= ln
∑

j

αjEh∼Qj
n

P jn(h)

Qjn(h)
e|Cj | kl(R̂(h,Z(j))||R(h))

≥
∑

j

αjEh∼Qj
n
ln

[

P jn(h)

Qjn(h)
e|Cj | kl(R̂(h,Z(j))||R(h))

]

(Jensen’s inequality)

= −
∑

j

αj KL(Qjn||P
j
n) +

∑

j

αj |Cj |Eh∼Qj
n
kl
(

R̂(h,Z(j))||R(h)
)

= −
∑

j

αj KL(Qjn||P
j
n) +

m

ω

∑

j

πjEh∼Qj
n
kl
(

R̂(h,Z(j))||R(h)
)

.

Lemma 10 then gives the result.

11
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(a) IID data (b) Bipartite ranking data

Figure 2: Dependency graphs for different settings described in section 4. Nodes of the same
color are part of the same cover element; hence, they are probabilistically independent. (a)
When the data are IID, the dependency graph is disconnected and the fractional number is
χ∗ = 1; (b) a dependency graph obtained for bipartite ranking from a sample of 4 positive
and 2 negative instances: χ∗ = 4.

Lemma 12 ∀Dm, ∀C = {(Cj , ωj)}
n
j=1, ∀Qn,, the following holds

m

ω

∑n

j=1
πjEh∼Qj

n
kl(R̂(h,Z(j))||R(h)) ≥ kl(ēQ||eQ).

Proof This simply comes from the convexity of kl(x, y) in (x, y) (Lemma 23, Appendix).
This, in combination with Lemma 11, closes the proof of Theorem 5.

4. Applications

In this section, we provide instances of Theorem 8 for various settings; amazingly, they
alllow us to easily derive Pac-Bayes generalization bounds for problems such as ranking
and learning from stationary β-mixing processes. The theorems we provide here are all new
Pac-Bayes bounds for different non-IID settings.

4.1 IID Case

The first case we are interested in is the IID setting. In this case, the training sample
Z = {(Xi, Yi)}

m
i=1 is distributed according to Dm = Dm and the fractional chromatic

number of Γ(Dm) is χ∗ = 1, since the dependency graph, depicted in Figure 2a is totally
disconnected (see Property 1). Plugging in this value of χ∗ in the bound of Theorem 8
gives the IID Pac-Bayes bound of Theorem 1. This emphasizes the fact that the standard
Pac-Bayes bound is a special case of our more general results.

4.2 General Ranking and Connection to U-Statistics

Here, the learning problem of interest is the following. D is a distribution over X ×Y with
Y = R and one looks for a ranking rule h ∈ RX×X that minimizes the ranking risk Rrank(h)

12
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defined as:
Rrank(h) := P (X,Y )∼D

(X′,Y ′)∼D

((Y − Y ′)h(X,X ′) < 0). (10)

For a random pair (X,Y ), Y can be thought of as a score that allows one to rank objects:
given two pairs (X,Y ) and (X ′, Y ′), X has a higher rank (or is ‘better’) than X ′ if Y > Y ′.
The ranking rule h predicts X to be better than X ′ if sign(h(X,X ′)) = 1 and conversely.
The objective of learning is to produce a rule h that makes as few misrankings as possible,
as measured by (10). Given a finite IID (according to D) sample S = {(Xi, Yi)}

ℓ
i=1 an

unbiased estimate of Rrank(h) is R̂rank(h,S), with:

R̂rank(h,S) :=
1

ℓ(ℓ− 1)

∑

i 6=j

I(Yi−Yj)h(Xi,Xj)<0 =
1

ℓ(ℓ− 1)

∑

i 6=j

IYijh(Xi,Xj)<0, (11)

where Yij := (Yi−Yj). A natural question is to bound the ranking risk for any learning rule
h given S, where the difficulty is that (11) is a sum of identically but not independently
random variables, namely the variables IYijh(Xi,Xj).

Let us define Xij := (Xi,Xj), Zij := (Xij , Yij), and Z := {Zij}i 6=j . We note that
the number ℓ of training data suffices to determine the structure of the dependency graph
Γrank of Z and its distribution, which we denote Dℓ(ℓ−1). Henceforth, we are clearly in the
framework for the application of the chromatic Pac-Bayes bounds defined in the previous
section. In particular, to instantiate Theorem 8 to the present ranking problem, we simply
need to have at hand the value χ∗

rank – or an upper bound thereof – of the fractional
chromatic number of Γrank. We claim that χ∗

rank ≤ ℓ(ℓ− 1)/⌊ℓ/2⌋ where ⌊x⌋ is the largest
integer less than or equal to x. We provide the following new Pac-Bayes bound for the
ranking risk:

Theorem 13 (Ranking Pac-Bayes bound) ∀D over X × Y, ∀H ⊆ RX×X , ∀δ ∈ (0, 1],
∀P , with probability at least 1− δ over the random draw of S ∼ Dℓ, the following holds

∀Q, kl(êrankQ (S)||erankQ ) ≤
1

⌊ℓ/2⌋

[

KL(Q||P ) + ln
⌊ℓ/2⌋+ 1

δ

]

, (12)

where

êrankQ (S) := Eh∼QR̂
rank(h,S)

erankQ := ES∼Dℓ êrankQ (S).

Proof We essentially need to prove our claim on the bound on χ∗
rank. To do so, we consider

a fractional cover of Γrank motivated by the theory of U-statistics (Hoeffding, 1948, 1963).
R̂(h,S) is indeed a U-statistics of order 2 and it might be rewritten as a sum of IID blocks
as follows

R̂(h,S) =
1

ℓ(ℓ− 1)

∑

i 6=j

r(h,Zij) =
1

ℓ!

∑

σ∈Σℓ

1

⌊ℓ/2⌋

⌊ℓ/2⌋
∑

i=1

r
(

h,Zσ(i)σ(⌊ℓ/2⌋+i)
)

,

where Σℓ is the set of permutations over [ℓ]. The innermost sum is obviously a sum of IID
random variables as no two summands share the same indices.
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A proper exact fractional cover Crank can be derived from this decomposition as1

Crank :=

{(

Cσ :=
{

Zσ(i)σ(⌊ℓ/2⌋+i)
}⌊ℓ/2⌋

i=1
, ωσ :=

1

(ℓ− 2)!⌊ℓ/2⌋

)}

σ∈Σℓ

.

Indeed, as remarked before, each Cσ is an independent set and each random variable Zpq for
p 6= q, appears in exactly (ℓ− 2)!×⌊ℓ/2⌋ sets Cσ (for i fixed, the number of permutations σ
such that σ(i) = p and σ(⌊ℓ/2⌋+ i) = q is equal to (ℓ−2)!, i.e. the number of permutations
on ℓ− 2 elements; as i can take ⌊ℓ/2⌋ values, this gives the result). Therefore, ∀p, q, p 6= q:

∑

σ∈Σℓ

ωσIZpq∈Cσ =
1

(ℓ− 2)!⌊ℓ/2⌋

∑

σ∈Σℓ

IZpq∈Cσ =
1

(ℓ− 2)!⌊ℓ/2⌋
× (ℓ− 2)!⌊ℓ/2⌋ = 1,

which proves that Crank is a proper exact fractional cover. Its weight ω(Crank) is

ω(Crank) = ℓ!× ωσ =
ℓ(ℓ− 1))

⌊ℓ/2⌋
.

Hence, from the definition of χ∗
rank,

χ∗
rank ≤

ℓ(ℓ− 1))

⌊ℓ/2⌋
.

The theorem follows by an instantiation of Theorem 8 with m := ℓ(ℓ−1) and the bound
on χ∗

rank we have just proven.

To our knowledge, this is the firstPac-Bayes bound on the ranking risk, while a Rademacher-
complexity based analysis was given by Clémençon et al. (2008). In the proof, we have used
arguments from the analysis of U-processes, which allow us to easily derive a convenient
fractional cover of the dependency graph of Z. Note however that our framework still ap-
plies even if not all the Zij’s are known, as required if an analysis based on U-processes is
undertaken. This is particularly handy in practical situations where one may only be given
the values Yij – but not the values of Yi and Yj – for a limited number of (i, j) pairs (and
not all the pairs).

An interesting question is to know how the so-called Hoeffding decomposition used by
Clémençon et al. (2008) to establish fast rates of convergence for empirical ranking risk
minimizers could be used to draw possibly tighter Pac-Bayes bounds. This would imply
being able to appropriately take advantage of moments of order 2 in Pac-Bayes bounds,
and a possible direction for that has been proposed by Lacasse et al. (2006). This is left for
future work as it is not central to the present paper.

Of course, the ranking rule may be based on a scoring function f ∈ RX such that
h(X,X ′) = f(X) − f(X ′), in which case all the results that we state in terms of h can be
stated similarly in terms of f . This is important to note from a practical point of view as
it is probably more usual to learn functions defined over X rather than X × X (as is h).

Finally, we would like to stress that the bound on χ∗
rank that we have exhibited is actually

rather tight. Indeed, it is straightforward to see that the clique number of Γrank is 2(ℓ− 1)

1. Note that the cover defined here considers elements Cσ containing random variables themselves instead

of their indices. This abuse of notation is made for sake of readability.
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(the cliques are made of variables {Zip}p
⋃

{Zpi}p for every i), and according to Property 1,
2(ℓ− 1) is therefore a lower bound on χ∗

rank. If ℓ is even, then our bound on χ∗
rank is equal

to 2(ℓ− 1) and so is χ∗
rank; if ℓ is odd, then our bound is 2ℓ.

4.3 Bipartite Ranking and a Bound on the Auc

A particular ranking setting is that of bipartite ranking, where Y = {−1,+1}. Let D be
a distribution over X × Y and D+1 (D−1) be the class conditional distribution DX|Y=+1

(DX|Y=−1) with respect to D. In this setting (see, e.g. Agarwal et al. (2005)), one may be

interested in controlling what we call the bipartite misranking risk RAuc(h) (the reason for
the Auc superscript will become clear in the sequel), of a ranking rule h ∈ RX×X by

RAuc(h) := P X∼D+1
X′∼D

−1

(h(X,X ′) < 0). (13)

Note that the relation between RAuc and Rrank (cf. Equation (10)) can be made clear
whenever the hypotheses h under consideration are such that h(x, x′) and h(x′, x) have
opposite signs. In this situation, it is straightforward to see that

Rrank(h) = 2P(Y = +1)P(Y = −1)RAuc(h).

Let S = {(Xi, Yi)}
ℓ
i=1 be an IID sample distributed according toDℓ = Dℓ. The empirical

bipartite ranking risk R̂Auc(h,S) of h on S defined as

R̂Auc(h,S) :=
1

ℓ+ℓ−

∑

i:Yi=+1
j:Yj=−1

Ih(Xi,Xj)<0 (14)

where ℓ+ (ℓ−) is the number of positive (negative) data in S, estimates the fraction of pairs
(Xi,Xj) that are incorrectly ranked incorrectly (given that Yi = +1 and Yj = −1) by h: it
is an unbiased estimator of RAuc(h).

As before, h may be expressed in terms of a scoring function f ∈ RX such that
h(X,X ′) = f(X)− f(X ′), in which case (overloading notation):

RAuc(f) = P X∼D+1
X′∼D

−1

(f(X) < f(X ′)) and R̂Auc(f,S) =
1

ℓ+ℓ−

∑

i:Yi=+1
j:Yj=−1

If(Xi)<f(Xj ),

where we recognize in R̂Auc(f,S) one minus the Area under the Roc curve, or Auc, of
f on S (Agarwal et al., 2005; Cortes and Mohri, 2004), hence the Auc superscript in the
name of the risk. As a consequence, providing a Pac-Bayes bound on RAuc(h) (or RAuc(f))
amounts to providing a generalization (lower) bound on the Auc, which is a widely used
measure in practice to evaluate the performance of a scoring function.

Let us define Xij := (Xi,Xj), Zij := (Xij , 1) and Z := {Zij}ij:Yi=+1,Yj=−1, i.e. Z is a
sequence of pairs Xij made of one positive example and one negative example. We then are
once again in the framework defined earlier2, i.e., the Zij ’s share the same distribution but

2. The slight difference with what has been described above is that the dependency graph is now a random

variable: it depends on the Yi’s. It is shown in the proof of Theorem 14 how this can be dealt with.
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are dependent on each other, since Zij depends on {Zpq : p = i or q = j} (see Figure 2).
Note that in order to ease the reading of the present subsection, we make the implicit
decomposition of training set S into S = S+ ∪ S−, where S+ (resp. S−) is made of the ℓ+

(ℓ−) positive (negative) data of S; the size ℓ of S is therefore ℓ = ℓ++ℓ−. This decomposition
entails a separate reindexing of the positive (negative) data from 1 to ℓ+ (from 1 to ℓ−).

Building on Theorem 8, we have the following result:

Theorem 14 (Auc Pac-Bayes bound) ∀D over X × Y, ∀H ⊆ RX×X , ∀δ ∈ (0, 1], ∀P ,
with probability at least 1− δ over the random draw of S ∼ Dℓ, the following holds

∀Q, kl(êAuc
Q (S)||eAuc

Q ) ≤
1

ℓmin

[

KL(Q||P ) + ln
ℓmin + 1

δ

]

, (15)

where ℓmin = min(ℓ+, ℓ−), and

êAuc
Q (S) := Eh∼QR̂

Auc(h,S)

eAuc
Q := ES∼Dℓ êAuc

Q (S).

Proof The proof works in three steps and borrows ideas from Agarwal et al. (2005). The
first two parts are necessary to deal with the fact that the dependency graph of Z, as it
depends on the random sample S, does not have a deterministic structure.

Conditioning on Y = y. Let y ∈ {−1,+1}ℓ be a fixed vector and let ℓ+y and ℓ−y be the
number of positive and negative labels in y, respectively. We define the distribution Dy

as Dy := ⊗ℓ
i=1Dyi ; this is a distribution on X ℓ. With a slight abuse of notation, Dy will

also be used to denote the distribution over (X × Y)ℓ of samples S = {(Xi, yi)}
ℓ
i=1 such

that the sequence {Xi}
ℓ
i=1 is distributed according to Dy. It is easy to check that ∀h ∈ H,

ES∼DyR̂
rank(h,S) = Rrank(h) (cf. equations (13) and (14)).

Given S, if we define, as said earlier, Xij := (Xi,Xj), Yij := 1 and Zij := (Xij , Yij),
then Z := {Zij}i:yi=1,j:yj=−1 is a sample of identically distributed variables, each with
distribution D±1 = D+1 ⊗D−1 ⊗ 1 over X × X × Y, where Y = {−1,+1} and where 1 is
the distribution that produces 1 with probability 1.

Letting m = ℓ+y ℓ
−
y we denote by Dy,m the distribution of the training sample Z, within

which interdependencies exist, as illustrated in Figure 2. Theorem 8 can thus be directly
applied to classifiers trained on Z, the structure of Γ(Dy,m) and its corresponding fractional
chromatic number χ∗

y being completely determined by y. Hence, letting H ⊆ RX×X , we
have: ∀δ ∈ (0, 1], ∀P over H, with probability at least 1 − δ over the random draw of
Z ∼ Dy,m,

∀Q, kl(êQ(Z)||eQ) ≤
χ∗
y

m

[

KL(Q||P ) + ln
m+ χ∗

y

δχ∗
y

]

,

where êQ(Z) = Eh∼QR̂(h,Z) = Eh∼Q

∑

ij IYijh(Zij)<0 = Eh∼Q

∑

ij Ih(Zij)<0, which is exactly

equal to êAuc
Q (S) (cf. (14)); likewise, eQ = EZ∼Dy,m êQ(Z) = ES∼Dy ê

Auc
Q (S) = eAuc

Q . Hence,
∀δ ∈ (0, 1], ∀P , with probability at least 1− δ over the random draw of S ∼ Dy,

∀Q, kl(êAuc
Q (S)||eAuc

Q ) ≤
χ∗
y

m

[

KL(Q||P ) + ln
m+ χ∗

y

δχ∗
y

]

. (16)
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Unconditioning on Y. As proposed by Agarwal et al. (2005), let us call Φ(P,S, δ) the
event (16); we just stated that ∀y ∈ {−1,+1}ℓ, ∀P , ∀δ ∈ (0, 1], PS∼Dy(Φ(P,S, δ)) ≥ 1− δ,
or, equivalently

PS∼Dℓ
(¬Φ(P,S, δ)|Y = y) = PS∼Dy(¬Φ(P,S, δ)) < δ,

i.e., the conditional (to Y = y) probability of the event ¬Φ(P,S, δ) is bounded by δ. This
directly implies that the unconditional probability of ¬Φ(P,S, δ) is bounded by δ as well:

PS∼Dℓ
(¬Φ(P,S, δ)) ≤ PS∼Dℓ

(¬Φ(P,S, δ)|Y = y) < δ.

Hence, ∀δ ∈ (0, 1], ∀P , with probability at least 1− δ over the random draw of S ∼ Dℓ,

∀Q, kl(êAuc
Q ||eAuc

Q ) ≤
χ∗
S

mS

[

KL(Q||P ) + ln
mS + χ∗

S

δχ∗
S

]

. (17)

where χ∗
S is the fractional chromatic number of the graph Γ(Z), with Z defined from S as in

the first part of the proof, where the observed (random) labels are now taken into account;
here mS = ℓ+ℓ−, where ℓ+ (ℓ−) is the number of positive (negative) data in S.

Computing the Fractional Chromatic Number. In order to finish the proof, it suf-
fices to observe that, for Z = {Zij}ij , if ℓmax = max(ℓ+, ℓ−), then the fractional chromatic
number of Γ(Z) is χ∗ = ℓmax.

Indeed, the clique number of Γ(Z) is ℓmax as for all i = 1, . . . , ℓ+ (j = 1, . . . , ℓ−),
{Zij : j = 1, . . . , ℓ−} ({Zij : i = 1, . . . , ℓ+}) defines a clique of order ℓ− (ℓ+) in Γ(Z). Thus,
from Property 1: χ ≥ χ∗ ≥ ℓmax.

A proper exact cover C = {Ck}
ℓmax
k=1 of Γ(Z) can be constructed as follows. Suppose that

ℓmax = ℓ+, then Ck = {Ziσk(i) : i = 1, . . . , ℓ−}, with

σk(i) = (i+ k − 2 mod ℓ+) + 1,

is an independent set: no two variables Zij and Zpq in Ck are such that i = p or j = q. In
addition, it is straightforward to check that C is indeed a cover of Γ(Z). This cover is of
size ℓ+ = ℓmax, which means that it achieves the minimal possible weight over proper exact
(fractional) covers since χ∗ ≥ ℓmax. Hence, χ∗ = χ = ℓmax(= c(Γ)). Plugging in this value
of χ∗ in (17), and noting that mS = ℓmaxℓmin with ℓmin = min(ℓ+, ℓ−), closes the proof.

We observe that in the theorem, the dependence on the skew of the sample is expressed
in terms of 1/min(ℓ+, ℓ−), whereas in the the works of Agarwal et al. (2005) and Usunier
et al. (2005), the bound depends on the larger 1/ℓ+ + 1/ℓ−.

The Pac-Bayes bound of Theorem 14 can be specialized to the case where h(x, x′) =
f(x) − f(x′) with f ∈ {x 7→ w · x : w ∈ X}: f is therefore a linear scoring function and
h(x, x′) = w · (x− x′). The ranking rule h is thus a linear classifier acting on the difference
of its arguments (the next result we present therefore carries over to kernel classifiers). As
proposed by Langford (2005), we may assume an isotropic Gaussian prior P = N (0, I) and
a family of posteriors Qw,µ parameterized by w ∈ X and µ > 0 such that Qw,µ is N (µ, 1)
in the direction w and N (0, 1) in all perpendicular directions, we arrive at the following
theorem:
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Theorem 15 (Auc Linear Pac-Bayes bound) ∀ℓ,∀D over X × Y, ∀δ ∈ (0, 1], the fol-
lowing holds with probability at least 1− δ over the draw of S ∼ Dℓ:

∀w, µ > 0, kl(êAuc
Qw,µ

(S)||eAuc
Qw,µ

) ≤
1

ℓmin

[

µ2

2
+ ln

ℓmin + 1

δ

]

.

Proof Straightforward from the bound of Langford (2005) and Theorem 14.

Note that this specific parametrization of Q could have been done in Theorem 13 as well.
We arbitrarily choose to provide it for this Auc based bound as learning linear ranking rule
by Auc minimization is a common approach (Ataman et al., 2006; Brefeld and Scheffer,
2005; Rakotomamonjy, 2004), and the presented result may be of practical interest (for
model selection purpose, for instance) for a larger audience.

The bounds given in Theorem 14 and Theorem 15 are very similar to what we would get
if applying IID Pac-Bayes bound to one (independent) element Cj of a minimal cover (i.e.
its weight equals the fractional chromatic number) C = {Cj}

n
j=1 such as the one we used

in the proof of Theorem 14. This would imply the empirical error êrank
Q

to be computed on

only one specific Cj and not all the Cj ’s simultaneously, as is the case for the new results. It
turns out that, for proper exact fractional covers C = {(Cj , ω)}

n
j=1 with elements Cj having

the same size, it is better, in terms of absolute moments of the empirical error, to assess
it on the whole dataset, rather than on only one Cj . The following proposition formalizes
this.

Proposition 16 ∀Dm, ∀H, ∀C = {(Cj , ωj}
n
j=1 ∈ Pefc(Dm), ∀Q, ∀r ∈ N , r ≥ 1, if

|C1| = . . . = |Cn| then

EZ∼Dm |êQ(Z)− eQ|
r ≤ E

Z(j)∼D
(j)
m
|êQ(Z

(j))− eQ|
r,∀j ∈ {1, . . . n}.

Proof Using the convexity of | · |r for r ≥ 1, the linearity of E and the notation of section 3,
for Z ∼ Dm:

|êQ(Z)− eQ|
r = |

∑

j

πj(Eh∼QR̂(h,Z
(j))−R(h))|r

≤
∑

j

πj |Eh∼Q(R̂(h,Z
(j))−R(h))|r

=
∑

j

πj |êQ(Z
(j))− eQ|

r.

Taking the expectation of both sides with respect to Z and noting that the random variables
|êQ(Z

(j))− eQ|
r, have the same distribution, gives the result.

This proposition upholds the idea of Pemmaraju (2001) to base the decomposition of a
dependency graph on equitable coloring.

4.4 β-mixing Processes

Here, we provide a Pac-Bayes theorem for classifiers trained on data from a stationary
β-mixing process, of which we recall some definitions, as formulated by Yu (1994) (see also,
e.g., also Mohri and Rostamizadeh (2009)).
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Definition 17 (Stationarity) A sequence of random variables Z = {Zt}
+∞
t=−∞ is station-

ary if, for any t and nonnegative integer m and k, the random subsequences (Zt, . . . , Zt+m)
and (Zt+k, . . . , Zt+m+k) are identically distributed.

Definition 18 (β-mixing process) Let Z = {Zt}
+∞
t=−∞ be a stationary sequence of ran-

dom variables. For any i, j ∈ Z ∪ {−∞,+∞}, let σji denote the σ-algebra generated by the
random variables Zk, i ≤ k ≤ j. Then, for any positive integer k, the β-mixing coefficient
β(k) of the stochastic process Z is defined as

β(k) = sup
n≥1

E sup
{

|P (A|σn1 )− P (A)| : A ∈ σ+∞
n+k

}

. (18)

Z is said to be β-mixing if β(k) → 0 when k → ∞.

(Note there is an equivalent definition of the β-mixing coefficient based on finite partitions;
see Yu (1994) for details.) Stationary β-mixing processes model a situation where the
interdependence between the random variables at hand is temporal. When the process is
mixing, it means that the strengh of dependence between variables weakens over times.

The bound that we propose is in the same vein as the one proposed by Mohri and
Rostamizadeh (2009), with the difference that our bound is a Pac-Bayes bound and theirs a
Rademacher-complexity-based bounds. In addition to being a new type of data-dependent
bound for the case of stationary β-mixing process, we may anticipate that, in practical
situations, our bound inherits the tightness of the IID Pac-Bayes bound (whereas, to the
best of our knowledge, there is no evidence of such practicality for Rademacher-complexity-
based bounds).

Let us state our generalization bound for classifiers trained on samples Z drawn from
stationary β-mixing distributions.

Theorem 19 (β-mixing process Pac-Bayes bound) Let m be a positive integer. Let

Dβ be a stationary β-mixing distribution over Z and Dβ
m be the distribution of m-samples

according to Dβ. ∀H ⊆ RX , ∀µ, a ∈ N such that 2µa = m, ∀δ ∈ (2(µ−1)β(a), 1], ∀P , with

probability at least 1− δ over the random draw of Z ∼ Dβ
m, the following holds

∀Q, kl(êβQ(Z)||e
β
Q) ≤

1

µ

[

KL(Q||P ) + ln
2(µ+ 1)

δ − 2(µ− 1)β(a)

]

, (19)

where

êβQ(Z) := Eh∼QR̂(h,Z) = Eh∼Q

m
∑

t=1

IYth(Xt)<0

eβQ := E
Z∼D

β
m
êβQ(Z).

Proof The proof makes use of the independent block decomposition proposed by Yu (1994),
our chromatic Pac-Bayes bound of Theorem 8, and Corollary 24 (Appendix).
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The chromatic bound for independent blocks. Let Z = {Z1, . . . , Zm} be the random
variables we have to deal with. If µ and a are two integers such that 2µa = m (we assume
that m is even, if it is odd one may drop the last variable Zm and work on a sample of size
m− 1). Then Z can be decomposed into two subsequences Z0 and Z1 as follows:

Z0 := {Zs0 := (Za(2s−2)+1, . . . , Za(2s−2)+a) : s ∈ [µ]},

Z1 := {Zs1 := (Za(2s−1)+1, . . . , Za(2s−1)+a) : s ∈ [µ]}.

Both Z0 and Z1 are made of µ blocks of a consecutive random variables. The blocks are
interdependent as well as the variables within each block. D0 will denote the distribution
of Z0.

We now define a sequence Z of independent blocks as:

Z := {Zs := (Zs1 , . . . , Z
s
a) : s ∈ [µ]},

such that the blocks Zs are mutually independent and such that each block Zs has the same
distribution as Zs0, that is, from the stationarity assumption, the distribution of Z1

0 (the
blocks Zs are IID).

The dependency graph Γ of Z is such that all the variables in a block are all connected
and such that there are no connections between blocks. Theorem 8 can readily be applied
to the random sample Z, whose distribution we denote D: for all P and δ ∈ (0, 1],

PZ∼D (Φ(P,Z, δ)) < δ, (20)

with eQ := EZ∼DêQ(Z) and Φ(P,Z, δ) is the event defined as:

Φ(P,Z, δ) :=

{

∃Q, kl(êQ(Z)||eQ) >
1

µ

[

KL(Q||P ) + ln
µ+ 1

δ

]}

.

To see why and how Theorem 8 can be used to get (20), observe that:

• the number of variables in Z is µa;

• by stationarity, all variables Zsα, for α ∈ [a] and s ∈ [µ] share the same distribution:
we therefore do actually work with dependent but identically distributed variables;

• the (fractional) chromatic number χ∗ of Γ is a, since

1. the clique number is a (i.e. the number of variables in each block),

2. the cover C of Γ with

C :=
{(

Cα := {Z1
α, . . . , Z

µ
α}, 1

)}

1≤α≤a

is a proper exact cover of size a.

Noting that, consequently

χ∗

µa
=

a

µa
=

1

µ
and

µa+ χ∗

δχ∗
=
µa+ a

δa
=
µ+ 1

δ

gives the expression of Φ(P,Z, δ) and (20).
The last two steps of the proof are similar to those used by Mohri and Rostamizadeh

(2009) to establish their bound.
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A bound for Z0. To establish the bound for Z0, it suffices to use Corollary 24 (Appendix)
with c(z) being defined as:

c(z) := IΦ(P,z,δ),

which is a bounded measurable function on the blocks Zs0 (and thus on the blocks Zs). We
have:

∣

∣EZ0∼D0c(Z0)− EZ∼Dc(Z)
∣

∣ ≤ (µ − 1)β(a),

and therefore, since PZ0∼D0(Φ(P,Z0, δ)) = EZ0∼D0c(Z0) and PZ∼D (Φ(P,Z, δ)) = EZ∼Dc(Z):

PZ0∼D0(Φ(P,Z0, δ)) ≤ PZ∼D (Φ(P,Z, δ)) + (µ− 1)β(a) (21)

< δ + (µ − 1)β(a). (cf. (20))

Establishing the bound. Finally, observe that:

Φ(P,Z, δ) ⇒ ∃Q :
1

2
kl(êQ(Z0)||eQ) +

1

2
kl(êQ(Z1)||eQ) >

1

µ

[

KL(Q||P ) + ln
µ+ 1

δ

]

⇒ ∃Q :
∨

i∈{0,1}

{

kl(êQ(Zi)||eQ)) >
1

µ

[

KL(Q||P ) + ln
µ+ 1

δ

]}

⇒
∨

i∈{0,1}

{

∃Q : kl(êQ(Zi)||eQ)) >
1

µ

[

KL(Q||P ) + ln
µ+ 1

δ

]}

⇔ Φ(P,Z0, δ) ∨ Φ(P,Z1, δ),

where we used êQ(Z) = êQ(Z0)/2 + êQ(Z1)/2 and the convexity of kl in the first line.

This leads to:

P
Z∼D

β
m
(Φ(P,Z, δ)) ≤ P

Z∼D
β
m
(Φ(P,Z0, δ) ∨ Φ(P,Z1, δ))

≤ P
Z∼D

β
m
(Φ(P,Z0, δ)) + P

Z∼D
β
m
(Φ(P,Z1, δ)) (union bound)

= 2P
Z∼D

β
m
(Φ(P,Z0, δ)) (stationarity)

= 2PZ0∼D0(Φ(P,Z0, δ)) (marginalization wrt Z0)

≤ 2δ + 2(µ− 1)β(a). (cf. (21))

Adjusting δ to δ/2 − (µ− 1)β(a) ends the proof.

5. Conclusion

In this work, we propose the first Pac-Bayes bounds applying for classifiers trained on
non-IID data. The derivation of these results rely on the use of fractional covers of graphs,
convexity and standard tools from probability theory. The results that we provide are very
general and can easily be instantiated for specific learning settings such as ranking and
learning from from mixing distributions: amazingly, we obtain at a very low cost original
Pac-Bayes bounds for these settings. Using a generalized Pac-Bayes bound, we provide
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in the appendix a chromatic Pac-Bayes bound that holds for non-independently and non-
identically distributed data: it allows us to derive a Pac-Bayes bound for classifiers trained
on data from a stationary ϕ-mixing distribution.

This work gives rise to many interesting questions. First, it seems that using a fractional
cover to decompose the non-IID training data into sets of IID data and then tightening
the bound through the use of the chromatic number is some form of variational relaxation
as often encountered in the context of inference in graphical models, the graphical model
under consideration in this work being one that encodes the dependencies in Dm. It might
be interesting to make this connection clearer to see if, for instance, tighter and still general
bounds can be obtained with more appropriate variational relaxations than the one incurred
by the use of fractional covers.

Besides, Theorem 5 advocates for the learning algorithm described in Remark 7. We
would like to see how such a learning algorithm based on possibly multiple priors/multiple
posteriors could perform empirically and how tight the proposed bound could be.

On another empirical side, it might be interesting to run simulations on bipartite ranking
problems to see how accurate the bound of Theorem 15 can be: we expect the results to
be of good quality, because of the resemblance of the bound of the theorem with the IID

Pac-Bayes theorem for margin classifiers, which has proven to be rather accurate Langford
(2005). The work of Germain et al. (2009) is also another contribution that tends to
support that a practical use of our bounds should provide competitive results (note that
Theorem 25 gives a sufficient condition for the general Pac-Bayes bound of Germain et al.
(2009) to be non degenerate). Likewise, it would be interesting to see how the possibly more
accurate Pac-Bayes bound for large margin classifiers proposed by Langford and Shawe-
taylor (2002), which should translate to the case of bipartite ranking as well, performs
empirically. The question also remains as to what kind of strategies to learn the prior(s)
could be used to render the bound of Theorem 5 the tightest possible. This is one of the
most stimulating question as performing such prior learning makes it possible to obtain
very accurate generalization bound Ambroladze et al. (2007).

The connection between our ranking bounds and the theory of U-statistics makes it
possible to envision the use of higher order moments in establishing Pac-Bayes bounds,
thanks to Hoeffding’s decomposition. We plan to investigate further in this direction, for
both the ranking measures we have studied (noting that theAuc is a two-sample U-statistics
(Hoeffding, 1963)).

Finally, we have been working on a more general way to establish chromatic bounds
from IID bounds (covering VC, Rademacher, Pac-Bayes and – possibly – binomial tail
bounds), without the need to perform ‘low-level’ calculations such as the ones proposed in
section 3.4. The meta-bound that we have been developping is in the spirit of that proposed
by Blanchard and Fleuret (2007), except that the randomization we propose is on the subsets
constituting the fractional cover (and not the hypothesis set). In other terms, given a cover
C = {(Cj , ωj)}j , the fact that an IID bound holds on one subset Cj of a cover is considered
as a random event, the probability of a subset to be chosen being ωj/ω(C). A simple union
bound gives our generic result, which translates into cover-independent (but fractional-
chromatic-number-dependent) chromatic bounds such as (6) (Theorem 8) under very mild
conditions on the shape of the base IID bound. Along with that work, we try to answer
the question of establishing a principled way to handle situations where random variables
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show weak dependencies (as is the case for β-mixing processes), as for now, the framework
described here applies when variables are either dependent or independent, disregarding the
magnitude of the dependencies – our Pac-Bayes bound for β-mixing processes would then
be a specific case of such general result.
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6. Appendix

6.1 Technical Lemmas

Lemma 20 Let D be a distribution over Z.

∀h ∈ H,EZ∼Dmem kl(R̂(h,Z)||R(h)) ≤ m+ 1.

Proof Let h ∈ H. For z ∈ Zm, we let q(z) = R̂(h, z); we also let p = R(h). Note that
since Z is i.i.d, mq(Z) is binomial with parameters m and p (recall that r(h,Z) takes the
values 0 and 1 upon correct and erroneous classification of Z by h, respectively).

EZ∼Dmem kl(q(Z)||p) =
∑

z∈Zm

em kl(q(z)||p)
PZ∼Dm(Z = z)

=
∑

0≤k≤m

em kl( k
m
||p)

PZ∼Dm(mq(Z) = k)

=
∑

0≤k≤m

(

m

k

)

em kl( k
m
||p)pk(1− p)m−k

=
∑

0≤k≤m

(

m

k

)

em(
k
m

ln k
m
+(1− k

m
) ln(1− k

m
))

=
∑

0≤k≤m

(

m

k

)(

k

m

)k (

1−
k

m

)m−k

.

However, it is obvious that, from the definition of the binomial distribution,

∀m ∈ N ,∀k ∈ [0,m],∀t ∈ [0, 1],

(

m

k

)

tk(1− t)m−k ≤ 1.

This is obviously the case for t = k
m , which gives

∑

0≤k≤m

(

m

k

)(

k

m

)k (

1−
k

m

)m−k

≤
∑

0≤k≤m

1 = m+ 1.
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Theorem 21 (Jensen’s inequality) Let f ∈ RX be a convex function. For all probability
distribution P on X :

f(EX∼PX) ≤ EX∼Pf(X).

Theorem 22 (Markov’s Inequality) Let X be a positive random variable on R, such
that EX <∞.

∀t ∈ R,PX

{

X ≥
EX

t

}

≤
1

t
.

Consequently: ∀M ≥ EX,∀t ∈ R,PX
{

X ≥ M
t

}

≤ 1
t .

Lemma 23 (Convexity of kl) ∀p, q, r, s ∈ [0, 1],∀α ∈ [0, 1],

kl(αp + (1− α)q||αr + (1− α)s) ≤ α kl(p||r) + (1− α) kl(q||s).

Proof It suffices to see that f ∈ R[0,1]2 , f(v = [p q]) = kl(q||p) is convex over [0, 1]2: the
Hessian H of f is

H =

[

q
p2

+ 1−q
(1−p)2

−1
p −

1
1−p

−1
p −

1
1−p

1
q +

1
1−q

]

,

and, for p, q ∈ [0, 1], q
p2

+ 1−q
(1−p)2

≥ 0 and detH = (p−q)2

q(1−q)p2(1−p)2
≥ 0: H � 0 and f is indeed

convex.

Finally, we have the following version by Mohri and Rostamizadeh (2009) of Corollary 2.7
in (Yu, 1994), which is based on the definition of the blocks Zsk:

Corollary 24 Let c be a measurable function defined with respect to the blocks Zs0. If c has
absolute value bounded by M , then

|EZ0∼D0c(Z)− EZ∼Dc(Z)| ≤ (µ − 1)Mβ(a).

6.2 Applications of a Generic Pac-Bayes Theorem

Let us first recall the following generic Pac-Bayes result, which is a corollary/compound
of results proposed by Seeger (2002b) and McAllester (2003). In particular, the γ function
need not be differentiable with respect to its second argument and it applies to any ‘risk’
functional ψ for which a concentration inequality exists.

Corollary 25 (Generic Pac-Bayes Theorem) Let H ⊆ RX and ψ : H ×
⋃∞
m=1 Z

m →
R. If there exist α ≥ 1, β > 1 and a nonnegative convex function ∆ : R×R → R+ that is
strictly increasing with respect to its second argument such that

∀h ∈ H,∀ε > 0, PZ∼Dm [Eψ(h) − ψ(h,Z) ≥ ε] ≤ α exp (−β∆(Eψ(h), ε)) , (22)

where Eψ(h) stands for EZ∼Dmψ(h,Z), then, ∀P , with probability at least 1 − δ over the
draw of Z ∼ Dm:

∀Q, ∆(eψQ, e
ψ
Q − êψQ(Z)) ≤

1

β − 1

[

KL(Q||P ) + ln
αβ

δ

]

. (23)
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where

êψQ(Z) := Eh∼Qψ(h,Z)

eψQ := EZê
ψ
Q(Z) = Eh∼QEZψ(h,Z)

Proof Along lines from (Seeger, 2002b) and (McAllester, 2003).

1. Observe that, thanks to Lemma 26 (below) with δ(ε) := ∆(Eψ(h), ε),

EZe
(β−1)∆(Eψ(h),Eψ(h)−ψ(h,Z)) ≤ αβ, and, Eh∼PEZe

(β−1)∆(Eψ(h),Eψ(h)−ψ(h,Z)) ≤ αβ

Applying Markov’s inequality then gives:

PZ

[

Eh∼P e
(β−1)∆(Eψ(h),Eψ(h)−ψ(h,Z)) ≥

αβ

δ

]

≤ δ

2. Using the entropy extremal inequality lnEX∼Pf(X) ≥ −KL(Q||P ))+EX∼Q ln f(X),
∀P,Q,X (see the proof of Lemma 11), and the fact that x 7→ lnx is nondecreasing,
the previous step leads to

PZ

[

∃Q : −KL(Q||P ) + (β − 1)Eh∼Q∆(Eψ(h),Eψ(h) − ψ(h,Z)) ≥ ln
αβ

δ

]

≤ δ.

3. Since ∆ is convex, Jensen’s inequality can be used to give (here, h ∼ Q)

PZ

[

∃Q : −KL(Q||P ) + (β − 1)∆(Eh,Zψ(h,Z),Eh,Zψ(h,Z) − Ehψ(h,Z)) ≥ ln
αβ

δ

]

≤ δ.

Lemma 26 (McAllester (2003)) Let X be a real-valued random variable on X and α ≥
1, β > 1. Let δ : R → R be a nonnegative and strictly increasing function. We have:

∀x ∈ R, P[X ≥ x] ≤ αe−βδ(x) ⇒ E

[

e(β−1)δ(X)
]

≤ αβ.

Proof See the proof of McAllester (2003). Here, we take α into account. As f is strictly
increasing:

P [X ≥ x] = P [δ(X) ≥ δ(x)] = P

[

e(β−1)δ(X) ≥ e(β−1)δ(x)
]

.

Hence: P
[

e(β−1)δ(X) ≥ e(β−1)δ(x)
]

≤ αe−βδ(x). Setting ν = e(β−1)δ(x), we get:

P

[

e(β−1)δ(X) ≥ ν
]

≤ min(1, αν−β/(β−1))).

Thus, as for a nonnegative random variable W , E[W ] =
∫∞
0 P[W ≥ ν]dν:

E

[

e(β−1)δ(X)
]

≤ 1 + α

∫ ∞

1
ν−β/(β−1) = 1 + α(β − 1).

Since α > 1, 1 + α(β − 1) ≤ αβ, which ends the proof.

We observe that:
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• if ψ(h,Z) =
∑m

i=1 IYih(Xi)<0 then, by the one-sided Chernoff bound, α = 1, β = m
and ∆(p, ε) = kl(p − ε||p) make equation (22) hold. The Pac-Bayes bound provided
by Corollary 25 is that of Theorem 1 where m is replaced by m− 1;

• if

∀i ∈ [m], sup
z1,...,zm,z′i∈Z

|ψ(z1, . . . , zm)− ψ(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)| ≤ ci,

then, thanks to McDiarmid inequality (McDiarmid, 1989), α = 1, β = 2/
∑

i c
2
i and

∆(p, ε) = ε2, make equation (22) hold and a Pac-Bayes bound can be derived (we let
the reader write the corresponding Pac-Bayes bound);

• it suffices to have an appropriate concentration inequality for the problem at hand to
have an effective Pac-Bayes bound.

6.2.1 Generalized Chromatic Pac-Bayes Bound

To get a chromatic Pac-Bayes theorem for non-identically non-independently distributed
data, we simply make use of the following concentration inequality of Janson (2004).

Theorem 27 (Janson (2004)) Suppose that Z = {Zi}
m
i=1 is an m-sample of real-valued

random variables distributed according to some distribution Dm. Suppose that each Zi has
range [ai, bi]. If SZ =

∑m
i=1 Zi, then,

∀ε > 0, PSZ
[ESZ − SZ ≥ ε] ≤ exp

[

−
2ε2

χ∗(Dm)
∑m

i=1(bi − ai)2

]

,

where χ∗(Dm) is the fractional chromatic number of the dependency graph of Dm.

Note that no assumption is made on the Zi’s being identically distributed.
This concentration inequality gives rise to the following generalized chromatic Pac-

Bayes bound that applies to non indepently, possibly non identically distributed data and
allows us to use any bounded loss functions r.

Theorem 28 (Generalized Chromatic Pac-Bayes Bound) ∀Dm, ∀H, ∀δ ∈ (0, 1], ∀P ,
with probability at least 1− δ over the random draw of Z ∼ Dm, the following holds

∀Q, |êQ(Z)− eQ|
2 ≤

χ∗M2

2m− χ∗M2

[

KL(Q||P ) + ln
2m

χ∗M2
+ ln

1

δ

]

, (24)

where χ∗ stands for χ∗(Dm), r is a bounded function with range M and

êQ(Z) := Eh∼QR̂(h,Z)

eQ := Eh∼QêQ(Z) = Eh∼QEZ∼DmR̂(h,Z),

with R̂(h,Z) :=
∑

i r(h,Zi)/m.

Proof It suffices to apply Corollary 25 with Theorem 27, α = 1, ∆(p, ε) = ε2 and β =
2m/χ∗M (since, as r has range M , R̂ has range M/m).

We notice the following.
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• Here, as no assumption is done regarding the identical distribution of the Zi’s, the
expected risk R(h) = EZR̂(h,Z) does not unfold as in (3).

• In the case of using identically distributed random variables and the 0-1 loss, there
is no concentration inequality that allows us to retrieve the tighter Pac-Bayes bound
given in Theorem 8.

• From a more general point of view, it is enticing to try to establish even more generic
results resting on the principle of graph coloring with the aim of decoupling this
approach to the PAC-Bayesian framework. This is the subject of ongoing work.

6.2.2 ϕ-mixing Pac-Bayes Bound

The definition of a ϕ-mixing process follows.

Definition 29 (ϕ-mixing process) Let Z = {Zt}
+∞
t=−∞ be a stationary sequence of ran-

dom variables. For any i, j ∈ Z ∪ {−∞,+∞}, let σji denote the σ-algebra generated by the
random variables Zk, i ≤ k ≤ j. Then, for any positive integer k, the ϕ-mixing coefficient
ϕ(k) of the stochastic process Z is defined as

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| . (25)

Z is said to be ϕ-mixing if ϕ(k) → 0 as k → 0.

In order to establish our new Pac-Bayes bounds for stationary ϕ-mixing distributions, it
suffices to make use of the following concentration inequality by Kontorovich and Ramanan
(2008).

Theorem 30 (Kontorovich and Ramanan (2008)) Let ψ : Um → R be a function
defined over a countable space U . If ψ is l-Lipschitz with respect to the Hamming metric
for some l > 0, then the following holds for all t > 0:

PZ [|ψ(Z) − EZ[ψ(Z)]| > t] ≤ 2 exp

[

−
t2

2ml2‖Λm‖2∞

]

,

where ‖Λm‖∞ ≤ 1 + 2
∑m

k=1 ϕ(k).

Suppose that the loss function r is again such that it takes values in [0,M ]. Then, for
any h ∈ H, the function ψ(Z) = 1

m

∑m
i=1 r(h,Zi) = R̂(h,Z) is obviously M/m-Lipschitz.

Therefore, for a sample Z drawn according to a ϕ-mixing process, we have the following
concentration inequality on R̂(h,Z) that holds for any h ∈ H:

PZ∼Dm

[∣

∣

∣
R̂(h,Z)−R(h)

∣

∣

∣
> t

]

≤ 2 exp

[

−
mt2

2M2‖Λm‖2∞

]

. (26)

We directly get the following Pac-Bayes bound for ϕ-mixing processes.
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Theorem 31 (Pac-Bayes bound for stationary ϕ-mixing processes) Let Dϕ be a sta-
tionary ϕ-mixing distribution over Z and Dϕ

m be the distribution of m-samples according
to Dϕ. ∀H ⊆ RX , ∀δ ∈ (0, 1], ∀P , with probability at least 1 − δ over the random draw of
Z ∼ Dϕ

m, the following holds

∀Q, |êϕQ(Z)− eϕQ|
2 ≤

2M2‖Λm‖
2
∞

m− 2M2‖Λm‖2∞

[

KL(Q||P ) + ln
m

M2‖Λm‖2∞
+ ln

1

δ

]

,

where ‖Λm‖∞ ≤ 1 + 2
∑m

k=1 ϕ(k), r(h,Z) = IY h(X)<0 and

êϕQ(Z) := Eh∼QR̂(h,Z) = Eh∼Q

m
∑

t=1

IYth(Xt)<0

eϕQ := EZ∼D
ϕ
m
êϕQ(Z).

Proof Equation (26), and Corollary 25 with α = 2, β = m/(2M2‖Λ‖2∞), ∆(p, ε) = ε2.
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