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Smooth regularization of bang-bang optimal control

problems

C. J. Silva E. Trélat ∗†

Abstract

Consider the minimal time control problem for a single-input control-affine system
ẋ = X(x) + u1Y1(x) in IRn, where the scalar control u1(·) satisfies the constraint
|u1(·)| 6 1. When applying a shooting method for solving this kind of optimal control
problem, one may encounter numerical problems due to the fact that the shooting
function is not smooth whenever the control is bang-bang. In this article we propose
the following smoothing procedure. For ε > 0 small, we consider the minimal time

problem for the control system ẋ = X(x) + u
ε
1Y1(x) + ε

m
X

i=2

u
ε
i Yi (x), where the scalar

controls uε
i (·), i = 1, . . . , m, with m > 2, satisfy the constraint

m
X

i=1

(uε
i (t))

2
6 1. We

prove, under appropriate assumptions, a strong convergence result of the solution of
the regularized problem to the solution of the initial problem.

Keywords: Optimal control, bang-bang control, single shooting method, Pontryagin Max-
imum Principle.

1 Introduction

1.1 The optimal control problem

Consider the single-input control-affine system in IRn

ẋ = X(x) + u1Y1(x), (1)

where X and Y1 are smooth vector fields, and the control u1 is a measurable scalar function
satisfying the constraint

|u1(·)| 6 1. (2)

Let M0 and M1 be two compact subsets of IRn. Assume that M1 is reachable from
M0, that is, there exist a time T > 0 and a control function u1(·) ∈ L∞(0, T ) satisfying
the constraint (2), such that the trajectory x(·), solution of (1) with x(0) ∈ M0, satisfies
x(T ) ∈M1.

We consider the optimal control problem (OCP) of determining, among all solutions of
(1)–(2) steering M0 to M1 in minimal time.
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Assume that the subset M1 is reachable from M0; it follows that the latter optimal
control problem admits a solution x(·), associated to a control u1(·), on [0, tf ], where tf > 0
is the minimal time (see e.g. [5] for optimal control existence theorems). According to the
Pontryagin maximum principle (see [22]), there exists a non trivial absolutely continuous
mapping p(·) : [0, tf ] → IRn, called adjoint vector, such that

ṗ(t) = −
∂H

∂x
(x(t), p(t), p0, u(t))

= −

〈

p(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

p(t),
∂Y1

∂x
(x(t))

〉 (3)

where the function H(x, p, p0, u) = 〈p,X + uY1(x)〉 + p0 is called the Hamiltonian, and the
maximization condition

H(x(t), p(t), p0, u(t)) = max
|w|61

H(x(t), p(t), p0, w) (4)

holds almost everywhere on [0, tf ]. Moreover, max|w|61H(x(t), p(t), p0, w) = 0 for every
t ∈ [0, tf ]. The quadruple (x(·), p(·), p0, u1(·)) is called an extremal. The extremal is said
normal whenever p0 6= 0, and in that case it is usual to normalize the adjoint vector so that
p0 = −1; otherwise it is said abnormal. It follows from (4) that

u1(t) = sign〈p(t), Y1(x(t))〉 (5)

for almost every t, provided the (continuous) switching function ϕ(t) = 〈p(t), Y1(x(t))〉
does not vanish on any subinterval of [0, tf ]. In that case, u1(t) only depends on x(t)
and on the adjoint vector, and it follows from (3) that the extremal (x(·), p(·), p0, u1(·))
is completely determined by the initial adjoint vector p(0). The case where the switching
function may vanish on a subinterval I is related to singular trajectories. In that case,
derivating the relation 〈p(t), Y1(x(t))〉 = 0 on I leads to 〈p(t), [X,Y1](x(t))〉 = 0 on I, and
a second derivation leads to 〈p(t), [X, [X,Y1]](x(t))〉 + u1(t)〈p(t), [Y1, [X,Y1]](x(t))〉 = 0 on
I, which permits, under generic assumptions on the vector fields X and Y1 (see [7, 8, 9]
for genericity results related to singular trajectories), to compute the singular control u1(·)
on I. Under such generic assumptions, the extremal (x(·), p(·), p0, u1(·)) is still completely
determined by the initial adjoint vector.

Note that, since x(·) is optimal on [0, tf ], and since the control system under study is
autonomous, it follows that x(·) is solution of the optimal control problem of steering the
system (1)–(2) from x0 = x(0) to x(t) in minimal time.

Remark 1.1 (Remark on shooting methods). Among the numerous numerical methods that
exist to solve optimal control problems, the shooting methods consist in solving, via Newton-
like methods, the two-point or multi-point boundary value problem arising from the appli-
cation of the Pontryagin maximum principle. More precisely, a Newton method is applied
in order to compute a zero of the shooting function associated to the problem (see e.g. [27]).
For the minimal time problem (OCP), optimal controls may be discontinuous, and it fol-
lows that the shooting function is not smooth on IRn in general. Actually it may be non
differentiable on switching surfaces. This implies two difficulties when using a shooting
method. First, if one does not know a priori the structure of the optimal control, then it
may be very difficult to initialize properly the shooting method, and in general the iterates
of the underlying Newton method will be unable to cross barriers generated by switching
surfaces (see e.g. [16]). Second, the numerical computation of the shooting function and of
its differential may be intricate since the shooting function is not continuously differentiable.
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This observation is one of the possible motivations of the regularization procedure consid-
ered in this article. Indeed, the shooting functions related to the smooth optimal control
problems described next are smooth, and in our main result we derive nice convergence
properties.

1.2 The regularization procedure

Let ε be a positive real parameter and let Y2, . . . , Ym be m−1 arbitrary smooth vector fields
on IRn, where m > 2 is an integer. Consider the control-affine system

ẋε(t) = X (xε(t)) + uε
1(t)Y1 (xε(t)) + ε

m
∑

i=2

uε
i (t)Yi (xε(t)) , (6)

where the control uε(t) = (uε
1(t), . . . , u

ε
m(t)) satisfies the constraint

m
∑

i=1

(uε
i (t))

2
6 1. (7)

Consider the optimal control problem (OCP)ε of determining a trajectory xε(·), solution
of (6)–(7) on [0, tεf ], such that xε(0) ∈ M0 and xε(tεf ) ∈ M1, and minimizing the time of
transfer tεf . The parameter ε is viewed as a penalization parameter, and it is expected that
any solution xε(·) of (OCP)ε tends to a solution x(·) of (OCP) as ε tends to zero. It is
our aim to derive such a result.

According to the Pontryagin maximum principle, any optimal solution xε(·) of (OCP)ε,
associated with controls (uε

1, . . . , u
ε
m) satisfying the constraint (7), is the projection of an

extremal (xε(·), pε(·), p0ε, uε(·)) such that

ṗε(t) = −
∂Hε

∂x
(xε(t), pε(t), p0ε, uε(t))

= −

〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε

m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

(8)

where Hε(x, p, p0, u) = 〈p,X(x) + u1Y1(x) + ε
∑m

i=2 uiYi(x)〉 + p0 is the Hamiltonian, and

H(xε(t), pε(t), p0ε, uε(t)) = max
P

m
i=1

w2

i
61
H(xε(t), pε(t), p0ε, w) (9)

almost everywhere on [0, tεf ]. Moreover, the maximized Hamiltonian is equal to 0 on [0, tεf ].
The maximization condition (9) turns into

uε
1(t)〈p

ε(t), Y1(x
ε(t))〉 + ε

m
∑

i=2

uε
i (t)〈p

ε(t), Yi(x
ε(t))〉

= max
P

m
i=1

w2

i
61

(

w1〈p
ε(t), Y1(x

ε(t))〉 + ε
m
∑

i=2

wi〈p
ε(t), Yi(x

ε(t))〉

)

,

(10)

and two cases may occur: either the maximum is attained in the interior of the domain, or
it is attained on the boundary. In the first case, there must hold 〈pε(t), Yi(x

ε(t))〉 = 0, for
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every i ∈ {1, . . . ,m}; in particular, if the m functions t 7→ 〈pε(t), Yi(x
ε(t))〉, i = 1, . . . ,m, do

not vanish simultaneously, then the maximum is attained on the boundary of the domain.
Throughout the article, we assume that the integer m and the vector fields Y2, . . . , Ym are
chosen such that

Span{Yi | i = 1, . . . ,m} = IRn. (11)

Under this assumption, the maximization condition (10) yields

uε
1(t) =

〈pε(t), Y1(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

,

uε
i (t) =

ε〈pε(t), Yi(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

, i = 2, . . . ,m,

(12)

for almost every t ∈ [0, tεf ], and moreover the control functions uε
i (·), i = 1, . . . ,m are smooth

functions of t (so that the above formula holds actually for every t ∈ [0, tεf ]). Indeed, to
prove this fact, it suffices to prove that the functions t 7→ 〈pε(t), Yi(x

ε(t)〉, i = 1, . . . ,m do
not vanish simultaneously. The argument goes by contradiction: if these functions would
vanish simultaneously, then, using the assumption (11), this would imply that pε(t) = 0 for
some t; combined with the fact that the maximized Hamiltonian is equal to zero along any
extremal, it would follow that p0ε = 0, and this would raise a contradiction since the adjoint
vector (pε(·), p0ε) of the maximum principle must be nontrivial.

Remark 1.2. The assumption (11) requires that m > n. One may however wish to choose
m = 2, i.e., to add only one new vector field Y2, in the regularization procedure. In that
case, the assumption (11) does not hold whenever n > 3, and then two problems may occur:
first, in the maximization condition (10) the maximum is not necessarily obtained at the
boundary, i.e., the expressions (12) do not necessarily hold, and second, the controls uε

i (·),
i = 1, . . . ,m are not necessarily continuous (the continuity is used in a crucial way in the
proof of our main result). These two problems are however not likely to occur, and we
provide in Section 3 some comments on the generic validity of (12) and on the smoothness
of the regularized controls, in the case m = 2.

From (12), it is expected that uε
1(·) converges to u1(·) and uε

i (·), i = 2, . . . ,m, tend to
zero, in some topology to specify. This fact is derived rigorously in our main result.

Theorem 1. Assume that the problem (OCP) has a unique solution x(·), defined on [0, tf ],
associated with a control u1(·) on [0, tf ]. Moreover, assume that x(·) has a unique extremal
lift (up to a multiplicative scalar), that is moreover normal, and denoted (x(·), p(·),−1, u1(·)).

Then, under the assumption (11), there exists ε0 > 0 such that, for every ε ∈ (0, ε0), the
problem (OCP)ε has at least one solution xε(·), defined on [0, tεf ] with tεf 6 tf , associated
with a smooth control uε = (uε

1, . . . , u
ε
m) satisfying the constraint (7), every extremal lift of

which is normal. Let (xε(·), pε(·),−1, uε(·)) be such a normal extremal lift. Then, as ε tends
to 0,

• xε(·) converges uniformly1 to x(·), and pε(·) converges uniformly to p(·) on [0, tf ];

• uε
1(·) converges weakly2 to u1(·) for the weak L1(0, tf ) topology.

1We consider any continuous extension of xε(·) on [0, tf ].
2It means that

R tf

0
uε
1
(t)g(t)dt →

R tf

0
u1(t)g(t)dt as ε → 0, for every g ∈ L1(0, tf ), and where the function

uε
1
(·) is extended continuously on [0, tf ].
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If the control u1 is moreover bang-bang, i.e., if the (continuous) switching function ϕ(t) =
〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε

1(·) converges to u1(·)
and uε

i (·), i = 2, . . . ,m, converge to 0 almost everywhere on [0, tf ], and thus in particular
for the strong L1(0, tf) topology.

Remark 1.3. We provide in Section 3 some further comments and two examples with numer-
ical simulations in order to illustrate Theorem 1. The first example is the Rayleigh problem,
on which the minimal time trajectory is bang-bang, and almost everywhere convergence of
the regularized control can be observed, accordingly to our main result. Our second exam-
ple involves a singular arc and we prove and observe that oscillations appear, so that the
regularized control weakly converges, but fails to converge almost everywhere.

Remark 1.4. It is assumed that the problem (OCP) has a unique solution x(·), having a
unique extremal lift that is normal. Such an assumption holds true whenever the minimum
time function (the value function of the optimal control problem) enjoys differentiability
properties (see e.g. [2, 10] for a precise relationship, see also [4, 23, 24, 26] for results on the
size of the set where the value function is differentiable).

If one removes these uniqueness assumptions, then the following result still holds, pro-
vided that every extremal lift of every solution of (OCP) is normal. Consider the topo-
logical spaces X = C0([0, tf ], IRn), endowed with the uniform convergence topology, and
Y = L∞(0, tf ; [−1, 1]), endowed with the weak star topology. In the following statement,
the space X ×X ×Y is endowed with the resulting product topology. For every ε ∈ (0, ε0),
let xε(·) be a solution of (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (normal) extremal lift
of xε(·). Then, every closure point in X × X × Y of the family of triples (xε(·), pε(·), uε

1(·))
is a triple (x̄(·), p̄(·), ū1(·)), where x̄(·) is an optimal solution of (OCP), associated with the
control ū1(·), having as a normal extremal lift the 4-tuple (x̄(·), p̄(·),−1, ū1(·)). The rest
of the statement of Theorem 1 still holds with an obvious adaptation in terms of closure
points.

Remark 1.5. When applying a shooting method to the problem (OCP)ε, one is not ensured
to determine an optimal solution, but only an extremal solution that is not necessarily
optimal3. Notice however that the arguments of the proof of Theorem 1 permit to prove the
following statement. Assume that there is no abnormal extremal among the set of extremals
obtained by applying the Pontryagin maximum principle to the problem (OCP); then, for
ε > 0 small enough, every extremal solution of (OCP)ε is normal, and, using the notations
of the previous remark, every closure point of such extremal solutions is a normal extremal
solution of (OCP).

Remark 1.6. There is a large literature dealing with optimal control problems depending on
some parameters, involving state, control or mixed constraints, using a stability and sensi-
tivity analysis in order to investigate the dependence of the optimal solution with respect
to parameters (see e.g. [11, 12, 13, 14, 15, 17, 18, 19, 20, 21] and references therein). In the
sensitivity approach, under second order sufficient conditions, results are derived that prove
that the solutions of the parametrized problems, as well as the associated Lagrange mul-
tipliers, are Lipschitz continuous or directionally differentiable functions of the parameter.
We stress however that Theorem 1 cannot be derived from these former works. Indeed, in
these references, the results rely on second order sufficient conditions and certain regularity
conditions on the initial problem. In our work we do not assume any second order sufficient
condition; our approach is different from the usual sensitivity analysis and is rather, in some
sense, a topological approach.

3This fact is well known, due to the fact that the Pontryagin maximum principle is a only first order
necessary condition for optimality; sufficient conditions do exist but this is outside of the scope of that paper.
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2 Proof of the main result

2.1 Preliminaries, Pontryagin maximum principle

In this subsection, we recall elements of a standard proof of the maximum principle using
needle-like variations (see [22]), which are needed to derive our main result.

Consider a general control system

ẋ(t) = f(x(t), u(t)), x(0) = x0, (13)

where x0 ∈ IRn is fixed, f : IRn × IRm −→ IRn is smooth, the control u is a bounded
measurable function taking its values in a measurable subset Ω of IRm. A control function
u ∈ L∞([0, tf ], IRm) is said admissible on [0, tf ] if the trajectory x(·), solution of (13)
associated to u and such that x(0) = x0, is well defined on [0, tf ], and the end-point mapping
E is then defined by

E(x0, tf , u) = x(tf ).

The set of admissible controls on [0, tf ] is denoted Utf ,IRm , and the set of admissible controls
on [0, tf ] taking their values in Ω is denoted Utf ,Ω. The set Utf ,IRm , endowed with the
standard topology of L∞([0, tf ], IRm), is open, and the end-point mapping is smooth on
Utf ,IRm .

Let x1 ∈ IRn. Consider the optimal control problem (P) of determining a trajectory
solution of (13) steering x0 to x1 in minimal time4. In other words, this is the problem
of minimizing tf among all admissible controls u ∈ L∞([0, tf ],Ω) satisfying the constraint
E(x0, tf , u) = x1.

For every t > 0, define the accessible set AΩ(x0, t) as the image of the mapping E(x0, t, ·) :
Ut,Ω → IRn, with the agreement AΩ(x0, 0) = {x0}. Moreover, define

AΩ(x0,6 t) =
⋃

06s6t

AΩ(x0, s).

The set AΩ(x0,6 t) coincides with the image of the mapping E(x0, ·, ·) : [0, t]×Ut,Ω → IRn.
Let u be a minimal time control on [0, tf ] for the problem (P), and denote by x(·) the

trajectory solution of (13) associated to the control u on [0, tf ]. Then the point x1 = x(tf )
belongs to the boundary of AΩ(x0,6 tf ). This geometric property is at the basis of the
proof of the Pontryagin maximum principle.

We next recall the standard concepts of needle-like variations and of Pontryagin cone,
which will be of crucial importance in order to prove our main result, and which also permit
to derive a standard proof of the maximum principle.

Needle-like variations. Let t1 ∈ [0, tf ) and u1 ∈ Ω. For η1 > 0 such that t1 + η1 6 tf ,
the needle-like variation π1 = {t1, η1, u1} of the control u is defined by

uπ1
(t) =

{

u1 if t ∈ [t1, t1 + η1],
u(t) otherwise.

The control uπ1
takes its values in Ω. It is not difficult to prove that, if η1 > 0 is small

enough, then the control uπ1
is admissible, i.e., the trajectory xπ1

(·) associated with uπ1
and

starting from xπ1
(0) = x0 is well defined on [0, tf ]. Moreover, xπ1

(·) converges uniformly to
x(·) on [0, tf ] whenever η1 tends to 0.

4Note that we consider here a problem with fixed extremities, for simplicity of presentation. All what
follows however easily extends to the case of initial and final subsets.
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Recall that t1 is a Lebesgue point of the function t 7→ f(x(t), u(t)) on [0, tf ) whenever

lim
h→0

1

h

∫ t1+h

t1

f(x(t), u(t))dt = f(x(t1), u(t1)),

and that almost every point of [0, tf ) is a Lebesgue point.
Let t1 be a Lebesgue point on [0, tf), let η1 > 0 small enough, and uπ1

be a needle-like
variation of u, with π1 = {t1, η1, u1}. For every t ∈ [t1, tf ], define the variation vector vπ1

(t)
as the solution on [t1, tf ] of the Cauchy problem

v̇π1
(t) =

∂f

∂x
(x(t), u(t))vπ1

(t),

vπ1
(t1) = f(x(t1), u1) − f(x(t1), u(t1)).

Then, it is not difficult to prove that

xπ1
(tf ) = x(tf ) + η1vπ1

(tf ) + o(η1) (14)

(see e.g. [22] for details).
Note that, for every α > 0, the variation {t1, αη1, u1} generates the variation vector

αvπ1
, it follows that the set of variation vectors at time t is a cone.

For every t ∈ (0, tf ], the first Pontryagin cone at time t, denoted K(t), is the smallest
closed convex cone containing all variation vectors vπ1

(t) for all Lebesgue points t1 such that
0 < t1 < t.

An immediate iteration leads to the following result. Let t1 < t2 < · · · < tp be Lebesgue
points of the function t 7→ f(x(t), u(t)) on (0, tf), and u1, . . . , up be points of Ω. Let
η1, . . . , ηp be small enough positive real numbers. Consider the variations πi = {ti, ηi, ui},
and denote by vπi

(·) the associated variation vectors, defined as above. Define the variation

π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up}

of the control u on [0, T ] by

uπ(t) =

{

ui if ti 6 t 6 ti + ηi, i = 1, . . . , p,
u(t) otherwise.

(15)

Let xπ(·) be the solution of (13) corresponding to the control uπ on [0, tf ] and such that
xπ(0) = x0. Then,

xπ(tf ) = x(tf ) +

p
∑

i=1

ηivπi
(tf ) + o

(

p
∑

i=1

ηi

)

. (16)

The variation formula (16) shows that every combination with positive coefficients of varia-
tion vectors (taken at distinct Lebesgue points) provides the point x(t) + vπ(t), where

vπ(t) =

p
∑

i=1

ηivπi
(t), (17)

which belongs, up to the remainder term, to the accessible set AΩ(x0, t) at time t for the
system (13) starting from the point x0. In this sense, the first Pontryagin cone serves as an
estimate of the accessible set AΩ(x0, t).
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Since we deal with a minimal time problem, we must rather consider the set AΩ(x0,6 t),
which leads to introduce also oriented time variations, as follows. Assume first that x(·) is
differentiable5 at time tf . Let δ > 0 small enough; then, with the above notations,

xπ(tf − δ) = x(tf ) +

p
∑

i=1

ηivπi
(tf ) − δf(x(tf ), u(tf )) + o

(

δ +

p
∑

i=1

ηi

)

. (18)

Then, define the cone K1(tf ) as the smallest closed convex cone containing K(tf) and the
vector −f(x(tf ), u(tf )).
If x(·) is not differentiable at time tf , then the above construction is slightly modified, by
replacing f(x(tf ), u(tf )) with any closure point of the corresponding difference quotient in
an obvious way.

Conic implicit function theorem. We next provide a conic implicit function theorem,
which is at the basis of the proof of the maximum principle (see e.g. [1] for a proof).

Lemma 2.1. Let C ⊂ IRm be a convex subset of IRm with nonempty interior, of vertex 0,
and F : C → IRn be a Lipschitzian mapping such that F (0) = 0 and F is differentiable in
the sense of Gâteaux at 0. Assume that dF (0).Cone(C) = IRn, where Cone(C) stands for
the (convex) cone generated by elements of C. Then 0 belongs to the interior of F (V ∩ C),
for every neighborhood V of 0 in IRm.

Lagrange multipliers and Pontryagin maximum principle. We next restrict the
end-point mapping to time and needle-like variations. Let p be a positive integer. Set

IRp+1
+ = {(δ, η1, . . . , ηp) ∈ IRp+1 | δ > 0, η1 > 0, . . . , ηp > 0}.

Let t1 < · · · < tp be Lebesgue points of the function t 7→ f(x(t), u(t)) on (0, tf ), and
u1, . . . , up be points of Ω. Let V be a small neighborhood of 0 in IRp. Define the mapping

F : V ∩ IRp+1
+ → IRn by

F (δ, η1, . . . , ηp) = xπ(tf − δ),

where π is the variation π = {t1, . . . , tp, η1, . . . , ηp, u1, . . . , up} and δ > 0 is small enough so
that tp < tf − δ. If V is small enough, then F is well defined; moreover this mapping is
clearly Lipschitzian, and F (0) = x(tf ). From (18), F is Gâteaux differentiable on the conic

neighborhood V ∩ IRp+1
+ of 0.

If the coneK1(tf ) would coincide with IRn, then there would exist δ > 0, an integer p and

variations πi = {ti, ηi, ui}, i = 1, . . . , p, such that F ′
0IR

p+1
+ = IRn, and then Lemma 2.1 would

imply that the point x(tf ) would belong to the interior of the accessible set AΩ(x0,6 tf ),
which would raise a contradiction.

Therefore the convex cone K1(tf ) is not equal to IRn. As a consequence, there exists
ψ ∈ IRn \ {0} called Lagrange multiplier such that 〈ψ, v(tf )〉 6 0 for every variation vector
v(tf ) ∈ K(tf ) and 〈ψ, f(x(tf ), u(tf ))〉 > 0 (at least whenever x(·) is differentiable at time
tf ; otherwise replace f(x(tf ), u(tf )) with any closure point of the corresponding difference
quotient).

These inequalities then permit to prove the maximum principle (see [22]), according to
which the trajectory x(·), associated to the optimal control u, is the projection of an extremal

5This holds true e.g. whenever tf is a Lebesgue point of the function t 7→ f(x(t), u(t)).
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(x(·), p(·), p0, u(·)) (called extremal lift), where p0 6 0 and p(·) : [0, tf ] → IRn is a nontrivial
absolutely continuous mapping called adjoint vector, such that

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)), ṗ(t) = −

∂H

∂x
(x(t), p(t), u(t)),

almost everywhere on [0, tf ], where H(x, p, u) = 〈p, f(x, u)〉 + p0 is the Hamiltonian, and
H(x(t), p(t), p0, u(t)) = M(x(t), p(t), p0) almost everywhere on [0, tf ], whereM(x(t), p(t), p0) =
max
w∈Ω

H(x(t), p(t), p0, w). Moreover, the function t 7→ M(x(t), p(t), p0) is identically equal to

zero on t ∈ [0, tf ].
The relation between the above Lagrange multiplier and (p(·), p0) is that the adjoint

vector can be constructed so that

ψ = p(tf ) and p0 = −max
w∈Ω

〈ψ, f(x(tf ), w)〉. (19)

In particular, the Lagrange multiplier ψ is unique (up to a multiplicative scalar) if and only
if the trajectory x(·) admits a unique extremal lift (up to a multiplicative scalar).

If p0 < 0 the extremal is said normal, and in this case, since the Lagrange multiplier is
defined up to a multiplicative scalar, it is usual to normalize it so that p0 = −1. If p0 = 0
the extremal is said abnormal.

Remark 2.1. The trajectory x(·) has an abnormal extremal lift (x(·), p(·), 0, u(·)) on [0, tf ]
if and only if there exists a unit vector ψ ∈ IRn such that 〈ψ, v〉 6 0 for every v ∈ K(tf) and
max
w∈Ω

〈ψ, f(x(tf ), w)〉 = 0. In that case, one has p(tf ) = ψ, up to a multiplicative scalar.

Define the first extended Pontryagin cone K̃(t) along x(·) as the smallest closed convex
cone containing K1(t) and f(x(t), u(t)) (at least whenever x(·) is differentiable at time
t; otherwise replace f(x(t), u(t)) with any closure point of the corresponding difference
quotient).

Note that x(·) does not admit any abnormal extremal lift on [0, tf ] if and only if K̃(tf ) =
IRn.

The following remark easily follows from the above considerations.

Remark 2.2. For the optimal trajectory x(·), the following statements are equivalent:

• The trajectory x(·) has a unique extremal lift (up to a multiplicative scalar); moreover,
the extremal lift is normal.

• K1(tf ) is a half-space and K̃(tf ) = IRn.

• K(tf ) is a half-space and max
w∈Ω

〈ψ, f(x(tf ), w)〉 > 0.

This remark permits to translate the assumptions of our main result into geometric
considerations.

2.2 Convergence results for the problem (OCP)ε

This subsection contains the proof of Theorem 1, that follows from Lemmas 2.2–2.10.
From now on, assume that all assumptions of Theorem 1 hold. We denote the end-point

mapping for the system (6) by

E(ε, x0, tf , u
ε) = xε(tf ),
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where xε(·) is the solution of (6) associated with the control uε(·) = (uε
1(·), . . . , u

ε
m(·)) and

such that xε(0) = x0. By extension, the end-point mapping for the system (1) corresponds
to ε = 0,

E(0, x0, tf , (u1, 0, . . . , 0)) = x(tf ),

where x(·) is the solution of (1) associated with the control u1(·) and such that x(0) = x0.
It will be also denoted E(x0, tf , u1) = E(0, x0, tf , (u1, 0, . . . , 0)) = x(tf ).

In the sequel, we denote by u1(·) the minimal time control steering the system (1) from
M0 to M1 in time tf .

We first derive the following existence result.

Lemma 2.2. For every ε > 06, the problem (OCP)ε admits at least one solution xε(·),
associated with a control uε(·) = (uε

1(·), . . . , u
ε
m(·)) satisfying the constraint (7) on [0, tεf ].

Moreover, 0 6 tεf 6 tf .

Proof. Knowing that the constrained minimization problem







min tf
|u1| 6 1, E(0, x0, tf , (u1, 0, . . . , 0)) = x1

x0 ∈M0, x1 ∈M1

has a solution, it is our aim to prove that the problem



















min tεf

uε = (uε
1, . . . , u

ε
m),

m
∑

i=1

(uε
i )

2
6 1, E(ε, x0, t

ε
f , u

ε) = x1

x0 ∈M0, x1 ∈M1

has a solution, for every ε > 0. First of all, we claim that, for every ε > 0, the subset M1 is
reachable from the subset M0, i.e., it is possible to solve the equation

E(ε, x0, t
ε
f , u

ε) = x1

with a control uε = (uε
1, . . . , u

ε
m) satisfying the constraint

∑m
i=1(u

ε
i )

2 6 1, and with some
x0 ∈ M0 and x1 ∈ M1. Indeed, if uε

i = 0, i = 2, . . . ,m, then the system (6) coincides with
the system (1), and it suffices to choose uε

1 = u1 and the corresponding initial and final
points. The existence of a minimal time control steering the system (6) from M0 to M1 is
then a standard fact to derive for such a control-affine system (see e.g. [5], and note that
M0 and M1 are compact). Moreover, the minimal time tεf for the problem (OCP)ε is less
or equal than the minimal time tf for the initial problem.

As explained in Section 1.2, for ǫ > 0 fixed, and assuming that (11) is satisfied, it follows
from the Pontryagin maximum principle applied to (OCP)ε that xε(·) is the projection of
an extremal (xε(·), pε(·), p0ε, uε(·)) such that

ṗε(t) = −

〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε

m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

6Note that ε is not needed to be small.
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and

uε
1(t) =

〈pε(t), Y1(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

,

uε
i (t) =

ε〈pε(t), Yi(x
ε(t))〉

√

√

√

√〈pε(t), Y1(xε(t))〉2 + ε2
m
∑

i=2

〈pε(t), Yi(x
ε(t))〉2

, i = 2, . . . ,m.

We stress on the fact that the controls uε
i , i = 1, . . . ,m, are continuous functions of t.

Lemma 2.3. If ε > 0 tends to 0, then tεf converges to tf , uε
1(·) converges to u1(·) in

L∞(0, tf ) for the weak star topology, and xε(·) converges to x(·) uniformly on [0, tf ].

Proof. Let (εn)n∈IN be an arbitrary sequence of positive real numbers converging to 0 as n
tends to +∞. From Lemma 2.2, 0 6 tεn

f 6 tf , hence, up to a subsequence, (tεn

f )n∈IN con-
verges to some T > 0 such that T 6 tf . By definition, the sequence of controls (uεn

1 (·))n∈IN is
bounded in L∞(0, tf ) (with the agreement that the function uεn

1 (·) is extended on (tεn

f , tf ] e.g.
by 0). Therefore, up to subsequence, it converges weakly to some control ū1(·) ∈ L∞(0, tf )
for the weak star topology. In particular, it converges weakly to ū1(·) ∈ L2(0, tf ) for the
weak topology of L2(0, tf). The limit control ū1(·) satisfies |ū1(·)| 6 1, almost everywhere
on [0, tf ]. To prove this fact, consider the set

V = {g ∈ L2(0, tf ) | |g(t)| 6 1 almost everywhere on [0, tf ]}.

For every integer n, uεn

1 (·) ∈ V ; moreover V is a convex closed (for the strong topology)
subset of L2(0, tf ), and hence is a convex closed (for the weak topology) subset of L2(0, tf ).
It follows that ū1 ∈ V .

Since M0 and M1 are compact, it follows that, up to a subsequence, xεn(0) converges to
some x̄0 ∈M0, and xεn(tεn

f ) converges to some x̄1 ∈M1.
Let x̄(·) denote the solution of the system (1), associated with the control ū1(·) on [0, T ],

and such that x̄(0) = x̄0. Since the control systems under consideration are control-affine, it
is not difficult to prove that the weak convergence of controls implies the uniform convergence
of corresponding trajectories (see [28] for details). In particular, it follows that x̄(T ) = x̄1.

Therefore, we have proved that the control ū on [0, T ] steers the system (1) from M0 to
M1 in time T . Since T 6 tf and the problem (OCP) has a unique solution, we infer that
T = tf , ū1 = u1 and x̄(·) = x(·).

To conclude, it suffices to remark that the above reasoning proves that (tf , u1(·), x(·))
is the unique closure point of (tεn

f , uεn

1 (·), xεn(·)), where (εn)n∈IN is any sequence of positive
real numbers converging to 0.

Remark 2.3. In one does not assume the uniqueness of the optimal solution of (OCP), then
the following statement still holds. If ε > 0 tends to 0, then tεf still converges to the minimal
time tf , the family (uε

1(·))ε has a closure point ū1(·) in L∞(0, tf ) for the weak star topology,
and the family (xε(·))ε has a closure point x̄(·) in C0([0, tf ], IRn) for the uniform convergence
topology, where x̄(·) is the solution of the system (1) corresponding to the control ū1(·) on
[0, tf ], such that x̄(0) ∈ M0 and x̄(tf ) ∈ M1. This means that x̄(·) is another possible
solution of (OCP).

In other words, every closure point of a family of solutions of (OCP)ε is a solution of
(OCP).
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The next lemma will serve as a technical tool to derive Lemma 2.5.

Lemma 2.4. Let T > 0, and let (gε)ε>0 be a family of continuous functions on [0, T ]
converging weakly to some g ∈ L2(0, T ) as ε tends to 0, for the weak topology of L2(0, T ).
Then, for every t ∈ (0, T ), there exists a family (tε)ε>0 of points of [t, T ) such that tε → t
and gε(tε) → g(t) as ε→ 0.

Proof. First of all, note that, since gε converges weakly to g on [0, T ], its restriction to any
subinterval of [0, T ] converges weakly, as well, to the corresponding restriction of g. Let us
prove that, for every β > 0, for every α > 0 (small enough so that t+ α 6 T ), there exists
ε0 > 0 such that, for every ε ∈ (0, ε0), there exists tε ∈ [t, t+α] such that |gε(tε)−g(t)| 6 β.
The proof goes by contradiction. Assume that there exist β > 0 and α > 0 such that, for
every integer n, there exists εn ∈ (0, 1/n) such that, for every τ ∈ [t, t + α], there holds
|gεn

(τ) − g(t)| > β. Since gεn
is continuous, it follows that either gεn

(τ) > g(t) + β for
every τ ∈ [t, t+ α], or gεn

(τ) 6 g(t) − β for every τ ∈ [t, t+ α]. This inequality contradicts
the weak convergence of the restriction of gεn

to [t, t + α] towards the restriction of g to
[t, t+ α].

In what follows, we denote by K(t), K1(t), K̃(t), the Pontryagin cones along the tra-
jectory x(·) solution of (OCP), defined as in the previous subsection. Similarly, for every
ε > 0, we denote by Kε(t), Kε

1(t), K̃ε(t) the Pontryagin cones along the trajectory xε(·),
which is a solution of (OCP)ε.

Lemma 2.5. For every v ∈ K(tf ), for every ε > 0, there exists vε ∈ Kε(tεf ) such that vε

converges to v as ε tends to 0.

Proof. By construction of K(tf), it suffices to prove the lemma for a single needle-like
variation. Assume that v = vπ(tf ), where the variation vector vπ(·) is the solution on [t1, tf ]
of the Cauchy problem

v̇π(t) =

(

∂X

∂x
(x(t)) + u1(t)

∂Y1

∂x
(x(t))

)

vπ(t)

vπ(t1) = (ū1 − u1(t1))Y1(x(t1)),

(20)

where t1 is a Lebesgue point of [0, tf ), ū1 ∈ [−1, 1], and the needle-like variation π =
{t1, η1, ū1} of the control u1 is defined by

u1,π(t) =

{

ū1 if t ∈ [t1, t1 + η1],
u1(t) otherwise.

For every ε > 0, consider the control uε = (uε
1, . . . , u

ε
m) of Lemma 2.2, solution of (OCP)ε.

It satisfies the constraint
∑m

i=1(u
ε
i )

2 6 1. From Lemma 2.3, the continuous control function
uε

1 converges weakly to u1 in L2(0, tf ). It then follows from Lemma 2.4 that, for every ε > 0,
there exists tε > t1 such that tε → t1 and uε

1(tε) → u1(t1) as ε→ 0.
For every ε > 0, consider the needle-like variation πε = {tε1, η1, (ū1, 0, . . . , 0)} of the

control (uε
1, . . . , u

ε
m) defined by7, for i = 2, . . . ,m,

uε
1,πε(t) =

{

ū1 if t ∈ [tε1, t
ε
1 + η1],

uε
1(t) otherwise,

7Note that tε
1

is a Lebesgue point of the function t 7→ X(xε(t)) + uε
1
(t)Y1(xε(t)) + ε

Pm
i=2

uε
i (t)Yi(xε(t))

since the controls uε
i are continuous functions of t.
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and

uε
i,πε(t) =

{

0 if t ∈ [tε1, t
ε
1 + η1],

uε
i (t) otherwise,

and define the variation vector vπε(·) as the solution on [tε1, t
ε
f ] of the Cauchy problem

v̇πε(t) =

(

∂X

∂x
(xε(t)) + uε

1(t)
∂Y1

∂x
(xε(t)) + ε

m
∑

i=2

uε
i (t)

∂Yi

∂x
(xε(t))

)

vπε(t)

vπε(tε1) = (ū1 − uε
1(t

ε
1))Y1(x

ε(tε1)) − ε

m
∑

i=2

uε
i (t

ε
1)Yi(x

ε(tε1)).

(21)

From Lemma 2.3, tεf converges to tf , uε
1(·) converges weakly to u1(·), x

ε(·) converges
uniformly to x(·); moreover, εuε

i (·) converges weakly to 0, εuε
i (t

ε
1) converges to 0, for

i = 2, . . . ,m, and uε
1(t1) converges to u1(t1). As in the proof of Lemma 2.3, we infer the

uniform convergence of vε
π(·) to vπ(·) (see [28] for details), and the conclusion follows.

The next lemma will be useful in the proof of Lemma 2.7.

Lemma 2.6. Let m be a positive integer, g be a continuous function on IR× IRm, and C be
a compact subset of IRm. For every ε > 0, set M(ε) = max

u∈C
g(ε, u), and M = max

u∈C
g(0, u).

Then, M(ε) tends to M as ε tends to 0.

Proof. For every ε > 0, let uε ∈ C such that M(ε) = g(ε, uε), and let u ∈ C such that
M = g(0, u). Note that uε does not necessarily converge to u, however we will prove that
M(ε) tends to M , as ε tends to 0. Let u0 ∈ C be a closure point of the family (uε)ε>0. Then,
by definition of M , one has g(0, u0) 6 M. On the other hand, since g is continuous, g(ε, u)
tends to g(0, u) = M as ε tends to 0. By definition, g(ε, u) 6 M(ε) = g(ε, uε) for every
ε > 0. Therefore, passing to the limit, one gets M 6 g(0, u0). It follows that M = g(0, u0).
We have thus proved that the (bounded) family (M(ε))ε>0 of real numbers has a unique
closure point, which is M . The conclusion follows.

Lemma 2.7. There exists ε0 > 0 such that, for every ε ∈ (0, ε0), every extremal lift
(xε(·), pε(·), p0ε, uε(·)) of any solution xε(·) of (OCP)ε is normal.

Proof. We argue by contradiction. Assume that, for every integer n, there exist εn ∈ (0, 1/n)
and a solution xεn(·) of (OCP)εn

having an abnormal extremal lift (xεn(·), pεn(·), 0, uεn(·)).
Set ψεn = pεn(tεn

f ), for every integer n. Then, from Remark 2.1, one has

〈ψεn , vεn〉 6 0,

for every vεn ∈ Kεn(tεn

f ), and

M(εn) = max
P

m
i=1

w2

i
61

(〈

ψεn , X(xεn(tεn

f ))
〉

+ w1

〈

ψεn , Y1(x
εn(tεn

f ))
〉

+εn

m
∑

i=2

wi

〈

ψεn , Yi(x
εn(tεn

f ))
〉)

= 0,

for every integer n. Since the final adjoint vector (pεn(tεn

f ), p0 εn) is defined up to a mul-

tiplicative scalar, and p0 εn = 0, we assume that ψεn is a unit vector. Then, up to a
subsequence, the sequence (ψεn)n∈IN converges to some unit vector ψ. Using Lemmas 2.3,
2.5 and 2.6, we infer that

〈ψ, v〉 6 0,
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for every v ∈ K(tf ), and

M = max
|w1|61

(〈ψ,X(x(tf ))〉 + w1 〈ψ, Y1(x(tf ))〉) = 0.

It then follows from Remark 2.1 that the trajectory x(·) has an abnormal extremal lift. This
is a contradiction since, by assumption, x(·) has a unique extremal lift, which is moreover
normal.

Remark 2.4. If we remove the assumption that the optimal trajectory x(·) has a unique
extremal lift, which is moreover normal, then Lemma 2.7 still holds provided that every
extremal lift of x(·) is normal.

With the notations of Lemma 2.7, from now on we normalize the adjoint vector so that
p0 ε = −1, for every ε ∈ (0, ε0).

Lemma 2.8. In the setting of Lemma 2.7, the set of all possible pε(tεf ), with ε ∈ (0, ε0), is
bounded.

Proof. The proof goes by contradiction. Assume that there exists a sequence (εn)n∈IN of
positive real numbers converging to 0 such that ‖pεn(tεn

f )‖ tends to +∞. Since the sequence
(

pεn (tεn
f

)

‖pεn (tεn
f

)‖

)

n∈IN
is bounded in IRn, up to a subsequence it converges to some unit vector ψ.

Using the Lagrange multipliers property and (19), there holds

〈pεn(tεn

f ), vεn〉 6 0,

for every vεn ∈ Kεn(tεn

f ), and

max
P

m
i=1

w2

i
61

(〈

pεn(tεn

f ), X(xεn(tεn

f ))
〉

+ w1

〈

pεn(tεn

f ), Y1(x
εn(tεn

f ))
〉

+εn

m
∑

i=2

wi

〈

pεn(tεn

f ), Yi(x
εn(tεn

f ))
〉)

= 1,

for every integer n. Dividing by ‖pεn(tεn

f )‖, and passing to the limit, using Lemmas 2.3, 2.5
and 2.6, and Remark 2.1, the same reasoning as in the proof of the previous lemma yields
that the trajectory x(·) has an abnormal extremal lift, which is a contradiction.

Remark 2.5. Remark 2.5 applies as well to Lemma 2.8.

Lemma 2.9. For every ε ∈ (0, ε0), let xε(·) be a solution of (OCP)ε, and let (xε(·), pε(·),−1, uε(·))
be a (normal) extremal lift of xε(·). Then pε(·) converges uniformly8 to p(·) on [0, tf ] as ε
tends to 0, where (x(·), p(·),−1, u(·)) is the unique (normal) extremal lift of x(·).

Proof. For every ε > 0, set ψε = pε(tεf ). The adjoint equation of the Pontryagin Maximum
Principle is

ṗε(t) = −

〈

pε(t),
∂X

∂x
(xε(t))

〉

− uε
1(t)

〈

pε(t),
∂Y1

∂x
(xε(t))

〉

− ε

m
∑

i=2

uε
i (t)

〈

pε(t),
∂Yi

∂x
(xε(t))

〉

,

8We consider any continuous extension of pε(·) on [0, tf ].
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with pε(tεf ) = ψε. Moreover, there holds

〈ψε, vε〉 6 0,

for every vε ∈ Kε(tεf ), and

max
P

m
i=1

w2

i
61

(

〈

ψε, X(xε(tεf ))
〉

+ w1

〈

ψε, Y1(x
ε(tεf ))

〉

+ ε

m
∑

i=2

wi

〈

ψε, Yi(x
ε(tεf ))

〉

)

= 1.

From Lemma 2.8, the family of all ψε, 0 < ε < ε0, is bounded. Let ψ be a closure point of
that family, and (εn)n∈IN a sequence of positive real numbers converging to 0 such that ψεn

tends to ψ. Using Lemma 2.3, and as in the proof of this lemma, we infer that the sequence
(pεn(·))n∈IN converges uniformly to the solution z(·) of the Cauchy problem

ż(t) = −

〈

z(t),
∂X

∂x
(x(t))

〉

− u1(t)

〈

z(t),
∂Y1

∂x
(x(t))

〉

, z(tf ) = ψ.

Moreover, passing to the limit as in the previous proof,

〈ψ, v〉 6 0,

for every v ∈ K(tf ), and

max
|w1|61

(〈ψ,X(x(tf ))〉 + w1 〈ψ, Y1(x(tf ))〉) = 1.

It follows that (x(·), z(·),−1, u1(·)) is an extremal lift of x(·), and from the uniqueness
assumption we infer that z(·) = p(·). The conclusion follows.

Remark 2.6. If one removes the assumptions of uniqueness of the solution of (OCP) and
uniqueness of the extremal lift, then the following result still holds, provided that every
extremal lift of every solution of (OCP) is normal. Consider the topological spaces X =
C0([0, tf ], IRn), endowed with the uniform convergence topology, and Y = L∞(0, tf ; [−1, 1]),
endowed with the weak star topology. In the following statement, the space X × X × Y is
endowed with the resulting product topology. For every ε ∈ (0, ε0), let xε(·) be a solution
of (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (normal) extremal lift of xε(·). Then, every
closure point of the family (xε(·), pε(·), uε

1(·)) in X ×X ×Y is a triple (x̄(·), p̄(·), ū1(·)), where
x̄(·) is an optimal solution of (OCP), associated with the control ū1(·), having as a normal
extremal lift the 4-tuple (x̄(·), p̄(·),−1, ū1(·)). This statement indeed follows from Remarks
2.3, 2.4 and 2.5.

Lemma 2.10. If the control u1 is moreover bang-bang, i.e., if the (continuous) switching
function ϕ(t) = 〈p(t), Y1(x(t))〉 does not vanish on any subinterval of [0, tf ], then uε

1(·)
converges to u1(·) and uε

i (·), i = 2, . . . ,m, converge to 0 almost everywhere on [0, tf ], and
thus in particular for the strong L1(0, tf) topology.

Proof. Using the expression (12) of the controls uε
1 and uε

i , i = 2, . . . ,m, the expression
(5) of the control u1, and from Lemmas 2.3 and 2.9, it is clear that uε

1(t) converges to
u1(t) and uε

i (t), i = 2, . . . ,m, converge to 0 as ε tends to 0, for almost every t ∈ [0, tf ].
Since the controls are bounded by 1, the strong L1 convergence follows from the dominated
convergence theorem.
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3 Examples and further comments

3.1 Comments on the assumption (11)

Let us go on Remark 1.2, and consider the case m = 2, that is, consider only one arbitrary
additional smooth vector field Y2. For ε > 0 fixed, the maximization condition from the
Pontryagin maximum principle applied to the problem (OCP)ε is

uε
1(t)〈p

ε(t), Y1(x
ε(t)〉 + εuε

2(t)〈p
ε(t), Y2(x

ε(t)〉

= max
w2

1
+w2

2
61

(w1〈p
ε(t), Y1(x

ε(t)〉 + εw2〈p
ε(t), Y2(x

ε(t)〉)

almost everywhere on [0, tεf ]. There are two cases: either the maximum is attained in the
interior of the domain, or it is attained at the boundary. The proof of our main result
requires this maximum to be attained at the boundary (see (12)), and the corresponding
controls to be continuous. This fact depends on the choice of the vector field Y2.

A simple example where this holds true is the case Y2 = X . In that case it is indeed
possible to ensure that both functions t 7→ 〈pε(t), Y1(x

ε(t)〉 and t 7→ 〈pε(t), Y2(x
ε(t)〉 do

not vanish simultaneously for ε > 0 small enough (and this implies that the desired con-
clusion). To prove this assertion, we argue by contradiction and assume that, for every
n ∈ IN, there exists a sequence (εn)n∈IN converging to 0 and a sequence (tεn)n∈IN such that
〈pεn(tεn), X(xεn(tεn))〉 = 〈pεn(tεn), Y2(x

εn(tεn))〉 = 0. Combined with the fact that the
Hamiltonian is constant along any extremal, and vanishes at the final time, these equalities
imply that p0εn = 0. This contradicts the conclusion of Lemma 2.7.

More generally, and although such a statement may be nontrivial to derive, we conjec-
ture that this fact holds true for generic vector fields Y2 (see [7, 8, 9] for such genericity
statements).
Note that, for generic triples of vector fields (X,Y1, Y2), this fact holds true. Indeed, to
derive this statement it suffices to combine the fact that any totally singular minimizing
trajectory must satisfy the Goh condition (see [1] and [3, Theorem 1.9] for details) and the
fact that, for generic (in the strong sense of Whitney) triplets of vector fields (X,Y1, Y2),
the associated control-affine system does not admit nontrivial Goh singular trajectories (see
[9, Corollary 2.7]).

3.2 First example: the Rayleigh problem

To illustrate our results, we consider the minimal time control problem for the Rayleigh
control system described in [18],

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)(1.4 − 0.14x2(t)
2) + u1(t),

(22)

with initial and final conditions

x1(0) = x2(0) = −5, x1(tf ) = x2(tf ) = 0, (23)

and the control constraint
|u1(·)| 6 4. (24)

This optimal control problem has a unique solution, that has a unique extremal lift (up to
a multiplicative scalar) which is moreover normal (see [18]).
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We propose the regularized control system

ẋε
1(t) = xε

2(t) + εuε
2(t) ,

ẋε
2(t) = −xε

1(t) + xε
2(t)(1.4 − 0.14xε

2(t)
2) + uε

1(t),
(25)

with the same initial and final conditions, and where the control uε(·) = (uε
1(·), u

ε
2(·)) satisfies

the constraint
(uε

1(·))
2 + (uε

2(·))
2

6 16.

All assumptions of Theorem 1 are satisfied. A single shooting method is applied to both
optimal control problems. The convergence results proved in Theorem 1 are illustrated on
Figures 1, 2 and 3. In this example, the minimal time control solution of (22), (23), (24)
is bang-bang, and we indeed observe, on the numerical simulations, the almost everywhere
convergence of the regularized control.
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Figure 1: Trajectory
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Figure 3: Control

3.3 Second example, involving a singular arc

In the example provided in this subsection, the minimal time control u1(·) is singular. It is
then not expected a priori that the regularized control uε

1(·) converges almost everywhere
to u1(·) along the singular arc. Our main result only asserts a weak convergence property
along this arc. In the example presented below, the regularized control uε

1 converges weakly
to u1(·) but not almost everywhere. We then provide some numerical simulations, on which
we indeed observe that the almost everywhere convergence property fails along the singular
arc, and we observe an oscillating property, which is a typical feature of weak convergence.

Consider the minimal time control problem for the system

ẋ1(t) = 1 − x2(t)
2,

ẋ2(t) = u1(t),
(26)

with initial and final conditions

x1(0) = x2(0) = 0, x1(tf ) = 1, x2(tf ) = 0, (27)

and the control constraint
|u1(·)| 6 1. (28)

It is clear that the solution of this optimal control problem is unique, and is provided by the
singular control u1(t) = 0, for every t ∈ [0, tf ], with tf = 1. The corresponding trajectory is
given by x1(t) = t and x2(t) = 0.
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We claim that this optimal trajectory has a unique extremal lift (up to a multiplicative
scalar), which is moreover normal. Indeed, denoting by p = (p1, p2) the adjoint vector,
the Hamiltonian of the above optimal control problem is H = p1(1 − x2

2) + p2u1 + p0, and
the differential equations of the adjoint vector are ṗ1 = 0, ṗ2 = 2x2p1. Since x2(t) = 0,
it follows that the adjoint vector of any extremal lift of the optimal trajectory is con-
stant. Moreover, the Hamiltonian vanishes at the final time, and hence there must hold
p1(t) + p0 = 0, for every t ∈ [0, tf ]. Since the singular control u1(t) = 0 is optimal
and belongs to the interior of the domain of constraints (28), the maximization condition
yields ∂H

∂u1

= 0, and thus, p2(t) = 0 for every t ∈ [0, tf ]. Then, since the adjoint vector

is nontrivial, p0 cannot be equal to 0, and up to a multiplicative scalar we assume that
p0 = −1. The assertion is thus proved, and the unique (normal) extremal lift is given by
(x1(t), x2(t), p1(t), p2(t), p

0, u1(t)) = (t, 0, 1, 0,−1, 0).

We propose the following regularization of the problem (26)–(28). Let g(·) and h(·) be
smooth functions, to be chosen; consider the minimal time control problem for the system

ẋε
1(t) = 1 − xε

2(t)
2 + εuε

2(t)g(x
ε
1(t)),

ẋε
2(t) = uε

1(t) + εuε
2(t)h(x

ε
1(t)),

(29)

with initial and final conditions

xε
1(0) = xε

2(0) = 0, xε
1(t

ε
f ) = 1, xε

2(t
ε
f ) = 0, (30)

and the control constraint
(uε

1(·))
2 + (uε

2(·))
2

6 1. (31)

Since the function g to be chosen below vanishes at some points, the assumption (11)
does not hold everywhere. We claim however that, if the function g may only vanish on a
subset of zero measure, and if ε > 0 is small enough, then the formula (12) holds, and the
regularized controls are continuous, so that we are in the framework of Theorem 1.

Indeed, the Hamiltonian of this regularized optimal control problem is

H = pε
1(1 − (xε

2)
2) + pε

2u
ε
1 + εuε

2(p
ε
1g(x

ε
1) + pε

2h(x
ε
1)) + p0ε,

and the adjoint equations are

ṗε
1(t) = −εuε

2(t)(p
ε
1(t)g

′(xε
1(t)) + pε

2(t)h
′(xε

1(t))),

ṗε
2(t) = 2xε

2(t)p
ε
1(t).

It is not difficult to see that, for ε > 0 small enough, the optimal trajectory must be such
that ẋε

1(t) > 0; hence, xε
1(·) is an increasing function of t. Now, argue by contradiction, and

assume that the optimal control takes its values in the interior of the domain (31), for t ∈ I,
where I is a subset of [0, tεf ] of positive measure. Then, the maximization condition yields
∂H
∂uε

1

= ∂H
∂uε

2

= 0, and hence pε
2(t) = 0 and pε

1(t)g(x
ε
1(t)) + pε

2(t)h(x
ε
1(t)) = 0, for t ∈ I. It

follows that pε
1(t)g(x

ε
1(t)) = 0, for t ∈ I. Since the function g may only vanish on a subset

of zero measure, and since xε
1(·) is increasing, it follows that there exists t1 ∈ I such that

g(xε
1(t1)) 6= 0, and therefore pε

1(t1) = pε
2(t1) = 0. Since the Hamiltonian vanishes almost

everywhere, this yields moreover p0ε = 0, which is a contradiction.
Therefore, under the above assumption on g, the formula (12) holds, and the optimal
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controls are given by

uε
1(t) =

pε
2(t)

√

pε
2(t)

2 + ε2 (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

2
,

uε
2(t) =

ε (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

√

pε
2(t)

2 + ε2 (pε
1(t)g(x

ε
1(t)) + pε

2(t)h(x
ε
1(t)))

2
,

(32)

for almost every t ∈ [0, tεf ].
Let us prove that the controls uε

1(·) and uε
2(·) are smooth functions of t. For this purpose,

we prove hereafter that the function pε
2(·) does not vanish on any subset of positive measure.

Argue by contradiction and assume that there exists a subset I of [0, tεf ] on which pε
2(·)

vanishes. Then, on the one part, (32) implies that uε
1(t) = 0 and uε

2(t) = sign(pε
1(t)g(x

ε
1(t))+

pε
2(t)h(x

ε
1(t))), for almost every t ∈ I. On the other part, using the adjoint equations, we

have xε
2(t)p

ε
1(t) = 0, for t ∈ I. The scalar pε

1(t) cannot vanish, for any t ∈ I; indeed otherwise
there would hold pε

1(t) = pε
2(t) = 0, and since the Hamiltonian vanishes, it would follow that

p0ε = 0, which is a contradiction with the normality of the extremal lift (see Lemma 2.7).
Hence, xε

2(t) = 0 for t ∈ I, and thus, by differentiation, uε
1(t) + εuε

2(t) = 0. This contradicts
the equalities uε

1(t) = 0 and uε
2(t) = sign(pε

1(t)g(x
ε
1(t)) + pε

2(t)h(x
ε
1(t))).

From Theorem 1, we can assert that, as ε tends to 0,

• xε
1(·) (resp., xε

2(·)) converges uniformly to x1(·) (resp., x2(·)) on [0, 1],

• pε
1(·) (resp., pε

2(·)) converges uniformly to p1(·) = 1 (resp., p2(·) = 0),

• uε
1(·) converges weakly to u1(·) = 0.

Let us next prove that, for certain choices of the functions g(·) and h(·), the regularized
control uε

1(·) does not converge almost everywhere to u1(·). We choose a smooth function
g(·) defined on IR that is strongly oscillating in the neighborhood of 1/2, for instance,

g(x) = h(x) sin
1

x− 1/2
,

and a flat function h so that g is indeed smooth, for instance,

h(x) = exp

(

−1

(x− 1/2)2

)

.

If ε is small enough, then xε
1(t) is close to t, pε

1(t) is close to 1, pε
2(t) is close to 0, and hence

the sign of uε
2(t), that is equal to the sign of

h(xε
1(t))

(

pε
1(t) sin

1

xε
1(t) − 1/2

+ pε
2(t)

)

is close to the sign of sin 1
t−1/2 . Therefore, the control uε

2(·) strongly oscillates between −1

and 1 for t close to 1/2. Since uε
1(·) and uε

2(·) are continuous and satisfy (uε
1(·))

2 +(uε
2(·))

2 =
1, it follows that the control uε

1(·) strongly oscillates as well between −1 and 1 for t close to
1/2.

This oscillation feature is similar to what happens with chattering controls, and illustrates
the fact that uε

1(·) weakly converges to u1(·) = 0 as ε tends to 0, but does not converge almost
everywhere.
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Numerical simulations lead to Figures 4 and 5, on which we can observe the oscillating
properties of the regularized controls. Note that these numerical simulations are difficult
to obtain with the above function h, because of its flatness. First of all, in our numerical
simulations we rather choose the function h(x) = (x − 1/2)3, that is not so flat, but for
which the system is however not smooth (but this does not change anything to the result).
Second, it is difficult to make converge the shooting method for small values of ε, and we
had to make use of a continuation method, starting with a large value of ε and making
decrease step by step this value.
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Figure 4: Control uǫ
1 (ε = 0.01)
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Figure 5: Control uǫ
2 (ε = 0.01)

4 Conclusion

In this article, we described a smoothing procedure for the minimal problem for single-
input control-affine systems ẋ = X(x)+ u1Y1(x) in IRn with the control constraint |u1(·)| 6

1, which consists in adding new smooth vector fields Y2, . . . , Ym and a small parameter
ε > 0, so as to come up with the minimal time problem for the system ẋ = X(x) +
uε

1Y1(x)+
∑m

i=2 εu
ε
iYi(x), under the control constraint

∑m
i=1(u

ε
i (·))

2 6 1. Under appropriate
assumptions, the optimal controls of the latter system, depending on ε, are smooth functions
of t, and converge weakly to the optimal control of the initial system; moreover the associated
trajectories converge uniformly. If the optimal control of the initial system is moreover bang-
bang, then the convergence of the regularized control holds almost everywhere; this property
may however fail whenever the bang-bang property does not hold. We provided examples
and counterexamples to illustrate our result.

Finally, note that, in the present article, we focused on the minimal time problem for
single-input control-affine systems. The extension of our procedure to a general optimization
criterion seems reachable, however the extension to more general nonlinear control systems
seems difficult. First, because it may be not obvious to generalize the nice expression (12)
to more general situations. Second, because Lemma 2.2 does not hold a priori for general
control systems, and it is not clear how to derive Lemma 2.3 and the next results. The
regularization procedure is quite natural for control-affine systems but it is not clear how it
should be adapted to more general control systems.
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