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OBSTRUCTED BUNDLES OF RANK TWO ON A QUINTIC

SURFACE

NICOLE MESTRANO AND CARLOS SIMPSON

To the memory of Masaki Maruyama

Abstract. In this note we consider the moduli space of stable bundles of
rank two on a very general quintic surface. We study the obstructed points of
the moduli space via the spectral covering of a twisted endomorphism. This
analysis leads in some examples to a generically non-reduced component of
the moduli space, and a component which is generically smooth of one bigger
than the expected dimension. We obtain a sharp bound asked for by O’Grady
saying when the moduli space is good.

1. Introduction

The moduli space of stable vector bundles on an algebraic surface was introduced
by Maruyama [21] and Gieseker [11]. These moduli spaces played an important role
in Donaldson’s theory as applied to 4-manifolds which are complex surfaces. Many
authors have closely studied the structure of the moduli space for big values of c2
(for a full set of references see [17]), but it remains an interesting and largely open
question to understand the structure for intermediate values of c2.

One of the objectives of this paper is to investigate how to use the following
interpretation of singularities in the moduli space. The space of obstructions to
deforming E is H2(End0(E)) where the superscript End0 denotes the trace-free
endomorphisms. We say that E is obstructed if this space is nonzero. Then the
dimension of the Zariski tangent space to the moduli space is bigger than the
expected dimension. If the moduli space is good, i.e. generically smooth of the
expected dimension near E, it means that E must be a singular point. The moduli
space might on the other hand be smooth but overdetermined, i.e. having dimension
bigger than the expected dimension. And of course it could also be overdetermined
and singular too.

As is well known (see for example [31, §1]), the dual of the space of obstructions
is H0(End0(E)⊗KX) by Serre duality. An element φ in this dual space is a trace-
free morphism φ : E → E ⊗ KX . Such a φ corresponds, by Kuranishi theory, to
an equation of the moduli space locally at E, and we call this a co-obstruction. A
pair (E, φ) consisting of a bundle together with a nonzero co-obstruction, may be
thought of as a KX-valued Hitchin pair on X . These pairs are somewhat different
from those considered in [33] for the surface X : the Higgs bundles corresponding to
representations of π1 are endomorphisms taking values in Ω1

X . Over a curve these
two notions coincide and indeed Hitchin used the notation KX in his original paper
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[15]. Generalizing his notation as written leads to the notion of a Higgs field E →
E ⊗KX which is exactly a co-obstruction, often called a “twisted endomorphism”.

The basic tool in the analysis of Hitchin pairs is the notion of spectral cover [6]
[3]. A twisted endomorphism φ : E → E ⊗KX gives E the structure of a coherent
sheaf on the total space of the vector bundle KX , and the support of the coherent
sheaf is the spectral covering associated to φ. It consists of the set of pairs (x, u)
where x ∈ X and u ∈ KX,x such that u is an eigenvalue of φx.

In our rank two case the spectral cover is particularly simple to describe: it is the
divisor Z ⊂ KX determined by the equation z2 = β where β = det(φ) ∈ H0(K⊗2

X ).
The Hitchin map is (E, φ) 7→ β.

We investigate in a very basic way the possible classification of such spectral
covers, and the implications for the locus of singularities of the moduli space.

Many authors have shown that the moduli spaces of bundles of odd degree on
abelian and K3 surfaces are smooth, going back to [8] and Mukai [25], see the
discussions and references in [34], [35]. O’Grady has observed an important example
of symplectic singularities in the moduli of rank two bundles on a K3 surface [32],
along the locus of reducible bundles. In view of these properties and examples,
for understanding bundles on surfaces of general type it seems like a good idea to
look at surfaces of general type which are as close as possible to K3 surfaces. This
motivates our consideration of the example of a very general quintic surface in P3,
where KX = OX(1).

The main advantage of the quintic surface is that β ∈ H0(OX(2)) is a quadric
on X , and because of its low degree there are not too many possibilities for the
spectral covering.

If β = 0 then the Higgs field is nilpotent and we get a presentation of E as
an extension. Furthermore, there are no nontrivial line bundles between OX and
KX = OX(1) so stability of E yields a particularly easy description of the extension.

If β = α2 for α ∈ H0(OX(1)) then the spectral cover is a union of two copies
of X joined along the curve C defined by α, the intersection of X with a plane.
In this case, E can be presented as an elementary transformation. Again using
the smallness of the situation on the quintic surface, we can see that the space of
co-obstructions contains a full copy of sl2 ∼= C3, in particular it must also contain
a nilpotent element. This argument is the basis of the classification statement
Theorem 5.1.

If β is not a square, it follows from the very general condition on X that it defines
a reduced curve D ⊂ X and Z is irreducible branched along D. In this case, E is
the direct image of a line bundle on the desingularization Z̃ of Z, so the dimension
of the possible space of such obstructed bundles is bounded independently of c2(E):
a rough estimate using Lefschetz theory shows the dimension is ≤ 13 (Corollary
5.4), a bound which could undoubtedly be improved.

After this general discussion, the main case to be treated is that of nilpotent
Higgs field. A more precise classification is obtained in Theorem 6.2, allowing to
estimate the dimensions of the various components in Proposition 6.3. This yields
a statement about the singular locus of the moduli space when c2 is big. We can
identify the biggest irreducible component of the singular locus, and show by a
general position argument that the quadratic term of the Kuranishi map has the
biggest possible rank at a general point of this component, in other words the
singularity is an ordinary double point in the transverse direction.
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On the other hand, we consider the examples of c2(E) = 8, in which case we
find at least one irreducible component which is completely obstructed but which
is smooth of dimension 13 bigger than the expected dimension 12; and construct
another family of obstructed bundles of dimension 12 which we conjecture is a
non-reduced component not in the closure of the previous family.

In the case c2 = 9 these two examples come together in a certain sense, giving
a single irreducible component of the moduli space which is completely obstructed
but of the expected dimension, with the quadratic term of the Kuranishi map giving
an equation of the form x2 = 0 at a general point.

Theorem 6.4 says that if c2(E) ≥ 11 then the moduli space is good. This answers
a question of O’Grady [30] who predicted a sharp bound, and in fact our bound
improves upon his predicted bound by 1. It is likely that for c2 = 10 the moduli
space will also be good.

Our discussion is undoubtedly subsumed in some sense by the general theory of
the structure of moduli spaces of stable bundles on surfaces, of Donaldson [7], Fried-
man [10], Gieseker, Li [13] [19] and others. Many of these works have concentrated
on the range c2 ≫ 0, although Gieseker [12] and O’Grady [30] construct compo-
nents for intermediate values of c2 having more than the expected dimension. We
hope that the relatively explicit considerations here can provide some insight into
the complicated middle range where c2 is neither too big nor too small, continuing
in the direction of [24].

Here are some further remarks and questions.
We obtain some non-reduced components of the moduli space of rank 2 bundles.

This theory should be somewhat related to the theory of generically non-reduced
components of Hilbert schemes of curves as constructed following Mumford’s origi-
nal example by Kleppe [18], Ellia [9], Floystad [14], Martin-Deschamps and Perrin
[20], Azziz [2], Mukai-Nasu [26] and others.

The investigation of quintic surfaces here looks somewhat similar to the exam-
ples discussed in [5]. It would be interesting to understand what happens for a
quintic surface which is no longer very general, i.e. such that the Neron-Severi
group has rank ≥ 2. In a similar spirit, recall that smooth quintic surfaces in P3

are connected by deformation to the “Horikawa surfaces” which form a different
irreducible component of moduli, the two intersecting along a locus of quintic sur-
faces with ordinary double points. It would be interesting to see how much of our
discussion could be done for Horikawa surfaces.

The construction of some irreducible components of the moduli spaceMX(2,−1, d)
raises the question of the existence of Poincaré bundles over open subsets of these
components.

We would like to thank Masa-Hiko Saito and Kota Yoshioka for interesting re-
marks and questions during the first author’s talk at the Workshop on Moduli of
Vector Bundles, University of Kobe, July 2009. They motivated us to look more
closely at the singular locus of the moduli space of stable bundles.

2. Obstructions for vector bundles on a surface

Let X be a smooth projective algebraic surface with ample line bundle OX(1)
and corresponding hyperplane class H := c1(OX(1)) ∈ H2(X,Q). We consider the
moduli space of H-Gieseker-semistable vector bundles on X of rank r, and given
c1 and c2 denoted M = M(r, c1, c2). The open subset of stable points is denoted
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M s(r, c1, c2), and the projective moduli space of torsion-free sheaves is denoted by
M(r, c1, c2). If necessary, the underlying variety X and/or the polarization will be
indicated by subscripts as in MX,H(r, c1, c2).

We will concentrate on the case of rank r = 2 and c1 = OX(−1) but many of
the initial definitions are valid for any rank.

Consider a point E ∈ M s(r, c1, c2). The deformation theory of E is controlled
by the space

Def(E) := H1(End(E)),

while the obstruction theory is controlled by

Obs(E) := H2(End0(E)).

Here End0(E) := ker (tr : End(E) → OX) is the trace-free part of the endomor-
phism bundle of E. The map tr is split by the diagonal embedding so

End(E) = End0(E) ⊕OX .

The trace-free part is self-dual: End0(E)∗ ∼= End0(E) via the pairing

End0(E) ⊗ End0(E)
〈·,·〉
−→ OX ,

with 〈A,B〉 := tr(AB).
Let KX := Ω2

X denote the dualizing sheaf. By Serre duality,

H2(End0(E)) ∼= H0(End0(E) ⊗KX)∗

using End0(E) ∼= End0(E)∗. We obtain

Obs(E) = H0(End0(E) ⊗KX)∗,

so Obs(E) 6= {0} if and only if there exists a nonzero element φ ∈ End0(E) ⊗KX .
Such an element may be interpreted as a Higgs field [15] or “twisted endomorphism”

φ : E → E ⊗KX

with tr(ψ) = 0. Notice that this is a Higgs field twisted by the canonical line bundle
KX rather than by Ω1

X as in [33]. Higgs bundles on higher dimensional varieties
with twisting by a line bundle have been considered by a number of authors.

Lemma 2.1. Suppose E is a vector bundle on a smooth projective surface. Then
the obstruction space Obs(E) is nonzero, if and only if there exists a nonzero Higgs
field φ : E → E ⊗KX of trace zero. �

A pair (E, φ) corresponds to a coherent sheaf denoted F = FE,φ on the total
space of the line bundle KX . We continue denoting this total space by KX with
its projection denoted by p : KX → X . The sheaf F is of pure dimension 2, and
indeed p∗(F) = E so F should be flat over X if E is to be a vector bundle.

The spectral surface is the reduced subscheme Z ⊂ KX which is the support of
F . It can be viewed as the subset of eigenvalues of ψ. Note here that we define Z
as a reduced subscheme, so F may be a coherent sheaf not on Z but only on some
infinitesimal neighborhood thereof.

We would like to classify pairs (E, φ) in the case when E has rank two.
In our case, the Hitchin invariant of the spectral surface is just the determinant

β := det(φ) ∈ H0(X,K⊗2
x ). The subscheme Z is defined by the equation z2 = β.

Lemma 2.2. Suppose β 6= 0. Then F is a rank one torsion-free sheaf on Z, flat
over X. �
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2.1. The obstruction corresponding to φ. Recall that the local deformation
theory of E is governed by the formal Kuranishi map

κ : ̂H1(End(E)) → H2(End0(E)).

Recall that the Kuranishi map is a “formal function” i.e. a power series at the
origin represented by a vector of h2(End0(E)) elements of the complete local ring
of the vector space H1(End(E)) at the origin. This is the reason for the hat in the
notation.

The linear term of κ vanishes, and the quadratic term is a function

κ2 : Sym2H1(End(E)) → H2(End0(E)).

For each “co-obstruction” or linear form φ ∈ H2(End0(E))∗ we get a function
denoted

obs(φ) = φ · κ2 : Sym2H1(End(E)) → C.

By the general theory, we have the formula

(2.1) φ · κ2(η, η
′) = obs(φ; η, η′) =

∫

X

Tr(φ · [η, η′]).

In this formula η, η′ ∈ H1(End(E)) and their commutator is

[η, η′] ∈ H2(End0(E)),

which is then multiplied by φ to get an element of H2(End(E)⊗KX). The trace on
the factor End(E) sends us to H2(KX) and then we apply the duality isomorphism
∫

X
: H2(KX)

∼=
→ C.

The easiest way of interpreting (2.1) is to think of the cohomology classes as being
given by their Dolbeault representatives, and with this formulation the obstruction
can be calculated as

obs(φ; η, η′) =

∫

X

Tr(φ · η · η′ + φ · η′ · η)

where · indicates matrix multiplication in End(E) coupled with wedge product of
Dolbealt (0, q)-forms when necessary. The sign in the commutator is from the sign
relations for differential forms. Using the matrix relation Tr(AB − BA) = 0 and
again the sign conventions, the obstruction element is equal to

obs(φ; η, η′) =

∫

X

Tr(φ · η · η′ − η · φ · η′) =

∫

X

Tr(Ad(φ)(η) · η′).

Here Ad(φ)(η) = φ · η − η · φ. We have

Ad(φ)(η) ∈ H1(End0(E) ⊗KX) ∼= H1(End(E))∗

and the obstruction obs(φ; η, η′) is just the duality pairing between Ad(φ)(η) and
η′.

Proposition 2.3. The rank of the quadratic form on H1(End0(E)) given by the
obstruction obs(φ), is equal to the rank of the linear map

Ad(φ) : H1(End(E)) → H1(End(E) ⊗KX).

Proof. The duality pairing is a perfect pairing so the rank of the quadratic form is
equal to the rank of the linear map. �
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3. The case of nilpotent co-obstruction

In this section we study the case when φ : E → E ⊗KX is a nonzero nilpotent
matrix at the general point of X . In this case, ker(φ) is a saturated subsheaf of
rank 1 in E, thus it is a line bundle which we denote L. The quotient E/L is a
torsion-free sheaf of rank 1 whose double dual is a line bundle which we denote by
L′. Put JP := (L′)∗⊗(E/L). It is the ideal in OX of a zero-dimensional subscheme
which we denote by P . The bundle E fits into an exact sequence

(3.1) 0 → L→ E → JP ⊗ L′ → 0.

This kind of extension goes back to Serre’s construction, and has been used
systematically ever since [8] [30] . . . .

In order to insure the existence of a locally free extension of this form, one
introduces the following condition: if U is a line bundle then say that P is totally
superfluous for sections of U if for any subscheme P ′ ⊂ P with length(P ′) =
length(P )− 1, the conditions imposed by P and P ′ on sections of U are the same,
in other words

ker
(

H0(U) → H0(P,U |P )
)

= ker
(

H0(U) → H0(P ′, U |P ′)
)

.

Lemma 3.1. Given line bundles L and L′ and a zero-dimensional subscheme P
of length d, there exists a rank 2 vector bundle fitting into an extension (3.1),
if and only if P is a local complete intersection totally superfluous for sections of
L′⊗L∗⊗KX. Let c be the number of conditions imposed by P on H0(L′⊗L⊗KX),
then

dimExt1(JP ⊗ L′, L) = d− c.

Proof. Here is a brief account of this well-known fact (which was used implicitly
in [30, (3.29)] for example). A locally free extension exists locally if and only if P
is a local complete intersection. An extension corresponds to a linear form f on
H0((L′ ⊗L⊗KX)|P ) which vanishes on the image of H0(L′ ⊗L⊗KX). It is quite
classical that the condition for this to yield a locally free extension, is that f(I) 6= 0
for any subsheaf I ⊂ OP ⊗L′⊗L⊗KX which can be supposed of rank one. Such a
subsheaf corresponds to the ideal of a subscheme P ′ ⊂ P of colength 1. Saying that
the general form f which vanishes on the image of H0(L′⊗L⊗KX), is nonzero on
I, is equivalent to saying that I is not in the image of H0( ), which in turn says
that P ′ imposes the same number of conditions as P .

The dimension of the Ext group is given by the standard exact sequence. �

Given a vector bundle E sitting in a sequence of the form (3.1), we have det(E) ∼=
L⊗ L′,

E∗ ⊗ L′ ∼= E ⊗ L∗,

End0(E) ⊗ L⊗ L′ ∼= Sym2(E),

and there is an exact sequence

(3.2) 0 → E ⊗ (L′)∗ → End0(E) → J 2
P ⊗ L′ ⊗ L∗ → 0.

Lemma 3.2. Taking the dual of (3.2) gives an exact sequence of the form

0 → L⊗ (L′)∗ → End0(E) → G → 0

where G fits into an exact sequence of the form

0 → G → E∗ ⊗ L′ → Ext2(O2P ,OX) ⊗ L⊗ (L′)∗ → 0,
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and 2P denotes the subscheme defined by J 2
P .

Proof. Taking the dual gives a long exact sequence of the form

. . .→ End0(E) → E∗ ⊗ L′ → Ext1(J 2
P ⊗ L′ ⊗ L∗,O) → 0.

But the long exact sequence for the standard sequence defining O2P gives

Ext1(J 2
P ,OX) ∼= Ext2(O2P ,OX).

�

The nilpotent Higgs field φ factors as

E → JP ⊗ L′ → L⊗KX → E ⊗KX

where the middle map comes from a map of line bundles denoted

ϕ : L′ → L⊗KX .

with transpose ϕt : L∗ → (L′)∗ ⊗KX .

Proposition 3.3. In the situation of an exact sequence (3.1) with G defined as in
Lemma 3.2, the map

Ad(φ) : H1(End0(E)) → H1(End0(E) ⊗KX)

factors as the map fitting into the following diagram:

H0((L′⊗L∗⊗KX)|2P )∗

↓
· · · H1(End0(E)) −→ H1(G) −→ H2(L⊗ (L′)∗) · · ·

↓

H1(E ⊗ L∗)
ϕt

−→ H1(E ⊗ (L′)∗ ⊗KX)
↓ ↓
0 H1(End0(E) ⊗KX)

where the main horizontal and vertical sequences are exact.

Proof. The exact sequences are just the long exact sequences associated to the exact
sequences of Lemma 3.2. The element at the top is explained by

H0(Ext2(O2P ,OX) ⊗ L⊗ (L′)∗) = Ext2(O2P ⊗ L∗ ⊗ L′ ⊗KX ,KX)

∼= H0(O2P ⊗ L∗ ⊗ L′ ⊗KX)∗.

The factorization is obtained by factoring the map Ad(φ) on the level of sheaves,
then applying H1. �

Remark 3.4. The composed map

H0(2P,O2P ⊗ L′ ⊗ L∗ ⊗KX)∗ → H2(L⊗ (L′)∗)

is dual to a map

H0(L′ ⊗ L∗ ⊗KX) → H0(2P,O2P ⊗ L′ ⊗ L∗ ⊗KX),

which is just the evaluation map for sections over the subscheme 2P up to multi-
plying by a unit.
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4. The case of reducible spectral surface

In this section we study the special case when the spectral surface decomposes
into two irreducible components meeting along a smooth curve.

Hypothesis 4.1. Suppose that E is a slope-stable bundle with co-obstruction φ
such that det(φ) = α2 for a nonzero section α ∈ H0(X,KX). Assume that the
curve C ⊂ X defined by α = 0 is reduced.

In this case, Z = Z+ ∪ Z− where Z+ ⊂ KX is the graph of α and Z− is the
graph of −α. Note that Z± ∼= X and Z+ ∩ Z− = C the latter being contained in
the zero-section of KX .

Elementary transformations are a classical method for constructing bundles in-
troduced by Maruyama [22] [23], and recently for example Nakashima constructs
stable vector bundles on CY threefolds using this technique [27]. The following
proposition says that E is obtained by an elementary transformation along C, and
determines the structure of φ.

Proposition 4.2. Assume Hypothesis 4.1. With the previous notations, the re-
striction F|Z+ determines a line bundle denoted L on Z+ ∼= X, and the restriction
F|Z− determines a line bundle L′ on Z− ∼= X. We have an exact sequence

(4.1) 0 → E → L⊕ L′ → i∗R→ 0

where R is a rank one torsion-free sheaf over C and i : C →֒ X denotes the
inclusion. The KX-valued endomorphism φ is the operator on E induced by the

KX-valued endomorphism of L⊕ L′ whose matrix is

(

α 0
0 −α

)

.

Conversely, any pair of line bundles L,L′ and such a surjection L ⊕ L′
։ i∗R

determines a pair (E, φ).

Proof. The sheaf F on the total space of KX corresponding to (E, φ) is torsion-free
and saturated in the sense that it admits no extension equal outside codimension 2.
Take the restriction F|Z+ , divide by torsion, and look at the double dual. This is a
line bundle L and we have a map E → L. Similarly for F|Z− we get a map to a line
bundle E → L′. This gives an injection of sheaves E →֒ L ⊕ L′, an isomorphism
away from C. The quotient R has to be nonzero, indeed E is assumed to be slope-
stable so it is indecomposable. But, the quotient must also be pure of dimension
1, since E is reflexive. Along the smooth locus of C, the quotient has to be of
rank one—if it were of rank 2 then E would be of the form (L ⊕ L′)(−C), again
decomposable. We get the structure result of the proposition, away from the finite
singular set of C. In particular, R is supported scheme-theoretically on C at the
smooth locus, but this then has to hold at the singular points too because R has
pure dimension 1. We get R = i∗(R) for a torsion-free sheaf R of rank 1 on C. The
statement identifying φ holds outside the singular set of C, and then extends. �

In terms of the description of the previous proposition, we have

c1(E) = L+ L′ − C,

c2(E) = c1(L)c1(L
′) + degC(R).

On any surface X which admits a reduced canonical divisor, the above proposition
gives a different construction of obstructed stable bundles E of arbitrarily high c2,
by taking R to have very high degree.
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We next consider the obstruction determined by φ. This discussion is just a start
and is not used elsewhere; it is included here for eventual future reference. In what
follows, we assume that the ramification curve C is smooth.

The first step is to calculate explicitly the deformation space H1(End(E)). From
(4.1) we get maps L(−C) → E and the same for L′, which gives an exact sequence

(4.2) 0 → (L⊕ L′)(−C) → E → S → 0.

Here S is again a line bundle supported on C, and we have two exact sequences,

(4.3) 0 → S → (L ⊕ L′)|C → R → 0

and

(4.4) 0 → R(−C) → E|C → S → 0.

The dual of (4.2) is

(4.5) 0 → E∗ → (L⊕ L′)∗(C) → S∗(C) → 0.

Using the left arrows in (4.1) and (4.2) we get an injection of sheaves; and define
Q to be the quotient, to give altogether an exact sequence

(4.6) 0 → End(E)
u
→ End(L⊕ L′)(C) → Q→ 0.

This gives a long exact sequence of cohomology
(4.7)

. . . H0(End(L⊕L′)(C)) → H0(Q)
δ
→ H1(End(E)) → H1(End(L⊕L′)(C)) → . . . .

The main piece of H1(End(E)) will come from the connecting map δ, so we would
like to understand the structure of Q. The right maps of (4.1) and (4.5) give a map
fitting into an exact sequence defining a sheaf G,

0 → G(−C) → End(L ⊕ L′) → (L⊕ L′)∗ ⊗R ⊕ S∗ ⊗ (L⊕ L′) → S∗ ⊗R → 0.

This leads to an exact sequence

(4.8) 0 → Q|C → (L⊕ L′)∗ ⊗R(C) ⊕ S∗ ⊗ (L ⊕ L′)(C) → S∗ ⊗R(C) → 0.

However, Q is not supported on C, but only on the second infinitesimal neighbor-
hood. This can be seen by looking at the contribution of Q|C to c1(End(E)), one
can see that we are missing a piece of rank one supported on C. There is an exact
sequence

0 → T → Q→ Q|C → 0

where T is the image of the map Q(−C)
m
→ Q. Note that T is a line bundle

supported on C.
On the infinitesimal neighborhood 2C the sheaf W = Ext1(Q,OX) fits as the

kernel in the exact sequence

(4.9) 0 →W → End(L⊕ L′)(C)|2C → Q→ 0.

The above discussion passes to trace-free parts, denoted by a supercript ( )0.
For example W and Q split as

W ∼= W 0 ⊕OC , Q ∼= Q0 ⊕OC(C)

and these are compatible with the splitting of the exact sequence (4.9) into

0 → OC → O2C(C) → OC(C) → 0
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direct sum with

(4.10) 0 →W 0 → End0(L⊕ L′)(C)|2C → Q0 → 0.

Furthermore, we have the exact sequences

(4.11) 0 → End(L⊕ L′)(−C) → End(E) →W → 0

and

(4.12) 0 → End0(L⊕ L′)(−C) → End0(E) →W 0 → 0

Lemma 4.3. We have a perfect pairing

H0(Q0) ⊗H0(Q0 ⊗KX) → C

fitting with isomorphisms

H0(Q0 ⊗KX) ∼= H1(W 0) ∼= H0(Q0)∗,

H0(Q0) ∼= H1(W 0 ⊗KX) ∼= H0(Q0 ⊗KX)∗.

The connecting map for the sequence (4.10) is the map

(4.13) H0(Q0) → H1(W 0)

obtained by the composition of the connecting map for the trace-free version of (4.6)
with the right map of (4.12),

H0(Q0) → H1(End0(E)) → H1(W 0).

If, furthermore we assume that H1(End0(L ⊕ L′)(C)) = 0 and H1(End0(L ⊕
L′)(−C)) = 0 then H1(End0(E)) is the image of (4.13). �

Apply Proposition 2.3 to the the present situation.

Corollary 4.4. Suppose H1(End0(L⊕L′)(C)) = 0 and H1(End0(L⊕L′)(−C)) =
0. Then the rank of the quadratic form corresponding to obs(φ) is the same as the
rank of the composed linear map

H0(Q0)
Ad(φ)
→ H0(Q0 ⊗KX) → H1(W 0 ⊗KX).

Proof. By Lemma 4.3, H1(End0(E)) is the image of the map H0(Q0) → H1(W 0).
Similarly, H1(End0(E)⊗KX) is the image of the map H0(Q0 ⊗KX) → H1(W 0 ⊗
KX). We have a commutative diagram

H0(Q0) → H1(End0(E)) → H1(W 0)
↓ ↓ ↓

H0(Q0 ⊗KX) → H1(End0(E) ⊗KX) → H1(W 0 ⊗KX)

where the vertical maps are given by Ad(φ). These compatibilities can be seen from
the fact that Ad(φ) acts on the exact sequences of the form (4.1), (4.11) . . . and the
conclusion comes from a diagram chase. �

Further work would be needed to obtain a full calculation of Ad(φ).
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5. On a very general quintic surface

From now on we specialize to the case when X ⊂ P3 is a very general quintic
surface. By “very general” we mean smooth with

Pic(X) ∼= Pic(P3) = Z.

This condition holds on the complement of the Noether-Lefschetz locus which is a
countable union of subvarieties. Notice that

H1(OX) = 0 , H2(OX) = C4 , KX = OX(1) ,

and if n ∈ Z then
H1(OX(n)) = 0.

This is seen by looking at the piece of long exact sequence

H1(P3,OP3(n)) → H1(OX(n)) → H2(P3,OP3(n− 5))

and using Hi(P3,OP3(m)) = 0 for i = 1, 2 and all m. Similarly, for m = 0, 1, 2 we
have

H0(OX(m)) = H0(OP3(m)).

Since Pic(X) ∼= Z all choices of hyperplane class give the same notion of stability
and we don’t need to include this choice in the notation. Also, for bundles of degree
c1(E) = −1 the four notions of Gieseker, slope / stability, semistability coincide.

The expected dimension of the moduli spaceM = MX(2,−1, d) of stable bundles
of rank rk(E) = 2, with c1(E) = OX(−1) and c2(X) = d, is

(5.1) dimexp
E (M) = 4d− 20.

5.1. First classification of obstructed bundles. Recall that E is said to be ob-
structed if h2(End0(E)) > 0. This is equivalent to saying that E is either a singular
point of the moduli space, or lies in an irreducible component whose dimension is
strictly greater than the expected dimension (or both).

Theorem 5.1. Suppose X ⊂ P3 is a general quintic surface. Suppose E is a stable
bundle with det(E) ∼= OX(−1), and E is obstructed. Then either:
(i)—there exists an exact sequence

(5.2) 0 → OX(−1) → E → JP → 0

where JP ⊂ OX is the ideal of a zero-dimensional subscheme P ⊂ X; or else
(ii)—there is a section β ∈ H0(OX(2)) which is not a square, defining a double
cover r : Z → X with Z ⊂ KX and r ramified along Zero(β), together with a line

bundle L over a desingularization ǫ : Z̃ → Z such that E ∼= r∗ǫ∗(L)∗∗.

Proof. There is a nonzero twisted endomorphism φ : E → E(1). Let β := det(φ) ∈
H0(OX(2)). If β = 0 then φ is nilpotent at the general point, so we are in case (i)
by the discussion of §3.

Assume from now on β 6= 0.
Let D := Zero(β), which is a divisor in the linearly equivalence class correspond-

ing to OX(2). Since Pic(X) = Z with generator OX(1), either D is irreducible and
reduced, or else D = 2C with C in the linear system of OX(1).

If D is irreducible and reduced, we are in case (ii).
The remaining case is when D = 2C. Then, using the fact that the sections

of OX(1) all come from P3 and that the restriction on quadrics is injective, we
get β = α2 for α a linear form. Notice that C itself has to be irreducible and



12 N. MESTRANO AND C. SIMPSON

reduced since it is indecomposable in the positive cone of the Neron-Severi group,
so the theory of §4 applies. Notice that Hypothesis 4.1 holds because C is reduced.
Proposition 4.2 expresses E as an elementary transformation

0 → E → L⊕ L′ → i∗(R) → 0

with L,L′ line bundles and R a torsion free rank one sheaf on C. Stability shows
that deg(L) > −1/2, and for the inclusion L(−C) which comes from the fact that
i∗(R) is supported on C, it says deg(L) − 1 < −1/2. This gives deg(L) = 0 so
L ∼= OX ; similarly L′ ∼= OX . Our elementary transformation can thus be written

0 → E → OX ⊕OX → i∗(R) → 0.

But since i∗(R) is supported on C we get

OX(−1) ⊕OX(−1) → E.

In particular, for any 2 × 2 matrix m with complex entries we get a map

E → OX ⊕OX
m
→ (OX(−1) ⊕OX(−1))(1) → E(1),

so on trace-free parts this gives a whole

sl2(C) = End0(C2) ⊂ H0(End0(E) ⊗KX).

In other words, the co-obstruction φ is not unique but lies in a space of dimension
at least 3. The image of a nilpotent element of sl2(C) is a new co-obstruction ψ
which is nilpotent. Looking at (E,ψ) we get back to case (i). �

5.2. Case (ii). Let A be the maximum irregularity of a surface Z̃ arising as the
desingularization of a spectral cover Z associated to a non-square β ∈ H0(OX(2)).
Notice that the family of possible double covers r : Z → X arising in Case (ii)
is bounded, i.e. parametrized by a single finite-type constructible set. Hence the
same can be said for the possible desingularizations Z̃, and we get a global bound
q(Z̃) ≤ A. Recall that dimPic0(Z̃) = q(Z̃).

Proposition 5.2. The dimensions of components of the spaces of obstructed bun-
dles falling into case (i) of Theorem 5.1, are bounded by a constant A+ 8 which is
independent of d = c2(E).

Proof. The dimension of the space of β is bounded by 9, and for each choice of β
the dimension of the space of rank one bundles on Z is bounded by A. However,
at a general value of β the spectral cover Z is smooth itself and has irregularity 0,
so the estimate of A + 9 can be reduced to A + 8. This kind of argument in the
style of Ngo’s dimension estimates for the Hitchin fibers in the case of curves [28],
can probably be pushed further. �

Using Lefschetz theory we can give a bound A ≤ 5. Let D ⊂ Z denote the
ramification locus of r i.e. D = Zero(β), and let Q ⊂ P3 be a general plane. For
this discussion, denote by an asterisk ( )∗ the complement of the intersection of the
variety in question with D or its preimage.

The Lefschetz theorem for the quasiprojective variety X∗ = X − D gives a
surjection

π1(X
∗ ∩Q) ։ π1(X

∗).
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Let ZQ denote the preimage in Z of X ∩Q, which is the same as the preimage in

Z̃; thus Z∗
Q = Z∗

Q − r−1(D∩Q). Note that Z̃∗ = Z∗ is an etale covering of X∗ with

group Z/2 so there is a diagram

π1(Z
∗
Q) →֒ π1(X

∗ ∩Q) → Z/2

↓ ↓ ↓ =

π1(Z̃
∗) →֒ π1(X

∗) → Z/2

where the middle vertical arrow is surjective. It follows that the left vertical arrow
is surjective too (this result is a somewhat more advanced statement but which is
still standard in Lefschetz theory). On the other hand the diagram

π1(Z
∗
Q) → π1(ZQ)

↓ ↓

π1(Z̃
∗) → π1(Z̃)

with surjective map on the bottom, shows that the map π1(ZQ) → π1(Z̃) is surjec-
tive. It follows that the restriction map on Picard groups is injective:

(5.3) Pic0(Z̃) →֒ Pic0(ZQ).

However, the line bundles on Z̃ are antipreserved by the involution (which acts, for

example because we can choose an equivariant resolution Z̃ [4]), because Pic0(X) =
0. Thus, the image of the map (5.3) lies in the Prym variety Prym(ZQ/X). This
proves the following bound.

Lemma 5.3. The dimension of Pic0(Z̃) is less than or equal to the dimension of
Prym(ZQ/X) which is 5.

Proof. The curve X ∩ Q is a plane quintic so it has genus g = 6, and its Pryms
have dimension g − 1. �

Corollary 5.4. The dimension of the locus of obstructed bundles of type (ii) is
≤ 13.

�

Question 5.5. What is A?

If A = 0 this would give a better bound on the dimension of the locus of ob-
structed bundles of type (ii). On the other hand, if A > 0 this would indicate the
presence of some interesting examples of irregular surfaces. So, in any case it would
be interesting to determine A. However, the answer would require first understand-
ing the possible singularities of X ∩H for all possible quadrics H ⊂ P3, when X is
the fixed general quintic surface. This goes beyond the scope of the present paper.

5.3. Case (i)—generalities. Suppose P ⊂ X is a zero-dimensional subscheme.
Recall that P is totally superfluous for quadrics in X if it is nonempty, and for any
subscheme P ′ ⊂ P with length(P/P ′) = 1, the map

H0(X,JP ′(2)) → H0(X,JP (2))

is an isomorphism. In other words P and P ′ impose the same conditions on quadrics
on X . Given that

H0(X,OX(2)) ∼= H0(P3,OP3(2)),

it is equivalent to say that P is totally superfluous for quadrics in P3.
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Corollary 5.6. Suppose P is a zero-dimensional subscheme. Then there exists an
exact sequence

(5.4) 0 → OX(−1) → E → JP → 0

with E locally free, if and only if P is a l.c.i. totally superfluous for quadrics in X.
In particular, in case (i) of Theorem 5.1, we can add the condition that P is totally
superfluous for quadrics.

For any locally free extension fitting into (5.4) with P nonempty, the bundle E
is stable and obstructed with c1(E) = OX(−1) and c2(E) = d.

Proof. The first part is just Lemma 3.1. For the last paragraph, the co-obstruction
φ is given by the obvious factorization. The fact that E is always stable comes from
H0(E) = H0(JP ) = 0. �

Apply the discussion at and above Lemma 3.2, with L = OX(−1) and L′ = OX :

(5.5) E∗ ∼= E(1),

giving a symmetry of cohomology dimensions

h0(E(1)) = h0(E∗) = h2(E(1)) = h2(E∗);

End0(E) = Sym2(E)(1); and there are exact sequences

(5.6) 0 → E → End0(E) → J 2
P (1) → 0

and

(5.7) 0 → O(−1) → End0(E) → G → 0.

Here G is as defined in Lemma 3.2 and we have the further exact sequence

(5.8) 0 → G → E(1) → Ext2(O2P (1),OX) → 0.

Corollary 5.7. Then the map Ad(φ) fits into the diagram

H0(O2P (2))∗

↓
· · · H1(End0(E)) −→ H1(G) −→ H0(O(2))∗ · · ·

↓
H1(E(1)) → H1(End0(E) ⊗KX)

↓
0

where the horizontal and vertical sequences are exact.

Proof. Apply Proposition 3.3. �

Lemma 5.8. Let 2P denote the fat subscheme defined by J 2
P . Suppose that there

are no quadrics of P3 passing through 2P . Then the obstruction is unique up to
scalar, i.e. h2(End0(E)) = 1. Furthermore, the map

Ad(φ) : H1(End0(E)) → H1(E(1))

is surjective and the map

H1(E(1)) → H1(End0(E) ⊗KX)

is injective.
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Proof. Calculate with the exact sequence from (5.6)

0 → H0(E(1)) → H0(End0(E)(1)) → H0(J 2
P (2)).

The assumption that there are no quadrics passing through 2P says thatH0(J 2
P (2)) =

0. We have seen above that H0(E(1)) = C so

H2(End0(E)) ∼= H0(End0(E)(1))∗ ∼= C,

i.e. the obstruction is unique.
Consider the diagonal map in the diagram of Corollary 5.7,

H0(O2P (2))∗ → H0(O(2))∗.

By Remark 3.4 this is dual to the restriction of quadrics to 2P , so the hypothesis
implies that the dual map is injective. Hence the diagonal map is surjective. A
diagram chase then shows that the other diagonal map H1(End0(E)) → H1(E(1))
is surjective.

For the last map, use the long exact sequence for (5.6) which may be written

H0(J 2
P (2)) → H1(E(1)) → H1(End0(E)(1)) → H1(J 2

P (2)).

Again the hypothesis says thatH0(J 2
P (2)) = 0 so we get the required injectivity. �

Lemma 5.9. Suppose P is totally superfluous for quadrics, and is not contained in
a plane. Suppose given a vector bundle E in an extension of the form (5.4). Then
h0(E(1)) = 1 so the exact sequence (5.4) and in particular P , are determined by
E. The extension class is determined up to a scalar multiple.

Let d denote the length of P , then h1(E(1)) = d− 8 and in particular d ≥ 8.

Proof. The exact sequence (5.4) together with the exact sequence for JP ⊂ OX

give
0 → H0(OX) → H0(E(1)) → H0(JP (1)),

but the assumption that P is not contained in a plane implies H0(JP (1)) = 0.
Thus C = H0(OX) ∼= H0(E(1)) and the map OX(−1) → E is unique up to scalar
multiple. Given E, fix the unique map and let J denote the quotient E/OX(−1).
Then J ∗∗ is a line bundle, but since det(E) ∼= OX(−1) by hypothesis we get
J ∗∗ = OX so J is the ideal of a zero-dimensional subscheme P . The extension
class is determined up to the scalar automorphisms of OX(−1) and J .

To show that h1(E(1)) = d− 8 consider long exact sequence

0 → H1(E(1)) → H1(JP (1)) → H2(OX) → H2(E(1)) → H2(JP (1)) → 0.

Note that h2(JP (1)) = h2(OX(1)) = 1 and similarly by duality and Proposition 5.9
h2(E(1)) = h0(E∗) = h0(E(1)) = 1. It follows that the last map of the above long
exact sequence is an isomorphism, in particular its kernel is zero so the sequence
becomes

0 → H1(E(1)) → H1(JP (1)) → H2(OX) → 0.

On the other hand, by assumption H0(JP (1)) = 0 and recall that H1(OX(1)) = 0,
so we have the sequence

0 → H0(OX(1)) → H0(P,OP (1)) → H1(JP (1)) → 0.

Using h2(OX) = h0(OX(1)) = 4 and P has d points, this gives

h1(JP (1)) = d− 4, h1(E(1)) = d− 8.

This implies in particular that d ≥ 8. �
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Corollary 5.10. In the situations of both Lemmas 5.8 and 5.9, either

dimE(M) = 4d− 20

and the moduli space M has a hypersurface singularity at E, or else

dimE(M) = 4d− 19

and the moduli space is smooth at E. The quadratic term of the Kuranishi map has
rank h1(E(1)) = d−8; in particular if d > 8 then the moduli space has the expected
dimension.

Proof. If the Kuranishi map vanishes identically then M is smooth of dimension one
more than the expected dimension at E; if not then M has the expected dimension
at E with a hypersurface singularity.

The quadratic term of the Kuranishi map has the same rank as the rank of
the linear map Ad(φ). In the situation of Lemma 5.8, this rank is h1(E(1)). If
h1(E(1)) > 0 then the Kuranishi map has to be nontrivial so dimE(M) is the
expected dimension. �

Lemma 5.11. Suppose given a family of extensions of the form (5.4), where the
family of totally superfluous subschemes P are parametrized by a variety F of di-
mension f ≤ 2d, and the general member P of this family imposes c conditions on
quadrics. Then the total dimension of the family is ≤ f + d − c − 1. If the P are
not in a plane then the dimension is equal to f + d− c− 1.

Proof. For a given P in the family F , the dimension of the space of extensions is
d− c by Lemma 3.1, and taking into account the scalar multiple the full dimension
of the family of bundles E is bounded by f + d− c− 1.

If we are in the situations of Lemma 5.9, then for each obstructed bundle near
E the subscheme P is uniquely determined; and the extension class is determined
up to scalar multiple, so the dimension estimate is an equality. �

Lemma 5.12. In the situation of Corollary 5.6 including the hypothesis that P is
totally superfluous for quadrics, suppose P is contained in, and spans a plane. Then
the space of obstructions has dimension 3, and a general co-obstruction corresponds
to a reducible spectral curve whose determinant β is the square of the linear form
defining the plane containing P .

Proof. Suppose I ⊂ P3 is a plane with P ⊂ X∩I. The long exact sequence of (5.4)
gives

0 → C → H0(E(1)) → H0(JP (1)) → 0

and H0(JP (1)) = C. Thus H0(E(1)) = C2 and we get an injection

OX(−1)⊕2 →֒ E.

Using E(1) ∼= E∗ we get dually h : E →֒ O⊕2
X . From this we can easily construct

a whole 3-dimensional sl(2) of maps E → E(1). The cokernel of h is a sheaf of
pure dimension 1 whose cycle class has to be the same as C, on the other hand
it goes through the points P and by hypothesis P spans I. These imply that the
cokernel of h is a rank one torsion-free sheaf on C, so E is obtained as an elementary
transformation as in §4. The elements of the constructed sl(2) of co-obstructions,
are matrices vanishing along C so they all have det(ψ) = α2 where α is the equation
of C.
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Some further exact sequences show that the space of co-obstructions has dimen-
sion ≤ 3: the exact sequence corresponding to (5.6) tensored with KX = OX(1)
is

0 → H0(E(1)) → H0(End0(E)(1)) → H0(J 2
P (2)) → H1(E(1));

the hypothesis that P spans the plane I implies that 2P is contained in a unique
quadric, namely 2I, so h0(J 2

P (2)) = 1; and the long exact sequence of (5.4) gives

0 → C → H0(E(1)) → H0(JP (1)) → 0

withH0(JP (1)) = C. Putting these together gives a bound of 3 for the dimension of
the space of co-obstructions. Since we have already constructed a three dimensional
space, the dimension must be 3 and a general element is one of our constructed
endomorphisms. This completes the proof. �

6. Examples of obstructed bundles: case (i)

In this section we discuss the construction and further classification of examples
of obstructed bundles on our very general quintic surface X , falling into case (i) of
Theorem 5.1.

To start off, note that by taking a line D ⊂ P3 and looking at 4 points in
X ∩D, we get a totally superfluous subscheme P : vanishing along D imposes only
3 conditions on quadrics, and any three of the points will do the job. This gives a
construction of a stable bundle with c2 = 4. However this case falls outside most of
our other hypotheses, so in the current paper we don’t investigate too much further
the moduli space in the range of very small c2. For the examples, we also avoid the
more delicate case of subschemes P contained in a plane.

6.1. Points on the normal cubic curve. One way to construct subschemes P
which are totally superfluous for quadrics, is by taking subcollections of points in
X ∩ N where N ⊂ P3 is a curve. If N is a rational curve and d > h0(ON (2))
then any collection of d points on N is totally superfluous for quadrics, indeed any
d− 1 of the points already force a quadric to vanish on N , because any collection
of points satisfies the maximal rank property for line bundles on N ∼= P1.

Some possible choices for N would be a line as above, or two skew lines, or three
lines meeting in a rational stick-figure. These basic examples suggest looking more
generally at the rational normal cubic curve

N = {[1 : t : t2 : t3]} ⊂ P3

which is embedded by the full linear system |OP1(3)|. The restriction of a quadric
to N is a section of ON (6), so points on N can impose a maximum of

h0(N,ON (6)) = 7

conditions on quadrics. As soon as there are d ≥ 8 points, the resulting subscheme
is totally superfluous.

The choice of N ⊂ P3 has f = 12 parameters, as can be seen in the following
way. The group of automorphisms of P3 fixing a given N is PSL(2) ⊂ PSL(4) with
the embedding given by identifying C4 with the symmetric cube of the standard
representation of SL(2):

C4 = Sym3(C2), SL(C2) → SL(C4).
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Any other rational normal cubic is a translate of N , since they have the invariant
characterization as being given by complete linear systems of degree 3 on P1. The
space of translates of N is PSL(4)/PSL(2) which has dimension 15 − 3 = 12.

The number of conditions imposed by a subscheme P is equal to 7, so by Lemma
5.11, the dimension of the space of obstructed bundles is d+ 4.

In the first case d = 8, we get a 12-dimensional family, indeed there is a unique
extension for each P . In this case by (5.1) the expected dimension is also 12.

For the bundles in this family, the dimension of the space of obstructions is 1,
indeed whenever P forces a quadric form to vanish on a curve in P3 then quadrics
vanishing on the double 2P of P in X , must in fact vanish on the double of P in
P3 because they also vanish in transverse directions to X . It now suffices to have
4 points spanning P3 in order to insure that there are no quadrics passing through
2P . Then apply Lemma 5.8.

Hence, the dimension of M(2,−1, 8) at a general E in our family, is either 12 or
13; but in any case the Zariski tangent space has dimension 13. If the dimension is
12 this would imply that the component is generically non-reduced.

Conjecture 6.1. The dimension of M(2,−1, 8) at a general E in our family is
12, so the family obtained from points on rational normal cubics is a generically
non-reduced component of M(2,−1, 8).

We will give a heuristic discussion assuming that we know a better bound of
≤ 12 in Corollary 5.4 (a finer analysis should be able to do that). Before doing
that, we construct a 13-dimensional family.

6.2. Points on normal elliptic curves. Suppose Y is a smooth elliptic curve,
with a divisor of degree 4 denoted OY (1). Notice that no basepoint is chosen on Y ,
and all divisors of a fixed nonzero degree are related by translation automorphisms
of Y , so the choice of (Y,OY (1)) corresponds to a single parameter (the j-invariant
of the elliptic curve). NowH0(OY (1)) ∼= C4, and the choice of such an identification
up to scalars is a 15-dimensional space. Any such choice gives an embedding of Y
as a normal elliptic curve of degree 4 in P3. There is no connected subgroup of
PSL(4) fixing Y , so the dimension of the family of all smooth normal elliptic
curves of degree 4, is 16. Now, choose a collection P ′ of 7 points among the 20 in
X ∩ Y . This is a discrete choice out of C7

20 possibilities. There is a unique nonzero
section of OY (2) vanishing on these points, and this section has an additional zero
denoted q = q(Y, P ′) ∈ Y . Let F be the family of all choices (Y, P ′) such that
q(Y, P ′) ∈ X also. This is a codimension 1 condition (and nontrivial, since X is
general), so F has dimension 15. We think of F as the family of (Y, P ) such that
P ⊂ X ∩ Y has 8 points and such that OY (P ) ∼= OY (2).

The projection from F to the Hilbert scheme of subschemes P ⊂ X , has as fiber
the collection of all degree four elliptic curves Y ′ passing through P . Any such
P imposes 7 conditions on quadrics of P3, and any of the 8 points is superfluous.
There is a 3-dimensional space of quadrics passing through P .

We claim that for any elliptic curve Y ′ of degree 4 passing through P ′, two of
the quadrics will vanish on Y ′. Indeed, a ninth point on Y ′ imposes an additional
condition, so there is a two dimensional space of quadrics passing also through the
ninth point, but a degree consideration shows that these must contain Y ′. We
conclude that any point (Y ′, P ) in F corresponds to a choice of two dimensional
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subspace of the C3 of quadrics passing through P . In particular, the fiber of (Y ′, P )
lying over P has dimension 2, so the family of subschemes P has dimension 13.

General subschemes P in this family satisfy the condition of Lemma 5.8, so the
space of obstructions is one-dimensional and the moduli space has dimension ≤ 13;
thus our construction gives an irreducible component of M(2,−1, 8) of dimension
13. At a general point (or in fact, any point at which the obstruction space is
unidimensional) the Kuranishi map vanishes entirely, that is to say all higher or-
der obstructions vanish and the moduli space is smooth but not of the expected
dimension.

6.3. Disjointness of the two components. We now give an heuristic argument
as to why the 12-dimensional locus of obstructed bundles obtained using the rational
normal cubics, shouldn’t be in the closure of the 13-dimensional family constructed
using elliptic curves. This would prove Conjecture 6.1 modulo a better bound of
≤ 12 for the dimension of the type (ii) singular locus. In this case we would have
at least two irreducible components of M(2,−1, 8), one nonreduced of the expected
dimension 12 and the other smooth of dimension 13.

Suppose N is a rational normal cubic, and P0 is a subscheme of 8 points, and
E0 is a bundle obtained as an extension as usual.

If the dimension of the moduli space at E0 is 13, then since this is bigger than
the expected dimension all bundles near E0 in M(2,−1, 8) must be obstructed. By
semicontinuity of the dimension of the obstruction space, they all have obstruction
space of dimension 1. At a general point near P0, we are either in case (i) or
case (ii) of Theorem 5.1. Assuming that the dimension of the space of obstructed
bundles in case (ii) is ≤ 12, it implies that the general nearby point must be in
case (i). In particular, the nearby bundle corresponds to an extension of the form
(5.4) for a subscheme Pt of length 8. Since Pt must still be totally superfluous, it
has to impose 7 conditions on quadrics, and the 3-dimensional space of quadrics
vanishing on Pt is a deformation of the 3-dimensional space of those vanishing on
P0. We can choose a 2 dimensional subspace whose intersection is a curve of the
form N ∪ D where D is a line going through two points of N . By modifying the
choice of 2-dimensional subspace we may assume that D doesn’t meet P0.

Now Y0 := N ∪D can be viewed as a degenerate elliptic curve, and when the two
quartics are generalized, it smooths out to a family of elliptic curves Yt as in §6.2.
Given 8 points in X ∩N , is it possible that we get a smoothing Yt of Y0 = N ∪D
such that the collection of 8 points P0 ⊂ N deforms out to a subscheme Pt of 8 of
the required kind on Y ?

Following one of the points as an origin, we can consider N −N ∩D as a Neron-
type group scheme limit of the family of elliptic curves Y . The divisors Pt are
supposed to be linearly equivalent to 2 times a linear section; but a linear section
has a point which goes to the component D ⊂ Y0 in the limit, so it shouldn’t be
possible for a deformation Pt of a divisor O0 in the finite part of our group scheme,
to remain linearly equivalent to twice a linear section.

Assuming the above argument, we obtain a nonreduced component. However,
the quadratic term of the obstruction map vanishes, becauseAd(φ) : H1(End0(E)) →
H1(End0(E)⊗KX) factors through H1(E(1)) which has dimension d− 8 = 0. So,
the first nonzero term of the Kuranishi map should have degree at least 3.
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6.4. Nine points on an elliptic curve. As we saw above, the family of elliptic
curves of degree 4 in P3 is 16 dimensional. Denote by F the family of (Y, P ) where
Y is such an elliptic curve and P ⊂ X ∩Y is a choice of 9 out of the 20 intersection
points. The choice of P is discrete so F has 16 dimensions. The space of quadrics
on Y has dimension 8, so P imposes 8 conditions, and if Y is in general position
(indeed, if it is not in the hypersurface considered previously) then any 8 points will
also impose 8 conditions so P is totally superfluous. A general choice will satisfy
this general position property because X was assumed general to start with. The
number of extra points is 1 so the extension class is unique up to scalars. We obtain
in this way a 16 dimensional family of obstructed bundles; at a general point the
dimension of the space of obstructions is 1.

By Corollary 5.4, the dimension of the space of obstructed bundles of type (ii) is
≤ 13. We can again argue that the dimension of M(2,−1, 9) at a general member
(E0, Y0, P0) of the family, is 16. All nearby bundles Et would be obstructed, with
one-dimensional obstruction space, so coming from subschemes Pt; however, since
Pt must also be totally superfluous, it can still impose only 8 conditions on quadrics.
We get a 2-dimensional family Vt of quadrics passing through Pt, but this must be
a smooth deformation of the 2-dimensional family of quadrics V0 going through P0,
i.e. the equations of Y0. Note that Y0 is a complete intersection of any two elements
forming a basis of V0, so the intersection of two basis elements of Vt is again an
elliptic curve of degree 4, Yt and we have Pt ⊂ Yt. Thus, any deformation must
remain inside our given family, so we have constructed a 16-dimensional component
of M(2,−1, 9). The points of this component are generically obstructed, so we get
a non-reduced component.

The quadratic term of the obstruction map is nonzero: by Corollary 5.10, Ad(φ)
has rank d− 8 = 1. Therefore the quadratic term of the Kuranishi map is nonzero
at a general point. Hence, at a general point of this component the moduli space
is given by a single equation x2 = 0.

The special cases of 9 points on a rational normal cubic, or 9 points arrayed on
2 lines (in groups of 4 and 5) or 3 meeting lines (in groups of 2 or 3) are limits of
the general family we constructed here. Indeed, the elliptic curves can degenerate,
and since our 9 points are general on Y , the points can go into the various different
components of the degeneration in various different ways. The argument given in
the previous subsection used a linear equivalence condition on the divisors to argue
that the points couldn’t all specialize to N , but for a general collection of points
that argument no longer applies.

It would be interesting to be able to find another component which is generically
smooth of the expected dimension.

6.5. Classification for case (i). Motivated by the above examples, we state a
finer classification result for the obstructed bundles of type (i).

Theorem 6.2. Suppose X ⊂ P3 is a very general quintic surface. Suppose E is an
obstructed vector bundle on X of type (i) from Theorem 5.1 fitting into an extension
(5.2) with a subscheme P of length d, totally superfluous for quadrics. Then either:
(a)—P is supported on X ∩ I for I ⊂ P3 a plane, or else (a’) on X ∪ 2I where
2I denotes the plane doubled, or else (a”) on X ∩ (I ∪ D) where D is a line not
contained in I;
(b)—d ≤ 20 and P imposes ≤ 8 conditions on quadrics, it is supported on a zero-
dimensional intersection X ∩ Y for Y ⊂ P3 a possibly degenerate genus one degree
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four curve which is the complete intersection of two set-theoretically transverse
quadrics;
(c)—d ≥ 10 and P is supported on Z = X ∩ H where H is a reduced quadric
surface, and H is unique i.e. P imposes 9 conditions on quadrics; or
(d)—d ≥ 11 and P is general i.e. it imposes all 10 conditions on quadrics.

Proof. Let c denote the number of conditions imposed on quadrics, and V ∼= C10−c

the space of quadrics vanishing on P . If c = 10 then d ≥ 11 by the totally superflu-
ous condition and we are in case (d), which was considered for example by O’Grady
[30, (3.29)].

If c = 9 then d ≥ 10 and dim(V ) = 1 and the unique element of V up to scalars,
determines a unique quadric H such that P ⊂ X ∩H . This gives (c) if the quadric
is reduced, or (a’) if the quadric is of the form 2I for a plane I.

Suppose c ≤ 8, then dim(V ) ≥ 2 and we can choose two linearly independent
elements. These correspond to quartics H1 and H2. Suppose first of all that
Y = H1 ∩H2 has dimension 1. Then it has degree 4 and is a possibly degenerate
version of an elliptic curve; and P ⊂ Y ∩X .

The fact that X is general implies that Y is not contained in X and indeed meets
X in a finite subscheme. This subscheme has length 20, so the length of P is ≤ 20.
This gives (b).

Suppose in the previous situation, on the other hand, that H1 and H2 contain a
common component of dimension 2 in P3, which must be a plane I. We can write
Hi = I ∪ Ui with Ui also being distinct planes; then P ⊂ H1 ∩H2 = I ∪D where
D = U1 ∩ U2 is a line. This gives (a”). �

Proposition 6.3. Suppose d ≥ 6. Letting e denote the dimension of the space
of obstructed bundles of given type at E, we have the following estimates in the
different cases of the previous theorem:
(a) e ≤ 2d− 1;
(b) e ≤ d+ 12;
(c) e = 2d− 1;
(d) e = 3d− 11.

Proof. Let f be the dimension of the space of subschemes P (i.e. of some irreducible
component of the space of totally superfluous subschemes); let c be the number of
conditions imposed by P on quadrics. Recall from Lemma 5.11 that e ≤ f+d−c−1.

In all cases (a) the number of conditions is at least c ≥ 3, indeed a single point
cannot be totally superfluous so d ≥ 2, but any two points even infinitesimally close
impose at least 2 conditions so in turn d ≥ 3, but again any three points impose at
least 3 conditions. In cases (a) and (a’) we have f ≤ 3+ d which gives the estimate
e ≤ 2d − 1. If we are in case (a”) but not in any other, then all quadrics passing
through P must also pass through I∪D, in particular there are at least 2 additional
points of P on D − (D ∩ I). This also implies that c = 8. The dimension of the
family of possible I ∪D is 7, and for each one the points on X ∩D are determined
up to a discrete choice; whereas the dimension of the family of at most d− 2 points
on I ∩ P is ≤ d− 2. This gives f ≤ d+ 5, and e = f + d− 9 ≤ 2d− 4.

In case (b), the family of choices of elliptic curve has dimension ≤ 16. The
choice of P is discrete once the elliptic curve is fixed (except in some very degnerate
configurations but which also don’t contribute more than 16 to the dimension). So
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f ≤ 16. The number of conditions imposed is at least 3 (we think probably ≥ 6 in
fact), so we get e ≤ d+ 12 and hopefully even e ≤ d+ 9.

In case (c) note that the family of such P has dimension d + 9 consisting of all
pairs (H,P ) with H arbitrary and P a general divisor of degree d on Z. For each
P imposing c = 9 conditions, the dimension of the space of extensions up to scalar
is d− 10, so the dimension of this component of the obstructed locus is 2d− 1.

In case (d) the family of choices of P has dimension 2d and for each choice, the
dimension of the space of extensions up to scalars is d− 11. The dimension of this
component of the space of obstructed bundles is 3d− 11. �

Theorem 6.4. If d ≥ 11 then all irreducible components of MX(2,−1, d) are good,
i.e. generically smooth of the expected dimension.

If d ≥ 12 then the 3d − 11-dimensional component Σ of the locus of obstructed
bundles consisting of bundles of type (d) is nonempty, and is the biggest irreducible
component of the singular locus of the moduli space. The singularities of M along a
general point of Σ are ordinary quadratic double points in the transverse direction.

Proof. Use the dimension estimates of Proposition 6.3, and the estimate of Corol-
lary 5.4 for the locus of obstructed bundles of type (ii). Together these say that
the dimension of the locus of obstructed bundles is bounded by

max(3d− 11, 2d− 1, d+ 12, 13).

If d ≥ 11 then

max(3d− 11, 2d− 1, d+ 12, 13) < 4d− 20.

By the standard argument this shows that the moduli space is good.
If d ≥ 12 then

max(2d− 1, d+ 12, 13) < 3d− 11

so the dimension of the other components is strictly smaller than the dimension of
Σ. This shows that Σ is the unique irreducible component of largest dimension.
Notice that at points where the dimension of the space of extensions might jump,
we are actually in one of the other cases (a)–(c) so the dimension is smaller.

Recall now the description of the quadratic term in the obstruction map at a
general point of Σ where there is a single obstruction φ. The quadratic term is a
symmetric bilinear form on H1(End0(E)) whose rank is equal to the rank of the
linear map Ad(φ) which factors as

H1(End0(E)) → H1(E(1)) → H1(End0(E) ⊗KX).

Since all quadrics passing through 2P must vanish, Corollary 5.10, Ad(φ) and the
quadratic term of the Kuranishi map have rank d− 8.

The Zariski tangent space at E has dimension equal to the expected dimension
plus the number of obstructions, i.e. 4d− 19. The component of Σ has dimension
3d − 11, so the transverse direction in the Zariski tangent space has dimension
d − 8; it follows that the singularity is an ordinary double point in the transverse
direction, noting that the quadratic form has to vanish in the directions along Σ.
In other words, the equations for M are locally of the form

x2
1 + . . .+ x2

d−8 = 0

in terms of a local coordinate system x1, . . . , x4d−19 such that x1, . . . , xd−8 are the
coordinate functions defining Σ. �
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Remark 6.5. If we can get the better condition e ≤ d+ 9 in case (b) above, then
we could improve the conditions of the theorem to d ≥ 10 for goodness and d ≥ 11
for Σ being the biggest piece of the singular locus. The example for d = 9 shows
that d = 10 would be sharp.

The result of Theorem 6.4 improves upon the sharp bound asked for by O’Grady
in his Question, [31, p. 112]:
—“is M(ξ) good if ∆ξ > rk(ξ)(pg + 1)?”
For ξ = (2,−1, d) we have rk(ξ) = 2, ∆ξ = d− 5

4 and pg = 4 for our quintic surfaces

so the sharp bound asked for by O’Grady would say d > 11 1
4 i.e. d ≥ 12. The result

of Theorem 6.4 improves this by 1. Remark 6.5 would improve it by 2. It is clear
from our discussion that the phase transition occurs at c2(E) = rk(ξ)(pg +1) = 10.
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