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Abstract

Carbon fluxes between croplands and atmosphere are highly conditioned by farmer practices

that involved intense atmospheric CO2 uptake during crop growing season compared to other

terrestrial ecosystems. Modelling and measuring land-atmosphere carbon exchanges from arable

lands are important tasks to predict the influence of vegetation dynamics on climate change and

its retroactive effects on crop productivity. We tested theagro-ecosystem model CERES-EGC

against gap-filled daily net CO2 exchanges over crop rotations monitored in three arable sites

in Europe. The model parameters were estimated using Bayesian calibration and the model

prediction accuracy was assessed with two supplementary independent data sets. As a result,

the calibrated model allows us to compute the net ecosystem production (NEP) and net biome

production (NBP) for entire crop rotations. The Bayesian calibration method results in an im-

provement of goodness of fit compared to initial parameter-based simulations. The calibrated

model was accurate to estimate the NEP from daily time scale to aggregated NEP for entire crop

rotation. The carbon returns from application of organic manure and the carbon uptake from

catch crops and crop volunteers generated an important C sink effect on the NBP. Adding the ni-

trous oxide and methane fluxes from soils to the CO2balance will allow us to compute the global

warming potential of agro-ecosystems.

Keywords

Carbon dioxide; Agro-ecosystem model; CERES-EGC; Bayesian calibration; Independent vali-

dation; Greenhouse gases; Carbon balance; Net Biome Production

1



1 Introduction

Agriculture contributes about 10-12% of the global anthropogenic emissions of greenhouse gases

(GHGs), a share expected to rise due to an increase in land useand management intensity of agri-

culture worldwide (Smith et al., 2007). The direct GHG emissions of agro-ecosystems comprise

nitrous oxide (2.8 Gt CO2-eq yr−1), methane (3.3 Gt CO2-eq yr−1), their exchanges of CO2

being considered approximately balanced with a net emission of 0.04 Gt CO2-eq yr−1 to the

atmosphere (Smith et al., 2007). The net fixation of CO2by crops and soil respiration are the

two main processes by which adapted management practices may increase the potential of C

sequestration in soils (Johnson et al., 2007). The balance of these two terms corresponds to the

net ecosystem production (NEP) of carbon, which is a measureof the C source or sink strength

of ecosystems respective to the atmospheric compartment.

Experimental monitoring of net ecosystem exchanges (NEE) have been increasingly carried out

using eddy-covariance (EC) techniques, and for all types ofmanaged ecosystems: grasslands

(Ammann et al., 2007; Veenendaal et al., 2007), forests (Pilegaard et al., 2001; Kurbatova et al.,

2008), and croplands (Moureaux et al., 2006; Anthoni et al.,2004). Their values varied across

ecosystem types but also within each class due to pedoclimatic differences and management

practices. In Russia, Kurbatova et al. (2008) reported annual net ecosystem production (NEP=-

NEE) of -2000 kg C ha−1 yr−1 (denoting a C source) and 1440 kg C ha−1 yr−1 (C sink) for a

wet and dry spruce forest, respectively, during the same time period. In the Netherlands, the

NEP of two grasslands on peat soils were measured at 57 kg C ha−1 yr−1 when they were man-

aged extensively, and at -1339 kg C ha−1 yr−1 for an intensive management (Veenendaal et al.,

2007). Soussana et al. (2007) reported an averaged NEP for nine grassland sites in Europe of

2400±700 kg C ha−1 yr−1, correspond to strong C sinks. In Nebraska, Verma et al. (2005)

measured NEP for irrigated and rainfed maize crops which were 3800 and 5200 kg C ha−1 yr−1,
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respectively. Croplands are usually characterized by episodes of high C uptake during the crops

growing season, directly related to farmers’ management practices. A large part of the fixed C

is removed from the field after harvest, and the residues are returned to the soil and processed

by soil microbial biomass. Accounting the absolute carbon balance of croplands requires to take

into consideration the export and import of organic C withinthe agricultural field. This balance,

called the net biome production (NBP), presents large rangeof variations between crop species,

management intensity and temporal variations at interannual scale. For example, Grant et al.

(2007) reported that a maize-soybean rotation in Nebraska (USA) was a net C source because of

the failure of positive maize NBP to offset negative soybeanNBP in the next year. Anthoni et al.

(2004) estimated the effect of manure application on NBP, and pointed out that manure largely

offsets the C loss in the year of application. They also noticed that C input in the previous years

significantly contributed to the next year C exchanges. Turner et al. (2007) mentioned the strong

influence of climate on the interannual variations of the C budget over a large domain (Oregon

state, USA). Accordingly, it appears that croplands may be sources or sinks of C and that entire

crop rotations should be considered to compute the C balance.

Because the C balance of croplands is heavily manipulated byfarmers, and regulated by environ-

mental conditions, biophysical models that simulate the turnover of C in agro-ecosystems appear

a promising approach to estimate them (Huang et al., 2009). Grant et al. (2007) considered

that process-based ecosystem models are the best method to predict net ecosystem production

for known or hypothesized management practices or climate and where NEP measurements are

incomplete or non available. Complexity, provenance and applications explained the main dif-

ferences between the modelling approaches of C exchanges from crops. Carbon models were

developed either from agronomic sciences (Agro-C, Huang et al. (2009)), biogeochemical sci-

ences (Ecosys, Grant et al. (2007);DNDC, Zhang et al. (2002)), or for land surface models

for use in larger-scale atmospheric models (ORCHIDEE-STICS, Gervois et al. (2008);ChinaA-

3



grosys, Wang et al. (2007)). Eddy-covariance measurements have widely been used for develop-

ment and testing of the latter category of models, generallyknown as soil-vegetation-atmosphere

transfer (SVAT) models, which couple C to energy and water balances on an hourly (or less) time

step. There is a wide body of work on forests (Klemedtsson et al., 2007; Svensson et al., 2008;

Kurbatova et al., 2008; Dufrêne et al., 2005) or cropland (Wang et al., 2007; de Noblet-Ducoudré

et al., 2004), but limited to maximum one year time span.

Crop models integrate longer timeframes (growing season orcrop rotation), and may include

more regulators (eg, N cycling) and drivers (crop management). They have been widely used

to simulate the growth and development of arable crops, and tested against field data such as

crop dry matter or leaf area index (Zhang et al., 2002), but have rarely been compared to data

of daily net C exchanges. Adiku et al. (2006) were surprised that such measurements had not

been amply used before their study for the development and validation of crop gas exchange and

growth models. They developed a model for simulating the netcarbon exchanges of spring barley

and compared its predictions with observations of gross primary production over one cropping

season. Since their pioneering study, EC measurements are actively used for SVAT model devel-

opment and validation but their use is still limited for cropmodel development.

In a large number of crop models, crop mass accumulation is estimated with the relationship

between plant dry matter and interception of solar radiation. Daily biomass production is usually

calculated as the product of the daily cumulative radiationintercepted with the radiation use ef-

ficiency (RUE, g DM MJ−1). Radiation use efficiency is determined by measuring crop growth

commonly based on measurements of above-ground biomass without estimating root compart-

ment (Sinclair and Muchow, 1999). Gabrielle et al. (2002) noticed that low C mineralization

fluxes in soil simulated by soil-crop models may be attributed to a strong under-estimation of the

turnover of below-ground plant biomass. The authors advised that much more dry matter should

be partitioned to the roots and that RUE should be accordingly increased. Here we assume that
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calibration of RUE parameters of crop growth sub-models against net C exchanges would allow

us to take into account the whole plant C fixation integratingthe root growth and rhizodeposi-

tion.

Our general objective was to test the capacity of the soil-crop model CERES-EGC to predict

daily NEP over crop rotations, using experimental data fromarable sites in Europe (part of the

CarboEurope measurement network). We first calibrated the model parameters against field data

using Bayesian techniques, and subsequently assessed the model prediction error using two sup-

plementary independent data sets. Finally, we calculated the carbon balances of the crop rotations

involved in the various field sites.

2 Material and Methods

We used four different data sets from intensively monitoredcropping systems to test the ability

of the biophysical CERES-EGC model to simulate CO2 exchanges at the field scale. The ex-

perimental sites are located in Grignon (Fr.), Auradé (Fr.) and Gebesee (Germ.), and involved

different pedoclimatic conditions, crop types and management. At the three sites, net carbon

fluxes were measured using the eddy covariance technique following the methodology of the

CarboEurope integrated project. The model was parameterized using a Bayesian calibration

method based on the Metropolis-Hastings algorithm againsttwo data sets of daily NEP mea-

surements collected over crop rotations. We also tested theprediction accuracy of calibrated

model with two other independent data sets and finally, we applied the model to compute carbon

balances for crop rotations.
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2.1 The CERES-EGC model

2.1.1 A process-based agro-ecosystem model

CERES-EGC was adapted from the CERES suite of soil-crop models (Jones and Kiniry, 1986),

with a focus on the simulation of environmental outputs suchas nitrate leaching, emissions of

N2O and nitrogen oxides (Gabrielle et al., 2006). CERES-EGC runs on a daily time step, and

requires daily rain, mean air temperature and Penman potential evapo-transpiration as forcing

variables. The CERES models are available for a large numberof crop species, which share the

same soil components (Jones and Kiniry, 1986).

CERES-EGC comprises sub-models for the major processes governing the cycles of water, car-

bon and nitrogen in soil-crop systems. A physical sub-modelsimulates the transfer of heat, water

and nitrate down the soil profile, as well as soil evaporation, plant water uptake and transpiration

in relation to climatic demand. Water infiltrates down the soil profile following a tipping-bucket

approach, and may be redistributed upwards after evapo-transpiration has dried some soil layers.

In both of these equations, the generalised Darcy’s law has subsequently been introduced in order

to better simulate water dynamics in fine-textured soils (Gabrielle et al., 1995).

A biological sub-model simulates the growth and phenology of the crops. Crop net photosynthe-

sis is a linear function of intercepted radiation accordingto the Monteith approach, with inter-

ception depending on leaf area index based on Beer’s law of diffusion in turbid media. Radiation

use efficiency (RUE) is defined for each crop as the dry biomassproduced per unit of radiation

intercepted by the crop. Photosynthates are partitioned ona daily basis to currently growing

organs (roots, leaves, stems, fruits) according to crop development stage. The latter is driven by

the accumulation of growing degree days, as well as cold temperature and day-length for crops

sensitive to vernalisation and photoperiod. Lastly, crop Nuptake is computed through a sup-

ply/demand scheme, with soil supply depending on soil nitrate and ammonium concentrations

and root length density.
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A micro-biological sub-model simulates the turnover of organic matter in the plough layer. De-

composition, mineralisation and N-immobilisation are modelled with three pools of organic mat-

ter (OM): the labil OM, the microbial biomass and the humads.Kinetic rate constants define the

C and N flows between the different pools. Direct field emissions of CO2, N2O, NO and NH3

into the atmosphere are simulated with different trace gas modules.

2.1.2 Modelling of net carbon exchange

Carbon dioxide exchanges between soil-plant system and theatmosphere are modelled via the net

photosynthesis and soil organic carbon (SOC) mineralization processes. Net primary production

(NPP) is simulated by the crop growth modules of the different crop species (wheat, maize,

barley, rapeseed and sunflower), while soil heterotrophic respiration (Rs) is deduced from the

SOC mineralization rates calculated by the microbiological sub-model such as represented in

Fig. 1. The net ecosystem production (NEP), which is calculated as NPP minus Rs, may be

computed on a daily basis and directly tested against the netecosystem exchanges measured by

eddy covariance. The confrontation between the daily ratesof simulated and measured NEP

provides a good opportunity to calibrate the parameters related to CO2 flux modelling and to

test the simulation of C dynamics by the ecosystem model. In all sites, a complete rotation was

ran before the measurement period to stabilize the soil C andN pools and dampen the effects of

initial conditions.

The net biome production was calculated by aggregating daily NEP estimated by simulation or

observation over cropping cycles, plus organic manure imports, minus C exported by harvested

biomass.

2.2 Field sites

Net ecosystem exchange measurements were carried out with eddy covariance technique at three

experimental sites located in Europe: Grignon (northern France, 48.9 N, 1.95 E), Auradé (south-
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ern France, 43.5 N, 1.1 E) and Gebesee (Germany, 51.1 N, 10.9 E). The site characteristics and

crop rotations are detailed in Table 2.

The Grignon site is located about 40 km W of Paris, France. Thesoil was a silt loam with 18.9%

clay and 71.3% silt in the topsoil and in the top 15 cm, organiccarbon content was 20 g kg−1,

the pH (water) was 7.6 and the bulk density 1.3 g cm−3. In Grignon, two field-sites experiments

(NitroEurope, NEU-Grignon andBioPollAtm, BPA-Grignon) were conducted on adjacent plots

with the same soil characteristics. The crop rotation of theNEU-Grignon experiment included

maize, winter wheat, winter barley and mustard which was planted to serve as a catch crop to re-

duce nitrate leaching during winter. Dairy cow slurry was applied between the harvest of barley

and the planting of mustard on 31 August 2004, and before the maize sowing on 16 April 2008.

For the BPA-Grignon experiment, NEE measurements were carried during the maize growing

season in 2002.

Auradé is located about 30 km W of Toulouse, France. The soilwas a clay loam with 30.2%

clay and 48.4% silt in the top 15 cm, organic carbon was 10 g kg−1, the pH (water) was 6.9 and

the bulk density 1.4 g cm−3. The Auradé site involved a winter wheat-sunflower-winterwheat-

rapeseed rotation since at least 2000.

The Gebesee experimental site is located about 20 km NW of Erfurt in Germany. The soil was

a Chernozerm (silty clay loam) with 35.8% clay and 60.3% siltin the top 20 cm, organic carbon

was 23 g kg−1, the pH (water) was 6.7 and the bulk density 1.3 g cm−3. The crop sequence from

2003 to 2007 was rapeseed-winter barley-sugar beet-winterwheat. Two applications of organic

fertilizers were carried out in 2007, one application of cattle slurry (18 m3 ha−1) on the wheat

crop in 11 Apr. and 35 t ha−1 of farmyard manure in 4 Sept.
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2.3 CO2 fluxes and biomass measurements

In all sites, the measurements of CO2 fluxes at the field scale were carried out following the

methodology the CarboEurope integrated project (IP; Aubinet et al. (2000)). Water vapour and

CO2 fluxes were measured at a 2 to 3 m height above the crop canopy using the eddy covariance

technique. Wind speed was monitored with three-dimensional sonic anemometers, and CO2

concentration with infrared gas analysers (model Li7500 inGrignon and Auradé and model Li-

7000 in Gebesee; LiCor Inc., Lincoln, NE, USA). Daily NEP of carbon dioxide (g C m−2 d−1)

and evapotranspiration rate (mm m−2 d−1) were calculated by integrating the 30-minute fluxes

obtained with the micrometeorological measurements over 24 h periods. The data sets were pro-

cessed following the standardised methodology described in Papale et al. (2006). Carbon dioxide

fluxes were corrected for CO2 storage below EC measurement height, low turbulence conditions

were filtered using a friction velocity threshold criterion. The eddy covariance technique and

subsequent data processing produce gaps in the half-hourlyC flux data, making it necessary to

fill the missing values before integration at the daily time scale. The gap-filling methodology of

CarboEurope-IP was applied to the experimental data sets (Falge et al., 2001).

Above-ground plant dry matter (DM) was measured every two weeks during crop growth, over

the full crop sequences of the Auradé, NEU-Grignon and BPA-Grignon experiments. Daily

weather data were recorded with automatic meteorological station, including maximum and min-

imum daily air temperatures (°C), rainfall (mm d−1), solar radiation (MJ m−2 d−1) and wind

speed (m s−1) at each site.

2.4 Parameter calibration

The parameters were estimated using the Bayesian calibration method described in Lehuger et al.

(2009). Table 1 lists the parameters involved in the calibration as well as their prior probability

density functions (pdf). Briefly, Bayesian methods are usedto estimate model parameters by

9



combining two sources of information: prior information about parameter values and observa-

tions of model output variables. In our case, the observations consisted of the NEP measure-

ments. Bayes’ theorem makes it possible to combine the two sources of information in order

to calibrate the model parameters. The first step is to assigna probability distribution to the

parameters, representing our prior uncertainty about their values. We specified lower and up-

per bounds of the parameters’ uncertainty, and defined the prior pdfs as uniform (Table 1). The

aim of Bayesian calibration is to reduce this uncertainty byusing measured data, thereby pro-

ducing the posterior distribution for the parameters. Thisis achieved by multiplying the prior

with the likelihood function, which is the probability of the data given the parameters. Because

probability densities may be very small numbers, rounding errors needed to be avoided and all

calculations were carried out using logarithms. The logarithm of the data likelihood was thus

calculated for each data set Di as follows:

logLi =
K
∑

j=1

(

−0.5

(

yj − f(ωk; θl)

σj

)2

− 0.5log(2π) − log(σj)

)

(1)

where yj is the NEP measured on sampling date j in the data set Di, andσj the standard devi-

ation,ωk is the vector of model input data for the same date,f(ωk; θl) is the model simulation

of yj with the parameter vectorθl, and K is the total number of observation dates in the data

sets. Two additional parameters were involved in the calibration, corresponding to a site-specific

experimental error of NEE measurements. Parameterspsys1 for systematic error of measure-

ment in NEU-Grignon andpsys2 for Auradé were introduced in the log-likelihood functionas

multiplicative factors of Di. We defined their prior pdfs as uniform over the [0.5-2] range. To

generate a representative sample of parameter vectors fromthe posterior distribution, we used a

Markov Chain Monte Carlo (MCMC) method: the Metropolis-Hastings algorithm (Metropolis

et al., 1953). We formed Markov chains of length 104-105 using a multivariate Gaussian pdf

to generate candidate parameter vectors. The variance matrix of this Gaussian was adjusted to
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ensure an efficient exploration of the parameter space by theMarkov chains. We first set the

marginal variances to the square of 1% of the prior parameterranges, and the covariances to zero

(Van Oijen et al., 2005). In addition, the acceptance rate was artificially adjusted by increasing

the measurement uncertainty in order to smooth the likelihood surface and make the calibration

easier. Due to the large amount of observed data involved, the likelihood surface presented sharp

peaks and the probability for the model to hit a ’target area’for a successful calibration was

too small otherwise. Ten percent of the total number of iterations at the beginning of the chain

were discarded as unrepresentative ‘burn-in’ segments of the chains (Van Oijen et al., 2005).

The rest of the chains were considered as a representative sample from the posterior pdf, and

were used to calculate the mean vector, the variance matrix and the 90% confidence interval for

each parameter. Bayesian calibration was successively applied to the Auradé experiment and the

NEU-Grignon treatment.

2.5 Goodness of fit

The goodness of fit between simulations and observations wasassessed by calculating the root

mean square error (RMSE). The RMSE was used to judge the performance of the parameter cal-

ibration as well as the model prediction error for the two independent data sets. It was calculated

for each data set Di as follows (Wallach, 2006):

RMSE =

√

√

√

√

1

K

K
∑

j=1

(yj − f(ωk; θl))2 (2)

where yj is the observed NEP on day j of data set Di, and f(ωk; θl) is the corresponding model

predictions with input variablesωk and parametersθl. Simulations were carried out using either

the posterior expectancy of parameters (θl) or the maximum a posteriori (MAP) estimate ofθ

(θMAP,l). θMAP is the single best value of the parameter vector in MCMC chain, which max-

imizes the posterior probability density (Van Oijen et al.,2005). The posterior expectancy of
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Parameter vectorθ = [θ1...θ16] Prior probability Posterior probability
distribution distribution

θi Symbol Description Unit Default θmin(i) θmax(i) References Mean SD Mean SD
value NEU-Grignon Auradé

θ1 ruemaize Radiation use efficiency of maize g DM MJ−1 4.5 1.0 5.5 Sinclair and Muchow (1999); Choudhury (2001) 3.0 0.1 NA NA
Andrade et al. (1993); Lindquist et al. (2005)

θ2 ruewheat Radiation use efficiency of winter wheata g DM MJ−1 7.5 2.5 8.0 Choudhury (2000); Hui et al. (2001); Sinclair andMuchow (1999) 6.3 0.2 5.4 0.6
θ3 ruerap1 Radiation use efficiency of rapeseed g DM MJ−1 2.7 0.8 4.0 Gabrielle et al. (1998); Justes et al. (2000) 1.830.04 4.75 1.48

for vegetative phase
θ4 ruerap2 Radiation use efficiency of rapeseed g DM MJ−1 2.7 0.8 3.2 Gabrielle et al. (1998) 2.81 0.17 1.85 0.17

for reproductive phase
θ5 sflo1 Radiation use efficiency of sunflower g DM MJ−1 1.4 0.7 3.0 Villalobos et al. (1996); Sinclair and Muchow (1999) NA NA 0.72 0.03

for vegetative phase Albrizio and Steduto (2005)
θ6 sflo2 Radiation use efficiency of sunflower g DM MJ−1 1.3 0.9 1.5 Villalobos et al. (1996); Sinclair and Muchow (1999) NA NA 1.62 0.61

for reproductive phase
θ7 prop1 Partitioning coefficient of total C % 0.015 0.010 0.030Molina et al. (1983); Gabrielle et al. (2004) 0.024 0.006 0.014 0.003

into microbial biomass pool Molina et al. (1997); Corbeels et al. (1999); Nicolardot andMolina (1994)
Nicolardot et al. (1994)

θ8 prop2 Partitioning coefficient of total C % 0.12 0.10 0.35 Corbeels et al. (1999); Molina et al. (1997) 0.142 0.040 0.209 0.060
into humads pool Nicolardot and Molina (1994); Gabrielle et al. (2002)

θ9 coef1 Partitioning coefficient of residue C % 0.20 0.15 0.23 Henriksen and Breland (1999) 0.204 0.015 0.210 0.014
into residue carbohydrate pool

θ10 coef2 Partitioning coefficient of residue C % 0.70 0.65 0.73 Henriksen and Breland (1999) 0.69 0.03 0.70 0.01
into residue cellulose pool

θ11 cf1 Decomposition rate of labile microbial d−1 0.332 0.25 0.50 Henriksen and Breland (1999); Godwin and Jone (1991) 0.29 0.03 0.35 0.06
biomass pool Nicolardot and Molina (1994); Lengnick and Fox (1994)

θ12 cf2 Decomposition rate of resistant d−1 0.0404 0.0250 0.0600 Henriksen and Breland (1999); Nicolardot and Molina (1994) 0.0362 0.0062 0.0416 0.0083
microbial biomass pool Dou and Fox (1995); Lengnick and Fox (1994)

θ13 cf3 Decomposition rate of humads pool d−1 0.003 0.002 0.007 Molina et al. (1997); Nicolardot and Molina (1994) 0.004 0.002 0.003 0.001
Dou and Fox (1995); Gabrielle et al. (2002)

θ14 cfres1 Decomposition rate of residue d−1 0.20 0.15 0.80 Corbeels et al. (1999); Henriksen and Breland(1999) 0.29 0.11 0.61 0.13
carbohydrate pool Godwin and Jone (1991)

θ15 cfres2 Decomposition rate of residue d−1 0.050 0.013 0.055 Corbeels et al. (1999); Henriksen and Breland (1999) 0.045 0.006 0.022 0.010
cellulose pool Godwin and Jone (1991); Hadas et al. (1993)

θ16 cfres3 Decomposition rate of residue d−1 0.0090 0.0095 0.015 Corbeels et al. (1999); Dou and Fox (1995) 0.0099 0.0008 0.0120 0.0017
lignin pool

aFor wheat, net photosynthesis rate is fonction of ruewheat×PAR0.6

Table 1: Description of the 16 model parameters involved in the Bayesian calibration. The prior probability distribution is a
multivariate uniform distribution between boundsθmin and θmax, as extracted from the above-cited literature references.The
posterior parameter distributions are characterised by the mean value of the posteriors and their standard deviation (SD).

1
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predictions were obtained from the posterior parameters pdfs. The root mean square errors were

computed for the experiments used in the parameter calibration (NEU-Grignon and Auradé) and

in the subsequent model testing against independent data sets (BPA-Grignon and Gebesee). In

the latter case, the RMSE corresponded to the root mean squared error of prediction (RMSEP(θ)),

since the data were involved neither in parameter estimation nor model development (Wallach,

2006). RMSEP is a measure of the model’s accuracy in the prediction of NEP.

3 Results

3.1 Model calibration

Table 1 recapitulates the mean and standard deviations of the posterior parameter distributions

obtained after calibration against the NEU-Grignon and Auradé data sets. The posterior radiation

use efficiencies (RUEs) of maize and wheat were lower than their default values for both sites,

by 30% for maize, and 15% to 30% for wheat. Thus, the uncalibrated wheat and maize crop

components of CERES-EGC tended to over-estimate crop biomass. Conversely, the calibrated

RUEs of rapeseed and sunflower were lower or higher than theirinitial values, depending on

development phase and experimental site.

The posterior parameter values of SOC mineralization parameters were generally close to their

default values excepted for the parametersprop1, prop2, cfres1 andcfres2. The decomposition

rate of residue carbohydrate pool (cfres1) was substantially increased for calibration against Au-

radé data set (0.61 vs. 0.20 d−1) and slightly for calibration against NEU-Grignon data set(0.29

vs. 0.20 d−1). The coefficients partitioning endogenous soil organic C into the microbial biomass

(prop1) and humads (prop2) pools were also higher than their default values, respectively 60%

for prop1 in NEU-Grignon and 75% forprop2 in Auradé. The parameterspsys1 andpsys2 were

calibrated within the BC at the same time as the model parameters and their mean posterior val-

ues were 1.38 (±0.26) and 0.87 (±0.20) for NEU-Grignon and Auradé respectively. This result
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means that the measurements in NEU-Grignon would be under-estimated whereas they would

be over-estimated in Auradé.

Table 3 summarizes the RMSEs for daily and cumulative NEP, and above-ground plant biomass

obtained with the various parameter sets (prior and posterior). The calibration led to a 15% to

30% reduction of the RMSE relative to the uncalibrated parameter set. There were small dif-

ferences between the RMSEs computed with posterior expectancy of parameters and posterior

expectancy of predictions. The simulations computed with the parameter set with maximum pos-

terior probability, i.e. when likelihood is maximal, involved RMSE values for daily NEP lower

than RMSEs computed with posterior expectancy of parameters. But this parameter set may in-

volve higher RMSE values for cumulative sum of NEP and ABG biomass, compared to RMSEs

computed with posterior expectancy of prediction and posterior expectancy of parameters.

3.2 Dynamics of net carbon exchanges

Figure 2 (a and d) compares the simulations of daily NEP aftercalibration and the observations

for the crop rotations of the NEU-Grignon and Auradé experiments. There was good agreement

between the two series at the time scale of a growing season (from sowing to harvest), and also

for the time intervals in between two crops. The growing seasons of spring crops (maize and

sunflower) were shorter than those of winter crops (rapeseed, wheat, barley), but simulations

of daily C uptake reached higher values for maize and sunflower. The net carbon exchanges

reached a peak value of 15 g C m−2 d−1 for the maize crop in Grignon, while they did not ex-

ceed 10 g C m−2 d−1 with winter crops. The net fixation of C was directly related to global

solar radiation, which led to irregular patterns of net photosynthesis. Crop residues, senescent

roots and the application of organic manure fed the fresh organic matter pool of soil and were

slowly decomposed after incorporation in soil. Soil respiration mainly occurred in autumn and

winter following the incorporation of crop residues in soil, with daily rates ranging between -5
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and 0 g C m−2 d−1.

In Grignon, after the harvest of barley crops in years 2004 and 2007, mustard was planted as a

catch crop. Its growth was well simulated in 2008, whereas in2004, the simulated time span of

crop growth and net C fixation was shorter than observed. As a result, the total C fixation by

the mustard was under-estimated in 2004 by the model, as was that of the maize crop in 2008

(Fig. 2.c). In Auradé, no catch crop was sown after the harvests of rapeseed in 2005 and wheat

in 2006, but volunteers of previous crops grew up and entailed a net C uptake. This effect was

modelled by resowing the same crop after harvest and stopping its growth upon tillage. Net

ecosystem production was remarkably well predicted duringthe rapeseed and wheat growing

seasons, but it was over-estimated over the sunflower crop. This was due to the model under-

estimation of soil respiration rates in the months preceding the sowing of sunflower.

Figures 2.b and 2.e show the regressions between observed and modelled daily NEP at NEU-

Grignon and Auradé. The coefficients of determination werefairly good, with an R2 of 0.76

and 0.59 in Grignon and Auradé, respectively. There was also little systematic error in the pre-

dictions: the slope of the regressions was equal to unity (Grignon) or close to this value (0.82)

in Auradé, and the intercepts were negligible (0.25 and 0.00 g C m−2 d−1 in Grignon and Au-

radé, respectively). When cumulated over the measurementperiod, net C fluxes were correctly

predicted by the model for the NEU-Grignon and Auradé experiments (Fig. 2.c and 2.e), which

proves its capacity to integrate the various C fluxes and turnover rates within the agro-ecosystem.

The simulations of above-ground biomass of crops were also well within the experimental mea-

surement errors (Fig. 3.a and 3.c), for the various crop species, with the exception of the 2008

maize upon harvest in Grignon, whose dry matter was under-predicted. The regression analysis

evidenced a good match between observed and simulated data (after calibration). For the NEU-

Grignon experiment, we obtained an R2 of 0.95, an intercept of -0.75 t DM ha−1 and a slope

of 1.2, and for Auradé, an R2 of 0.94, an intercept of 0.35 t DM ha−1 and a slope of 1.12. Six
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different crop species, involving 6 crop-specific sub-models, were involved in the rotations but

did not hamper a good match to the field-measurements.

3.3 Model prediction assessment

The experiments of Gebesee and BPA-Grignon were used to assess the model prediction accu-

racy by computing the RMSEP, after calibration against the data from the NEU-Grignon trial

(Table 4). The field experiments used in model testing represented different climate and soil con-

ditions compared to the calibration sites, with similar crop management. The RMSEP for daily

NEP was lower for the wheat in Gebesee than for the maize in BPA-Grignon, amounting to 1.55

and 3.78 g C m−2 d−1, respectively. Conversely, the RMSEP for cumulative NEP was 3 times

lower for BPA-Grignon than for Gebesee, being respectivelyof 31.61 and 90.95 g C m−2. The

RMSEP of above-ground (ABG) biomass was computed only for BPA-Grignon due to a lack of

biomass measurements in Gebesee. Figures 4.a and 4.d depicts the dynamics of daily NEP for

Gebesee and BPA-Grignon. At Gebesee, the model accurately captured the dynamics of net C

fixation by the crop and the post-harvest soil respiration. In the BPA-Grignon trial, the measure-

ment period was focused on the maize growing season, and the spike of net C fixation measured

in July was not captured by the model. The radiation use efficiency of maize calibrated with the

NEU-Grignon dataset appeared suboptimal for the BPA-Grignon experiment. The regressions

between observed and simulated daily NEP were overall satisfactory, with an R2 of 0.49 and

0.79 in Grignon and Gebesee, respectively, while the slopesranged from 0.77 to 0.88, and the

intercepts ranged from -0.37 to 0.79 g C m−2 d−1 (Figs 4.b and 4.e). The relatively low R2 for

the Grignon-BPA experiment stems from the model failing to mimic the peak C fixation fluxes in

July, probably because it over-estimated the effect of water stress on photosynthesis. The model

overestimated the cumulative sum of NEP in Gebesee whereas it slightly underestimated this

variable in BPA-Grignon (Figs 4.c and 4.f).
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Figure 5 depicts the time course of ABG dry matter for the maize crop of the BPA-Grignon

experiment. Simulations were computed either with the posterior expectancy of parameters de-

rived from the calibration of NEU-Grignon or with the initial (uncalibrated) parameter values.

Surprisingly, the latter resulted in a more accurate simulation of crop biomass accumulation than

the calibrated parameters. On the basis of these results, itappears that the calibration improved

the simulation of NEP but without improving the prediction of biomass accumulation. As a

result, the RMSEP for ABG biomass with calibrated model was quite high (Table 4).

3.4 Carbon balance of crop rotations

Figure6 shows the time course of carbon balance in all sites,as broken down across crops during

the time period extending from their sowing to the sowing of the following crop. In the NEU-

Grignon experiment, NPP was higher for the 2006 winter wheatand 2007 barley than for the

2005 and 2008 maize crops. On the other hand, soil respiration after winter wheat and barley

were higher than for maize crops due to a longer period of net soil respiration from harvest to

sowing. As a result, NEP was higher for maize than for winter cereals, averaging 4770 and

4090 kg C ha−1, respectively. The mustard sown in 2004 was a net source of CO2, i.e its net pho-

tosynthesis was lower than the net soil respiration. This pattern was reversed with the mustard

sown in 2008, which was overall a net sink of CO2. In both cases, the introduction of a catch

crop between winter cereals and the following spring crop increases ecosystem uptake of C at

the rotation scale.

In Auradé, seasonal net photosynthesis, soil respirationand net ecosystem production were sim-

ilar for the 2005 winter rapeseed crop and the 2006 winter wheat (Fig. 6.b), resulting in a NEP

(equivalent to a net C-uptake by the ecosystem) of 2800 kg C ha−1. The net photosynthesis

of sunflower was underestimated by the model, resulting in a NEP lower than for winter crops

(1600 kg C ha−1). In Gebesee, the net photosynthesis of winter wheat reached 6230 kg C ha−1,
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soil respiration totalled -4000 kg C ha−1 and net ecosystem production 2230 kg C ha−1 (Fig. 6.c).

In this site, soil organic carbon was higher than in the othersites, generating higher soil respi-

ration rates. In the BPA-Grignon experiment, the net ecosystem production of maize totalled

6490 kg C ha−1 over the growing season, corresponding to the balance between net photosyn-

thesis (7740 kg C ha−1) and soil respiration (-1250 kg C ha−1 - Fig. 6.c).

Table 5 recapitulates the modelled and observed carbon inputs and exports for the 4 experiments,

by crop. As in the previous section, the C budget for each cropstarted upon sowing and ended

upon sowing of the following crop, except for Auradé, Gebesee and BPA-Grignon where the

starting date was the first day of measurement. In the NEU-Grignon experiment, the model pre-

dicted the 3-yr rotation to be a net sink of 215 kg C ha−1 whereas the observations indicated a

net source of C (-1520 kg C ha−1 over the three years). This discrepancy was due to the under-

estimation of C fixation by the 2005 maize crop and of the amount of straw removed after winter

wheat in 2006. In this site, the straw of winter wheat and barley was harvested, whereas in the

other sites it was incorporated into the soil. The experimental determination of straw removal

rate may also have led to an over-estimation of this term, since losses probably occurred upon

harvest. The simulated year-round NEP for the year 2005 at NEU-Grignon (encompassing the

maize cropping cycle) was 4350 kg C ha−1 yr−1 (vs. 3120 kg C ha−1 yr−1 observed) and was

5200 kg C ha−1 yr−1 for the year 2002 at BPA-Grignon.

In Gebesee, cattle slurry and farmyard manure were applied in 2007 during the winter wheat

growing season, making this crop cycle a large C sink. The simulated year-round NEP for 2007

(encompassing a part of the wheat cropping cycle) was 2400 kgC ha−1 yr−1, which is much lower

than the total of 1133 kg C ha−1 measured from 1 Jan. 2007 to 5 Oct. 2007 (the end of mea-

surement period). The modelled NEP was slightly higher thanthe value of 1930 kg C ha−1 yr−1

reported by Anthoni et al. (2004) and based on measurements for the same site in 2001 for win-

ter wheat. In addition, Anthoni et al. (2004) reported that when they removed C exported by the
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harvest to the NEP, the site became a net source of CO2 (of -970 kg C ha−1 yr−1), whereas we

modelled for the year 2007 a NBP of -4765 kg C ha−1 yr−1 when we removed harvested biomass

to the NEP. In Auradé, we overestimated the C sink of the rotation 2005-2007 as compared with

the observations, 2270 vs. 500 kg C ha−1 over 2.5 years which is due to a 30% underestimation

of rapeseed grain yield in 2005 and an overestimation of NEP for rapeseed and winter wheat

by 10 and 35% respectively as compared with observations. Inthe BPA-Grignon experiment,

the model underestimated harvested biomass by 40% which induced a large bias in NBP: 25 vs.

2575 kg C ha−1 over 117 days.

4 Discussion

4.1 Model calibration and prediction error

Our goal was to parameterise the agro-ecosystem model CERES-EGC in order to estimate the

daily NEP over crop rotations, assuming that the calibration against daily NEP data would simul-

taneously improve the predictions of net ecosystem production, crop growth and carbon balance

at rotation scale.

In order for the calibration algorithm to converge, we had toartificially increase the measure-

ment uncertainty to smooth the likelihood surface. The large number of daily observations in our

sample (several hundreds of data points) led to a sharply peaked likelihood which is difficult to

reach and explore by traditional Metropolis-Hastings algorithm. Processing the data in weekly or

monthly means would help in reducing the amount of information and thus it would improve the

calibration process. Using an adaptive MCMC sampling algorithm, such as developed by Haario

et al. (2001), could also help in adapting the proposal distribution and in optimising MCMC algo-

rithm. Bayesian calibration was applied on daily NEP data, making the assumption that whether

daily values were well simulated, thus the cumulative sum would also be well estimated. This

assumption could be questioned and we should compare a calibration against NEP data cumu-
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lated for cropping cycles with daily NEP. The processing of data and time length of summary

statistics (daily, weekly..) would then depend on the goal to which the model is applied for.

The Bayesian calibration on the NEU-Grignon and Auradé experiments resulted in a slight re-

duction of RMSE compared to the initial parameterization. There was also a close correlation

between observed and modelled NEP on daily or seasonal basis, evidencing a good capacity of

the model to predict NEP at both scales. The coefficients of determination (R2) we obtained

ranged from 0.59 to 0.76, and compare well to literature. Huang et al. (2009) reported an R2 of

0.43 when simulating two years of NEP data over an arable fieldin China with an agro-ecosystem

model. Wang et al. (2005) parameterised an ecosystem model against NEP measurements over

a wheat-maize sequence in China, and obtained R2 between 0.74 and 0.76, in the range we ob-

tained in the NEU-Grignon experiment.

After calibration, we estimated the model prediction error(RMSEP) using independent data sets

from two experiments with similar crop management but different soil or climate conditions

(BPA-Grignon and Gebesee). The RMSEP ranged between 1.5 and3.8 g C m−2 d−1, indicating

a good capacity of CERES-EGC to capture NEP at daily and seasonal scales, and were 4 to 7

times lower than the value of 11.3 g C m−2 d−1 reported by Huang et al. (2009). However, the

crop growth at BPA-Grignon was not well simulated because the RUE parameter for maize, cal-

ibrated against NEU-Grignon dataset, was not accurate for the maize crop of the BPA-Grignon

field site experiment.

4.2 Using a crop model to simulate the net carbon exchanges

We originally assumed that calibration of RUE parameters ofcrop growth sub-models against

net C exchanges would allow us to take into account the whole plant C fixation by integrating

the root growth and the RUEs would have been increased. As a result, the RUEs of maize and

wheat were substantially reduced after calibration, in comparison with their initial values. An
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underlying explanation of such results could be that the calibration directly applied on C balance

between net C fixation and heterotrophic respiration do not make possible to well calibrate si-

multaneously both processes. Calibrating each process separately with their specific measured

data may help in better estimating the RUEs and soil respiration. The main limitation being that

it is difficult to measure separately the C fluxes from soil andplants compartments, especially

for roots.

While the modelled estimates of NEP were in agreement with observations, those for grain yield

and straw removal were lower than observed, which had a largeeffect on the final C balances.

However, the observations of straw removal in the NEU-Grignon experiment were relatively un-

certain since they were based on destructive sampling of plants prior to harvest, and did not take

harvest losses or cutting height into account. The differences in the modelled and measured C

balances should therefore be mitigated, considering the potentially large experimental error on

the removal terms.

Grant et al. (2007) showed that theEcosys model well captured the ABG biomass dynamic for

maize and soybean crops and that the model predicted with high accuracy the grain removal

for the two crops of the rotation. The CERES-EGC predicted above-ground biomass and grain

yield in the same range of accuracy but it remains an uncertainty with the estimation of straw

removal. At the crop rotation scale, the simulated NEP of theyear encompassing maize crop-

ping season in Grignon are in accordance with literature data for temperate climates. Verma

et al. (2005) measured NEP values for irrigated and rainfed maize crops ranging from 3800 to

5200 kg C ha−1 yr−1. Wang et al. (2005) simulated with a biogeochemical model a NEP of

3340 kg C ha−1 yr−1 for wheat and 3850 kg C ha−1 yr−1 for maize, while Moureaux et al. (2006)

measured a higher value of 6100 kg C ha−1 yr−1 for a spring crop, sugar beet in Belgium.

Lastly, Huang et al. (2009) measured a NEP over 608 days for a winter wheat-maize-winter

wheat rotation in Yucheng (China; semi-humid and monsoon climate), and obtained a mean NEP

21



of 7200 kg C ha−1, with no time interval between two successive crops. Their modelled estimate

was very similar, at 7810 kg C ha−1. We estimated for a similar crop sequence of maize-winter

wheat-winter barley (893 days) in Grignon an observed NEP of13137 kg C ha−1 and simulated

NEP of 13510 kg C ha−1. The difference between both studies is due to difference between the

estimation of NPP. In fact, Wang et al. (2005) modelled the NPP for the same site in China equal

to 3340 for wheat growing season and 3850 kg C ha−1 for maize growing season, whereas we

estimated NPP of 6680 kg C ha−1 for maize in 2005 and 7435 kg C ha−1 for winter wheat in

2006.

Net biome production is very sensitive to the estimation of biomass removal from the field and

organic manure inputs. Our model predicted the rotations ofNEU-Grignon and Auradé to be

net C sinks, whereas Grant et al. (2007) simulated rainfed orirrigated maize-soybean rotations

as being net sources of C, emitting between 400 and 800 kg C ha−1 yr−1 into the atmosphere.

They compared their estimation of NBP by simulating the variation of soil C stock over 100-year

simulation periods. In this way, they estimated a soil organic C loss of 300 kg C ha−1 yr−1 for

rainfed system and an increase of 600 kg C ha−1 yr−1 for irrigated system. The carbon returns

from application of organic fertilizers generates also an important effect on NBP reducing it by

50 to 115% in case of the rotation of NEU-Grignon. Carbon uptake from catch crops and volun-

teers also appear as non negligible input of C in the crop system.

Our agro-ecosystem model simulates water, C and N cycling and GHG fluxes as well as the

drivers controlling plant and microbial processes. Simulating net carbon exchanges and crop

productivity for various crop species requires to combine alarge number of processes. In partic-

ular special attention should be focused on simulating accurate crop phenology (date of harvest),

water and N stress on crop growth, sharing between biomass exported out of the field and residue

return to soil.
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5 Conclusion and future work

We applied a Bayesian method to calibrate the CERES-EGC model against two data sets of NEP

from contrasted pedoclimatic conditions and crop sequences (NEU-Grignon and Auradé). The

calibrated model allows us to predict the net carbon exchanges between soil-crop and atmosphere

from daily to rotation time-scale. We computed the error of model prediction by comparing

simulations and observations of NEP from two other independent data sets (BPA-Grignon and

Gebesee). The model correctly predicted NEP in both sites, but under-estimated crop biomass in

one of them. The originality of our approach is that we can compute the different terms of the C

balance for entire crop rotations and then assign equally the C source and sink between the crops

of the rotation. The model estimates the crop productivity that is exported out of the field for

being used in food, feed or bioenergy supply chains. The C balance at the field gate could then

be introduced into life cycle assessment of agricultural products such as recommended by Rabl

et al. (2007) who advised to count C-uptake and emissions at each stage of the life cycle instead

of counting a zero C balance between C fixation and emission.

Anthoni et al. (2004) reported that up-scaling C fluxes from croplands from plot to regional

scale was the most complicated task to establish C budget of aselected region due to wide

variations in crop species, rotations, residue and fertilizer management and soil C stocks. The

use of process-based models such as CERES-EGC would help in estimating the regional net

carbon fluxes. The calibration developed in Lehuger et al. (2009) for N2O makes it possible

to apply plot-scale models at regional level by providing robust estimates for generic (ie non

site-specific) parameters over this domain. Such a strategycould also be used for CO2 using

the calibration method we used here on a wider range of data sets to find parameter values that

would be universally applicable. The calibrated model could then be used to simulate a wide

range of environmental conditions, and coupled with GIS databases to generate high-resolution
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regional maps of net CO2 fluxes with daily time resolution. Estimating C fluxes from forests,

grasslands and other ecosystems (shrublands, wetlands...) would also be integrated for budgeting

biospheric C fluxes at regional or landscape scale (Turner etal., 2007). Regional validation of

model simulations with landscape or regional measurements, such as carried out by Soegaard

et al. (2003), would combine the different sources and sinksof carbon. Regional strategies of

C-abatement would then be tested using the model at this spatial scale.
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Site Experiment Year Soil texture Sequence Number of daily
class of crops NEP measurements

Grignon NEU 2004-2008 Silt Loam M-WW-WB-m 1627
Grignon BPA 2002 Silt Loam M 115
Auradé 2005-2007 Clay Loam R-WW-SF 926
Gebesee 2007 Silty Clay Loam WW 310

Table 2: Selected characteristics of the various sites and experiments (M: Maize; WW: winter
wheat; WB: winter barley; m: mustard; R: rapeseed; SF: sunflower).
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Site Output Unit RMSE computed with:
variables Initial parameter Posterior expectancy Maximuma posteriori Posterior expectancy

values of parameters parameter vector of predictions
NEU-Grignon Daily NEP g CO2-C m−2 d−1 2.22 1.90 1.90 1.89

Cumulative sum of NEP g CO2-C m−2 415.85 137.65 92.57 127.11
Above-ground biomass t DM ha−1 1.87 1.82 1.99 1.83

Auradé Daily NEP g CO2-C m−2 d−1 2.68 1.88 1.80 1.88
Cumulative sum of NEP g CO2-C m−2 217.83 68.68 83.36 70.03
Above-ground biomass t DM ha−1 1.84 1.24 2.93 1.24

Table 3: Root mean square errors (RMSEs) of daily NEP, cumulative sum of NEP and above-
ground biomass based on the initial (prior) parameters values, the posterior expectancy of param-
eters, the maximum a posteriori parameter vector and the posterior expectancy of predictions.
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Site RMSEP of:
Daily NEP Cumulative sum of NEP Above-ground biomass

g CO2-C m−2 d−1 g CO2-C m−2 t DM ha−1

Gebesee 1.55 90.95 no data
BPA-Grignon 3.78 31.61 3.65

Table 4: Root mean square errors of prediction (RMSEP) basedon the posterior expectancy of
parameters for daily NEP, cumulative sum of NEP over crop rotation and above-ground biomass.
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Site Crop Time period Net ecosystem production Harvested biomass Manure Net biome production
(kg C ha−1) (kg DM ha−1) (kg C ha−1) (kg C ha−1)

Start End Modelled Observed Modelled Observed Modelled Observed
NEU-Grignon Mustard 2004-09-01 2005-05-08 -822 -456 988 166 532

Maize 2005-05-09 2005-10-15 5515 5139 -13510 -15470 111 -1049
Winter wheat 2005-10-16 2006-10-05 3510 2621 -7597 -7500 -1872 -3751

(-5859) (-8430)
Barley 2006-10-06 2007-10-21 4485 5377 -8630 -8200 -419 641

(-3632) (-3640)
Mustard 2007-10-22 2008-04-26 632 875 1763 2395 2638
Maize 2008-04-27 2008-10-14 6627 8005 -13730 -20470 1135 -183
Rotation 2005-05-09 2008-04-26 14143 14012 215 -1521

Auradé Rapeseed 2005-03-18 2005-10-24 2745 2504 -3768 -5300 1237 384
Winter wheat 2005-10-25 2007-04-09 2816 2088 -6378 -6000 265 -312
Sunflower 2007-04-10 2007-09-29 1611 1311 -2116 -2200 765 431
Rotation 2005-03-18 2007-09-29 7172 5903 2267 503

Gebesee Winter wheat 2007-01-01 2007-10-05 2622 1134 -7165-4700 4460 4216 3714
BPA-Grignon Maize 2002-06-15 2002-10-07 6476 6643 -16130 -23040 24 -2573

Table 5: Carbon budgets of the crop sequences of NEU-Grignon, Auradé, Gebesee and BPA-
Grignon. The C balance is broken down into net ecosystem production, harvested biomass,
manure inputs.
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Figure 1: Schematic of C fluxes (solid arrows) and N flows (dashed arrows) within the CERES-
EGC model.
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Figure 2: Time course of simulated (black line) and observed(grey symbols) of net ecosystem
production (NEP), on a daily time scale (a,d) or cumulated for each growing season (c,f), and
scatter plot of simulated versus measured NEP (b,e). The topgraphs pertain to the Grignon-
NEU experiment (a,b,c), the bottom one to the Auradé experiment (d,e,f). Simulation lines
correspond to the posterior expectancies of simulations, and the crop cycles are represented with
the following letters: B: barley, m: mustard, M: maize, WW: winter wheat, R: rapeseed and SF:
sunflower.
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Figure 3: Simulations (black line) and observations (grey points) of above-ground (ABG) crop
biomass (a,c) and simulated versus measured ABG biomass (b,d) for the crop sequence of
Grignon site (a,b) and Auradé site (c,d). Simulation linescorrespond to the posterior expectan-
cies of simulations, and the crop cycles are represented with the following letters: B: barley, m:
mustard, M: maize, WW: winter wheat, R: rapeseed and SF: sunflower.
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Figure4:Simulations(blackline)andobservations(greyp oints)ofdailynetecosystemproduc-
tion(NEP),simulatedversusmeasuredNEPandsimulations( blackline)andobservations(grey
points)ofcumulativesumofNEPforthewheatcropcycleofGe beseesite(a,b,c)andthemaize
cropcycleofGrignon-BPAexperiment(d,e,f).

41



A
B

G
 b

io
m

as
s 

(t
 D

M
 h

a−1
)

04/02 06/02 08/02 10/02

0
5

10
15

20

a)

5 10 15 20

5
10

15
20

Modelled ABG biomass (t DM ha−1)

M
ea

su
re

d 
A

B
G

 b
io

m
as

s 
(t

 D
M

 h
a−1

) 1:1
Reg

b)

Figure 5: Simulations with calibrated parameter values (solid line) and initial parameter values
(dashed line) and observations (grey points) of above-ground (ABG) crop biomass (a). Simu-
lated versus measured ABG biomass for simulations with calibrated parameters (empty points)
and initial parameter values (full points) for the maize crop cycle of BPA-Grignon site (b, the
measurement of 7 Oct. 2002 was removed of the data set). Simulated lines with calibrated
parameters are the posterior expectancies of simulations.

42



Figure 6: Carbon balances of the crop sequences at Grignon, Auradé and Gebesee based on
simulations with the calibrated model. Net ecosystem production (NEP) is broken down into net
primary production (NPP) and heterotrophic soil respiration (Rs).
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