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A losed-form extension to the Blak-Cox model 21 Introdution and model setupModelling �rm defaults is one of the fundamental matter of interest in �nane. It hasstimulated researh over the past deades. Clearly, the reent worldwide �nanial risisand its bunh of resounding bankrupties have underlined one again the need to betterunderstand redit risk. In this paper, we fous on the modelling of a single default. Usu-ally, these models are divided into two main ategories: strutural and redued form (orintensity) models.Strutural models aim at explaining the default time with eonomi variables. In hispath breaking work, Merton [16℄ onneted the default of a �rm with its ability to paybak its debt. The �rm value is de�ned as the sum of the equity value and the debt value,and is supposed to be a geometri Brownian motion. At the bond maturity, default oursif the debtholders annot be reimbursed. In this framework, the equity value is seen as aall option on the �rm value. Then, Blak and Cox [5℄ have extended this framework bytriggering the default as soon as the �rm value goes below some ritial barrier. Thus, thedefault an our at any time and not only at the bond maturity. Many extensions of theBlak Cox model, based on �rst passage time, have been proposed in the literature. Werefer to the book of Bieleki and Rutkowski [4℄ for a nie overview. Reently, attentionhas be paid to the alibration of these models to Credit Default Swap (CDS in short) data(Brigo and Morini [7℄, Dor�eitner et al. [13℄). However, though eonomially sounded,these models an hardly be used intensively on markets to manage portfolios espeially forhedging. Unless onsidering dynamis with jumps (see Zhou [20℄ for example), their majordrawbak is that the default time is preditable and no default an our when the �rmvalue is learly above the barrier. In other words, they underestimate default probabilitiesand redit spreads for short maturities.The priniple of redued form models is to desribe the dynamis of the instantaneousprobability of default that is also alled intensity. This intensity is desribed by someautonomous dynamis and the default event is thus not related to any riterion on thesolveny of the �rm. We refer to the book of Bieleki and Rutkowski [4℄ for an overviewof these models. In general, they are designed for being easily alibrated to CDS marketdata and are in pratie more tratable to manage portfolios.However, none of these two kinds of model is fully satisfatory. In �rst passage timemodels, the default intensity is zero away from the barrier and the default event an beforeast. Intensity models are in line with CDS market data, but remain disonneted tothe rationales of the �rm like its debt and equity values. Thus, they annot exploit theinformation available on equity markets. To overome this shortoming, and to provide auni�ed framework for priing equity and redit produts, hybrid models have been intro-dued, assuming that the default intensity is a (dereasing) funtion of the stok. Here,we mention the works of Atlan and Leblan [2℄, and Carr and Linetsky [8℄ who onsiderthe ase of a defaultable onstant elastiity model.In this paper, we propose an hybrid model, whih extends the Blak-Cox model andin whih the default intensity depends on the �rm value. We present in this introdutiona simple version of it, and the full model is given in Setion 2. We onsider the usual



A losed-form extension to the Blak-Cox model 3framework when dealing with redit risk and �rm value models. Namely, we assume thatwe are under a risk-neutral probability measure P and that the (riskless) short interest rateis onstant and equal to r > 0. We denote by (Ft, t ≥ 0) the default-free �ltration andonsider a (Ft)-Brownian motion (Wt, t ≥ 0). We assume that the �rm value (Vt, t ≥ 0)evolves aording to the Blak-Sholes model and therefore satis�es the following dynamis:
dVt = rVtdt + σVtdWt, t ≥ 0, (1)where σ > 0 is the volatility oe�ient. To model the default event, we assume that thedefault intensity has the following form:

λt = µ21{Vt<C eαt} + µ11{Vt≥C eαt}, (2)where C > 0, α ∈ R, and µ2 > µ1 ≥ 0. This means that the �rm has an instantaneousprobability of default equal to µ2 or µ1 depending on whether its value is below or abovethe time-varying barrier C eαt. More preisely, let ξ denote an exponential random variableof parameter 1 independent of the �ltration F . Then, we de�ne the default time of the�rm by:
τ = inf{t ≥ 0,

∫ t

0

λsds ≥ ξ}. (3)As usual, we also introdue (Ht, t ≥ 0) the �ltration generated by the proess (τ ∧ t, t ≥ 0)and de�ne Gt = Ft ∨ Ht, so that (Gt, t ≥ 0) embeds both default-free and defaultableinformation.This framework is a natural extension of the pioneering Blak-Cox model introduedin [5℄, whih an indeed be simply seen as the limiting ase of our model when µ1 = 0and µ2 → +∞. In the work of Blak and Cox, bankrupty an in addition happen at thematurity date of the bonds issued by the �rm when the �rm value is below some level. Here,we do not onsider this possibility, even though it is tehnially feasible, beause it wouldmake the default preditable in some ases. In the Blak-Cox model, the barrier C eαt ismeant to be a safety ovenant under whih debtholders an ask for being reimbursed. Here,default an happen either above or below the barrier, whih represents instead the borderbetween two redit grades. Let us brie�y explain what typial parameter on�gurationsould be for this model. For a very safe �rm, we expet that its value start above thebarrier with µ1 very lose to 0. The parameter µ2 should also be rather small sine itannot be downgraded too drastially. Instead, for �rms that are lose to bankrupty, weexpet to have C < V0 and a high intensity of default µ2. Then, the parameters should besuh that the �rm is progressively drifted to the less risky region (i.e. r−σ2/2−α > 0). Infat, the CDS pries often re�et two possible outomes in suh ritial situations. Eitherthe �rm makes bankrupty in the next future, or it survives and is then strengthened (seeBrigo and Morini [7℄ for the Parmalat risis ase).Now, we state the main theoretial result on whih this paper is based. It gives theexpliit formula for the Laplae transform of the default time distribution.



A losed-form extension to the Blak-Cox model 4Theorem 1.1. Let us set b = 1
σ

log(C/V0), m = 1
σ
(r − α − σ2/2) and µb = µ21{b>0} +

µ11{b≤0}. The default umulative distribution funtion P(τ ≤ t) is a funtion of t, b, m,
µ1 and µ2 and is fully haraterized by its Laplae transform de�ned for z ∈ C+ := {z ∈
C,Re (z) > 0},

∫ ∞

0

e−zt
P(τ ≤ t)dt = emb−|b|

√
2(z+µb)+m2

(
1

z + µ1
− 1

z + µ2

)
×
{

− 1{b>0} (4)
+

−m +
√

2(z + µ2) + m2

√
2(z + µ1) + m2 +

√
2(z + µ2) + m2

}
+

1

z
− 1

z + µb

.Theorem 1.1 an atually �t in the framework of Theorem 2.1 with n = 2, wherethe intensity an take n ≥ 2 di�erent values instead of 2. Hene, we refer the reader toSetion 2 for a proof of Theorem 1.1, whih in fat omes from a result by Ka. Then, ourpoint of view in this paper is to take advantage of this result and obtain a fast alibrationproedure to CDS market data.The Laplae transform (4) an also be obtained thanks to the results on Parisianoptions by Chesney et al. [11℄. This was done in a former version of this paper available onhttp://hal.arhives-ouvertes.fr. The default time τ , de�ned by (3), is related to thetime spent below and above the barrier. Other Blak-Cox extensions based on analytialformulas for Parisian type options have been proposed in the reent past. Namely, Chenand Suhaneki [10℄, Moraux [17℄ and Yu [19℄ onsidered the ase where the default istriggered when the stok has spent a ertain amount of time in a row or not under thebarrier. Nonetheless, both extensions present the drawbak that the default is atuallypreditable and the default intensity is either 0 or non-�nite. This does not hold in ourframework.The paper is strutured as follows. In Setion 2, we present the full model for whihthe intensity an take n ≥ 2 di�erent values and we obtain a losed formula for the Laplaetransform of the default time. Setion 3 is devoted to the priing of CDS and states simplebut interesting properties of the CDS spreads in funtion of the model parameters. Then,we fous on the alibration issue. Setion 4 is devoted to the alibration of the modelpresented above while in Setion 5, we disuss the alibration of the full model with n ≥ 3.We present a general alibration proedure for the model and show on di�erent pratialsettings how the model an �t the market data. We �nd our alibration results ratherenouraging. Last, we give in Setion 6 two methods to numerially invert the Laplaetransform of the default umulative distribution funtion given by Theorems 1.1 and 2.1.For eah method, we state in a preise way its auray whih heavily relies on the regularityof the funtion to be reovered. The required regularity assumptions are atually provedto be satis�ed by the default umulative distribution funtion in Appendix A.



A losed-form extension to the Blak-Cox model 52 The Laplae transform of the default distributionIn the introdution, we have onsidered a default intensity whih takes two di�erent valuesdepending on whether the �rm value is below or above some barrier. Here, we present thefull model where the default intensity an take n ≥ 2 di�erent values,
0 ≤ µ1 < · · · < µn. (5)We set C0 = +∞ and Cn = 0, and onsider C1, . . . , Cn−1 suh that Cn < Cn−1 < · · · <

C1 < C0. At time t ≥ 0, we assume that the default intensity of the �rm is equal to µi,when its value is between Ci e
αt and Ci−1 eαt. Thus, we set
λt =

n∑

i=1

µi1{Ci eαt≤Vt<Ci−1 eαt}, (6)and we de�ne the default time τ exatly as in (3). Assumption (5) means that the defaultintensity is inreased (resp. dereased) eah time it rosses downward (resp. upward) abarrier. Heuristially, these onstant intensities an be related to the redit grades of the�rm. For a �rm in di�ulty, rossing downward the barriers an also represent the di�erentredit events that preede a bankrupty.Now, we introdue notations that will be used throughout the paper. We set m =
r − α − σ2/2 and

b0 = +∞, bi =
1

σ
log(Ci/V0), i = 1, . . . , n − 1 and bn = −∞. (7)Thus, the default intensity (6) is equal to

λt =

n∑

i=1

µi1{bi≤Wt+mt<bi−1}. (8)From (3), we have
P(τ > t) = E

[
e−

R t
0

Pn
i=1 µi1{bi≤Ws+ms<bi−1}

ds
]
. (9)Therefore, the default distribution (and its Laplae transform) only depend on b = (bi)i=1,...,n−1,

m and µ = (µi)i=1,...,n. We set for t ≥ 0 and z ∈ C+

Pb,m,µ(t) = P(τ ≤ t) and P c
b,m,µ(t) = P(τ > t) = 1 − Pb,m,µ, (10)

Lb,m,µ(z) =

∫ +∞

0

e−zt
P(τ ≤ t)dt and Lc

b,m,µ(z) = 1/z − Lb,m,µ(z), (11)that are respetively the umulative distribution funtion, the survival probability funtionand their Laplae transforms. When n = 2, we use the same notations as in the introdu-tion and simply denote by b = log(C1/V0)/σ the barrier level. We also respetively denoteby Pb,m,µ1,µ2(t), P c
b,m,µ1,µ2

(t), Lb,m,µ1,µ2(z) and Lc
b,m,µ1,µ2

(z) the quantities de�ned in (10)and (11).The following theorem gives a straightforward way to ompute the Laplae trans-form Lb,m,µ(z).



A losed-form extension to the Blak-Cox model 6Theorem 2.1. In the above setting, Lb,m,µ(z) is given for z ∈ C+ by
Lb,m,µ(z) =

n∑

i=1

1{bi≤0<bi−1}

{
1

z
− 1

z + µi

− β+
i − β−

i

}
,where R±(µ) = −m ±

√
m2 + 2(z + µ). The oe�ients βi = [β−

i β+
i ]′ are uniquelydetermined by the indution:

βi = Πi−1β1 + vi−1, i = 1, . . . , n (12)and the onditions β+
1 = β−

n = 0. Here, Π0 = Id and Πi = Pi × · · · × P1, v0 = 0 and
vi = A−1(µi+1, bi)

[
1

z+µi
− 1

z+µi+1
0
]′

+ Pivi−1 with:
Pi =

1

[R+(µi+1) − R−(µi+1)]
× (13)

[
(R+(µi+1) − R−(µi)) ebi(R−(µi)−R−(µi+1)) (R+(µi+1) − R+(µi)) ebi(R+(µi)−R−(µi+1))

(R−(µi) − R−(µi+1)) ebi(R−(µi)−R+(µi+1)) (R+(µi) − R−(µi+1)) ebi(R+(µi)−R+(µi+1))

]and
A−1(µi+1, bi) =

1

R+(µi+1) − R−(µi+1)

[
R+(µi+1) e−R−(µi+1)bi − e−R−(µi+1)bi

−R−(µi+1) e−R+(µi+1)bi e−R+(µi+1)bi

]
.To solve the indution, one has �rst to determine β−

1 by using that β+
1 = β−

n = 0and (12) with i = n. Then, all the βi an be obtained with (12). When there is only onebarrier (i.e. n = 2), this an be solved expliitly and the solution is given in Theorem 1.1.Proof. We introdue for x ∈ R and t ≥ 0, Xx
t = x + Wt + mt,

λ(x) =
n∑

i=1

µi1{xi≤x<xi−1} and p(t, x) = E

[
e−

R t
0

λ(Xx
s )ds
]
.From (3) and (8), p(t, 0) = P(τ > t) is the survival probability funtion of τ .Thanks to the Girsanov theorem, we have p(t, x) = e−mx Ẽ

[
emXx

t −m2t/2 e−
R t
0 λ(Xx

s )ds
]where Xx

t is a Brownian motion starting from x under P̃. For z > 0, we onsider theLaplae transform of p(t, x):
x ∈ R, z > 0, Lc(z, x) =

∫ ∞

0

e−zt p(t, x)dt = e−mx
Ẽ

[∫ ∞

0

e−(z+m2/2)t emXx
t −

R t
0 λ(Xx

s )ds dt

]
.Now, from a result by Ka ([14℄, Theorem 4.9 p.271), it omes out that the Laplaetransform Lc(z, x) is C1 and pieewise C2 w.r.t. x, and solves:

∀i ∈ {1, . . . , n}, bi ≤ x < bi−1, 1− (z + µi)L
c(z, x) + m∂xL

c(z, x) +
1

2
∂2

xL
c(z, x) = 0. (14)



A losed-form extension to the Blak-Cox model 7This is a pieewise a�ne ODE of order 2 whih admits the following solutions:
bi ≤ x < bi−1, Lc(z, x) =

1

z + µi

+ β−
i eR−(µi)x +β+

i eR+(µi)x .Now, we write that the Laplae transform is C1 at bi for i = 1, . . . , n − 1:
{

β−
i eR−(µi)bi +β+

i eR+(µi)bi = 1
z+µi+1

− 1
z+µi

+ β−
i+1 eR−(µi+1)bi +β+

i+1 eR+(µi+1)bi

β−
i R−(µi) eR−(µi)bi +β+

i R+(µi) eR+(µi)bi = β−
i+1R−(µi+1) eR−(µi+1)bi +β+

i+1R+(µi+1) eR+(µi+1)bi .(15)We rewrite this in a matrix form:
A(µi, bi)

[
β−

i

β+
i

]
=

[ 1
z+µi+1

− 1
z+µi

0

]
+A(µi+1, bi)

[
β−

i+1

β+
i+1

]
, A(µ, x) =

[
eR−(µ)x eR+(µ)x

R−(µ) eR−(µ)x R+(µ) eR+(µ)x .

](16)We set for i = 1, . . . , n − 1, Pi = A−1(µi+1, bi)A(µi, bi), whih is given in expliit formin (13). We also set
v0 = 0, vi = A−1(µi+1, bi)

[
1

z+µi
− 1

z+µi+1
0
]′

+ Pivi−1 and Π0 = Id, Πi = Pi . . . P1,for i = 1 . . . n − 1. We have that βn = Πn−1β1 + vn−1. Sine Lc(z, +∞) = 1/(z + µ1) and
Lc(z,−∞) = 1/(z+µn), we have β+

1 = 0 and β−
n = 0. In partiular, (Πn−1)1,1β

−
1 +(vn−1)1 =

0 whih uniquely determines β−
1 and gives that (Πn−1)1,1 6= 0 sine Lc(z, x) is the uniquesolution of (14) (we an show indeed that (Πn−1)1,1 > 0 beause the entries of Pi arepositive). Then, the oe�ients βi are also uniquely determined for i = 1, . . . , n.Now, we observe that the formula obtained for Lc(z, x) when z > 0 remains valid for

z ∈ C+ sine it is the only possible analytial extension. Last, we onlude using that
Lc(z, 0) = Lc

b,m,µ(z) for z ∈ C+, sine p(t, 0) = P(τ > t).Remark 2.2. Not surprisingly, we an also easily handle the ase where the barriers moveaording to a geometri Brownian motion, i.e.
λt =

n∑

i=1

µi1{Ci e(α−η2/2)t+ηZt≤Vt<Ci−1 e(α−η2/2)t+ηZt}, with 〈W, Z〉t = ρt.We exlude the trivial ase ρ = 1 with η = σ and set ς =
√

σ2 + η2 − 2ρση > 0 sothat Bt = (σWt − ηZt)/ς is a standard Brownian motion. Sine 1{Vt≤Ci e(α−η2/2)t+ηZt} =

1{Bt+
1
ς
(r−α−(σ2−η2)/2)t≤ 1

ς
bi}, we get the Laplae transform of P(τ ≤ t) by simply taking

b =
1

ς
log(C/V0) and m =

1

ς
(r − α − (σ2 − η2)/2)in Theorem 2.1. Said di�erently, onsidering geometri Brownian motion barriers does notlead to a riher family of default distributions.



A losed-form extension to the Blak-Cox model 83 CDS PriingIn this setion, we brie�y reall what a Credit Default Swap is and give its theoretial prieunder the intensity model (6). We also give straightforward but interesting properties ofthe CDS spread in funtion of the di�erent parameters.Credit Default Swaps are produts providing a �nanial protetion against a �rm goingbankrupt on a given period in exhange of regular payments. Here, we desribe a synthetiCDS on a unity notional value starting at time 0, with a maturity T and a payment grid
T0 = 0 < T1 < · · · < Tp = T . Usually, payments our quarterly. For t ∈ [0, T ), β(t)denotes the index in {1, . . . , p} of the next payment date, i.e. suh that Tβ(t)−1 ≤ t < Tβ(t).If the default happens before T , the default leg pays the fration LGD of the notionalthat is not reovered (loss given default). For the sake of simpliity, we assume that LGD ∈
[0, 1] is deterministi. Sine we also onsider a onstant interest rate r > 0, the default legprie is then given by

DL(0, T ) = E[e−rτ
1{τ≤T}LGD] = LGD

[
e−rT

P(τ ≤ T ) +

∫ T

0

r e−ru
P(τ ≤ u)du

]
. (17)The payment leg onsists in regular (time-proportional) payments up to time τ ∧ T .This means that they our until the maturity T as long as the �rm has not defaulted yet.The rate R of these payments is deided at the beginning of the CDS ontrat, and theprie at time 0 of the payment leg is given by:

PL(0, T ) = R × E

[
p∑

i=1

(Ti − Ti−1) e−rTi 1{τ>Ti} + (τ − Tβ(τ)−1) e−rτ
1{τ≤T}

]
.By integrating by parts, we get that

E[(τ − Tβ(τ)−1) e−rτ
1{τ≤T}] = −

∫ T

0

e−ru(u − Tβ(u)−1)dP(τ > u)

= −
p∑

i=1

e−rTi(Ti − Ti−1)P(τ > Ti) +

∫ T

0

e−ru
P(τ > u)du

−
∫ T

0

r e−ru(u − Tβ(u)−1)P(τ > u)du,and therefore, we obtain that
PL(0, T ) = R

[∫ T

0

e−ru
P(τ > u)du −

∫ T

0

r e−ru(u − Tβ(u)−1)P(τ > u)du

]
. (18)The seond term in the braket an often be negleted in pratie, but we have to keepit in our numerial experiments. We also notie that this is the only term depending onthe time-grid struture. This is the reason why we do not reall this dependeny in ournotations for the payment leg whih mainly depends on the starting and ending dates.



A losed-form extension to the Blak-Cox model 9Up to now1, the market pratie has been to quote the fair CDS spread R(0, T ) whihmakes both legs equal:
R(0, T ) = LGD

e−rT P(τ ≤ T ) +
∫ T

0
r e−ru P(τ ≤ u)du

∫ T

0
e−ru P(τ > u)du−

∫ T

0
r e−ru(u − Tβ(u)−1)P(τ > u)du

. (19)This rate depends on the default time only through its umulative distribution funtion
(P(τ ≤ t), t ∈ [0, T ]). In our model, it is denoted by Pb,m,µ(t), and we get the followingresult.Proposition 3.1. With a deterministi interest rate r > 0 and a deterministi reoveryrate 1 − LGD ∈ [0, 1], the CDS prie with the intensity model (6) is given by:

Rmodel(0, T ) = LGD
e−rT Pb,m,µ(T ) +

∫ T

0
r e−ru Pb,m,µ(u)du

∫ T

0
e−ru P c

b,m,µ(u)du−
∫ T

0
r e−ru(u − Tβ(u)−1)P

c
b,m,µ(u)du

,where b = 1
σ

log(C/V0) and m = 1
σ
(r−α−σ2/2). Moreover, if we neglet the seond integralin the denominator this rate is nondereasing with respet to eah Ci, α and eah µi. Wehave also the following bounds:

µ1 .
Rmodel(0, T )

LGD
. µn. (20)Proof. The monotoniity property is a diret onsequene of Proposition A.1. Let usprove (20). From (6), we learly have µ1 ≤ λt ≤ µn for any t ≥ 0. From (3), we have

P c
b,m,µ(t) = E[e−

R t
0

λsds] and then:
e−µnt ≤ P c

b,m,µ(t) ≤ e−µ1t, 1 − e−µ1t ≤ Pb,m,µ(t) ≤ 1 − e−µnt .Plugging these inequalities in (17) and (18), and negleting ∫ T

0
r e−ru(u−Tβ(u)−1)P

c
b,m,µ(u)duin (18), we get:

µ1

r + µ1
(1 − e−(r+µ1)T ) ≤ DLmodel(T )

LGD
≤ µn

r + µn
(1 − e−(r+µn)T ),

1

r + µn

(1 − e−(r+µn)T ) . PLmodel(T ) .
1

r + µ1

(1 − e−(r+µ1)T ),whih gives (20).Remark 3.2. It is possible to extend the intensity model (6) by adding a deterministinonnegative shift funtion ϕ(t). Namely, if the default τ is de�ned by (3) and
λt =

n∑

i=1

µi1{Ci eαt≤Vt<Ci−1 eαt} + ϕ(t),1The ISDA has reommended in early 2009 to swith and to quote CDS through the upfrontvalue U(0, T ) suh that U(0, T ) + PL(0, T ) = DL(0, T ). The CDS spread R is then standardized tosome spei� values. (see www.dsmodel.om/information/ds-model)



A losed-form extension to the Blak-Cox model 10its survival probability satis�es P(τ > t) = e−
R t
0 ϕ(s)ds P c

b,m,µ(t) for t ≥ 0. In pratie,the funtion ϕ(t) an be assumed to be pieewise onstant between the CDS maturities.Following the same onstrution as the one given in [6℄, this funtion an be hosen to�t exatly the CDS market urve while the remaining parameters (b, m, µ) an be used toalibrate further produts.4 Calibration to CDS data with one barrier (n = 2)In this setion, we want to illustrate how the model presented in this paper an be alibratedto the CDS market data. Here, we fous on the simplest form of the model with only onebarrier. The alibration issue with n > 2 is disussed in Setion 5. Here, our aim is not toprovide the ultimate alibration proedure for the model. This task would require to havea market feedbak, and we leave it to pratitioners. We have deided instead to make oneof the simplest hoie, and we minimize the Eulidean distane between the theoretialand market CDS pries. Thus, we want to illustrate on market data piked from the pastin whih ases the model seems to give a rather good �t.4.1 The Calibration proedureNow, we want to desribe the alibration method we have used in our numerial ex-periments. We denote by T (1) < · · · < T (ν) the maturities of the quoted CDS, and
Rmarket(0, T (1)), . . . , Rmarket(0, T (ν)) their market pries. In pratie, we have ν = 8 mar-ket data sets for
T (1) = 0.5, T (2) = 1, T (3) = 2, T (4) = 3, T (5) = 4, T (6) = 5, T (7) = 7 and T (8) = 10 years,(21)and quarterly payments. From Theorem 1.1, the default distribution depends on the fourparameters b, m, µ1 and µ2. Our goal is to minimize the following distane between modeland market pries:

min
b,m∈R,0<µ1<µ2

ν∑

i=1

(Rmodel(0, T (i)) − Rmarket(0, T (i)))2. (22)As already mentioned, there are probably better riteria to be minimized aording to themarket data and the purpose of the alibration. Here, we do not wish to disuss this point,but we rather want to qualitatively show what kind of CDS rate urves T 7→ Rmarket(0, T )the model an �t. That is why we have hosen a very simple riterion to minimize.To minimize (22), we simply use a gradient algorithm, whih is very fast and takes ad-vantage of the losed formula (4) and the Laplae inversion methods presented in Setion 6.To do so, we need to ompute the CDS pries Rmodel(0, T (i)) and their derivatives withrespet to eah parameter p ∈ {b, m, µ1, µ2}. In Setion 6.2, we have explained in detailhow to reover Pb,m,µ1,µ2(t) on a time-grid from its Laplae transform (4) using the FFT.More preisely, we have used the FFT parameters given by (30) with ε = 10−5. Similarly,



A losed-form extension to the Blak-Cox model 11we obtain by FFT the derivatives ∂pPb,m,µ1,µ2(t) on the same time-grid. Their Laplaetransforms an be obtained by simply di�erentiating formula (4). However, we have no-tied that �nite di�erenes an also be used as a good proxy of the derivatives. Then, it iseasy to ompute the default and payment legs and their sensitivities with respet to eahparameter. Numerial integration is performed using Simpson's rule. This is very e�ientthanks to the regularity of the df (Proposition A.3). Last, we ompute CDS pries andtheir derivatives.To test this alibration proedure, we have omputed CDS pries in our model on-sidering them as Market data, and then we have tried to �nd bak the parameters byminimizing (22). The minimization is really fast and takes very few seonds. Thanksto (20), we start the gradient algorithm from the point
b = 0, m = 0, µ1 = min

i=1,...,ν
Rmarket(0, T (i))/LGD, µ2 = max

i=1,...,ν
Rmarket(0, T (i))/LGD.Unfortunately, it sometimes fails and the gradient algorithm is trapped in loal minima.This is partly due to a rather sensitive dependeny between the parameters b and m. Then,it an be worth starting the gradient algorithm from a point where these parameters areboth non zero. However, it is di�ult to have a guess on the values of b and m. We haveused the following way to get a prior on (b, m).

• We take a �nite set S ⊂ R2, typially S = {−B + 2iB/p, i = 0, . . . , p} × {−M +
2iM/p, i = 0, . . . , p} for some B, M > 0, p ∈ N∗. For (b, m) ∈ S, we minimize theriterion (22) with respet to µ1 and µ2, keeping b and m onstant. In pratie, wehave mostly taken B, M ∈ {1, 2} and p = 8.

• Then, we selet the ouple (b, m) ∈ S whih ahieves the smallest sore and useit (with the optimized parameters µ1 and µ2) as the initial point of the gradientalgorithm for (22).This proedure generally improves the basi one. However, our minimization problemis ill-posed and signi�antly di�erent parameters an lead to rather lose CDS rates. Letus take the ase of a onstant intensity model λ > 0, whih leads to a �at CDS rateurve from (20). This ase orresponds to many di�erent sets of parameters in our model,namely:1. µ1 = µ2 = λ, with b, λ ∈ R arbitrarily hosen,2. µ1 = λ, b → −∞, with m ∈ R and µ2 > µ1 arbitrarily hosen,3. µ2 = λ, b → +∞, with m ∈ R and µ2 > µ1 arbitrarily hosen.Thus, alibrating very �at CDS spreads an lead to many di�erent satisfatory parameteron�gurations. We have found other less trivial examples when testing our alibrationproedure. In Figure 1, we give two sets of parameters leading to CDS pries whih arelose up to a 1% relative error but have very similar dfs. This shows that only alibratingthe model to CDS pries, whih only depend on the default df, may not be su�ient todetermine parameters uniquely. Further information on the dependeny between the �rmvalue and the default event an be neessary in some ases for that.
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Figure 1: In the l.h.s. piture the CDS pries are plotted as funtions of the matu-rities (21). Pries are given in basis points (10−4) with LGD = 1 and r = 5%. Ther.h.s piture shows the orresponding umulative distribution funtions. The dashed lineis obtained with b = −0.2, m = 0.6, µ1 = 0.005 and µ2 = 0.3 and the solid line is with
b = 2.168849, m = 0.912237, µ1 = 0.008414 and µ2 = 0.067515.



A losed-form extension to the Blak-Cox model 134.2 Calibration on Market dataNow, we want to give alibration results under very di�erent CDS rate data. Here, wehose to alibrate all the four parameters (b, m, µ1, µ2) to hek if they are su�ient to�t the market data well. However, some of these parameters have an eonomi meaning.For example, the �rm value an be related to its balane sheet and any other relevantinformation available in pratie. In that ase, one would like to �x some parameters orrestrit them to lie in some interval. Here, for the sake of simpliity, we only onsider theinformation given by the CDS pries and leave a more elaborated alibration for furtherresearh.We have piked up very di�erent examples from 2006 to 2009 on Crédit Agriole (bank,CA in short), PSA, Ford (ar ompanies) and Saint-Gobain (glass maker, SG in short).In all our examples, we have set LGD = 0.6, exept for Crédit Agriole for whih wehave taken LGD = 0.8 as it is ommonly done for bank ompanies. We have also taken
r = 5% for the sake of simpliity, sine r has anyway a rather minor impat on the CDSspread values. The maturities observed on the market are the one listed in (21). In allthe �gures, we have plotted in dotted lines the CDS market data and in solid lines theCDS pries obtained with the alibrated model. Pries are given in basis points (10−4).For eah example, we give the alibrated parameters (b, m, µ1, µ2). To interpret theminto the original �rm value framework, we have also indiated the orresponding values of
V0/C = e−bσ and α = r − σm − σ2/2, taking the one-year at-the-money implied volatilityas a proxy of the �rm value volatility. However, as pointed in Setion 4.1, signi�antlydi�erent parameters an lead to analogous CDS pries. The alibration to CDS pries onlyallows to �t the default df. This is why we have added in eah ase a subplot of thealibrated df, (Pb,m,µ1,µ2(t), t ∈ [0, T (8)]).We have split the results into three lasses.

• The urve T 7→ Rmarket(0, T ) is mostly inreasing. Roughly speaking, it happenswhen the �rm's future is more unsure than its present.
• The urve T 7→ Rmarket(0, T ) is mostly dereasing. This usually means that the �rmis in a ritial period. If it overomes this time, its future will be less risky.
• Most of the market data orrespond to the two previous ases. However, when a �rmswithes from one regime to the other, the CDS urve tends to be �at, keeping oftenhowever a gentle slope.4.2.1 Inreasing CDS spreadsWe start with data prior to the subprime risis on ompanies presenting a low risk pro�le.Their alibration are plotted in Figure 2. Not surprisingly, in this ase the model is ableto �t the pries well, with a relative error of a few perents. As one ould expet, the �rmvalue starts in both ases above the threshold C in the �µ2 region� and is drifted to the�µ1 region� sine the parameter m is negative (or equivalently, α > r − σ2/2).We have also onsidered inreasing patterns with a higher level of risk, and the al-ibrating results are drawn in Figure 3. The Ford urve (left) is really well �tted. The
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Figure 2: Left, CA 08/31/06: b = −2.3415, m = −0.2172, µ1 = 2.164 × 10−4, µ2 =
5.597× 10−3, V0/C = 1.753, α = −1.78× 10−2. Right, PSA 05/03/06: b = −2.3878, m =
−0.3745, µ1 = 5.581 × 10−4, µ2 = 2.214 × 10−2, V0/C = 1.757, α = 2.038 × 10−2.Saint-Gobain rates (left) are globally well aptured, but some irregularities are smoothedby the alibrated urve. One again, the �rm value starts above the threshold in the saferside, whih on�rms the heuristi interpretation made above on inreasing CDS urves.4.2.2 Dereasing CDS spreadsNow, we want to test if the model is also able to �t dereasing CDS urves. As alreadymentioned, it happens when a �rm goes through a di�ult period. We give in Figure 4two stressed examples on Ford ompany, taken at the limax of its risis in November 2008(left) and in February 2009 (right). Both urves are orretly �tted. The most signi�antrelative di�erene between market and model pries is equal to 6% on November data and2% on February data. As expeted, in both ases, the �rm value starts below the thresholdin the �µ2 region� and goes gradually to the �µ1 region� sine m > 0 (or equivalently,
α < r − σ2/2).Now, we want to test the model on dereasing but less stressed patterns. We also wantto see if it an in addition �t an initial bump. Indeed, it happens quite often on dereasingurves that the 6-month rate is however lower than the one-year rate. Roughly speaking,this means that the �rm is in di�ulty but the market however believes that it has someguarantee to live in the very short future. We have drawn in Figure 5 two examples onPSA (left) and Saint-Gobain (right). In the �rst ase, the model does not seem able torepliate the initial bump, but the remaining part of the urve is well �tted. The bumpis approximated by a �at urve in between. Doing this, the gradient algorithm explores
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Figure 3: Left, Ford 11/30/06: b = −1.734, m = −1.363, µ1 = 1.2 × 10−2, µ2 = 7.05 ×
10−2, V0/C = 2.173, α = 0.436. Right, SG 10/08/08: b = −1.897, m = 0.1725, µ1 =
2.135 × 10−2, µ2 = 0.652, V0/C = 2.8506, α = −0.3213.rather large and unrealisti parameters for b and m. Instead, on the Saint-Gobain example,the whole shape is well �tted with very rational parameters.4.2.3 Almost �at CDS spreadsLast, we give two examples of rather �at CDS rate urves. This kind of pattern is moreunommon and is observed in partiular when a �rm swithes from an inreasing to adereasing urve like Saint-Gobain between 10/08/08 (Fig. 3) and 12/01/08 (Fig. 5). Flaturves are a priori not very di�ult to �t sine a onstant intensity model an alreadygive a �rst possible approximation. We show in Figure 6 the transition made by the Saint-Gobain urve. On these �at shapes, the �tting is really good and the relative error onpries does not exeed 1%.Let us draw a short onlusion on these alibration results. The model is able to �t a widerange of CDS data, from a very low risk level (Fig. 2) to highly stressed spreads (Fig. 4) aswell as intermediate settings (Fig. 3, 5, 6) that are more frequently observed. Of ourse,not all the pries are perfetly mathed, but the spread urves are globally well aptured.Conerning the meaning of the parameters, one has to be areful sine only alibrating tothe CDS rates is a priori not enough to determine them (see Fig. 1). However, at least inthe extreme settings, the values of V0/C and α whih we have obtained are as expetedgreater (resp. lower) than 1 and r − σ2/2 in Fig. 2 (resp. Fig. 4), whih means that the�rm value gradually shifts from the µ1 (resp. µ2) to the µ2 (resp. µ1) area.
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Figure 4: Left, Ford 11/24/08: b = 0.209, m = 0.344, µ1 = 0.2014, µ2 = 1.986, V0/C =
0.716, α = −1.3. Right, Ford 02/25/09: b = 0.8517, m = 0.5277, µ1 = 6.85× 10−2, µ2 =
0.7806, V0/C = 0.3355, α = −1.2676
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Figure 5: Left, PSA 03/06/09: b = 15.55, m = 4.889, µ1 = 6.055 × 10−2, µ2 =
0.104, V0/C = 6.32×10−5, α = −3.3. Right, SG 12/01/08: b = −0.268, m = 0.567, µ1 =
5.46 × 10−2, µ2 = 0.154, V0/C = 1.1837, α = −0.6213.
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Figure 6: Left, SG 10/21/08: b = −1.032, m = 0.493, µ1 = 4.75 × 10−2, µ2 = 9.23 ×
10−2, V0/C = 1.83, α = −0.531. Right, SG 10/31/08: b = −3.42 × 10−2, m = 4.69 ×
10−2, µ1 = 1.45 × 10−2, µ2 = 9.295 × 10−2, V0/C = 1.021, α = −0.282.5 Calibration with multiple barriers (n ≥ 3)In the previous setion, we have only onsidered the alibration with one barrier. We havenotied that the model already �ts the market well in that ase for a rather wide range ofdata. Here, we want to disuss the alibration of the full model. The default distributionis parametrized by 2n parameters (m, b1, . . . , bn−1 and µ1, . . . , µn).A �rst natural idea would be to �nd impliit parameters. Thus, CDS market data ouldbe expressed as an impliit funtion that gives the intensity as a funtion of the �rm value.For example, we ould �x µ1, . . . , µn to some standard values orresponding to redit gradesand look for parameters m, b1, . . . , bn−1 whih exatly �t the CDS market data. However,it is not possible in general to get an impliit urve like this. We explain why by giving aheuristi argument. From (8), we an see that the default intensity will basially inrease(resp. derease) when m < 0 (resp m > 0). Thanks to the Brownian di�usion, this globaltrend an be moderated. For example, if we onsider the ase with one negative barrierand m > 0, the default intensity an inrease for short maturities beause the di�usionpart enables to explore the riskiest region at the beginning. This is what happens in theright hand side example of Figure 5 and gives a bump shape for CDS spreads. However,not all kinds of CDS shapes an be obtained with the intensity model (6). In Figure 7, wehave plotted the deterministi pieewise default intensity whih exatly mathes CDS datafor PSA in Marh 2009. We observe that it is nondereasing up to 2 years, noninreasingbetween 2Y and 7Y, and again nondereasing on the last period. Typially, the model (6)annot reprodue this kind of alternate pro�le and an only apture a global trend. Thus,
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Figure 7: PSA 03/06/09: Left: pieewise onstant deterministi intensity funtion thatexatly �ts CDS spreads data. Right: alibration with n = 3 of CDS spreads up to maturity7Y: m = 0.4, b1 = 0.5, b2 = −1.5, µ1 = 3.398 × 10−2, µ2 = 0.11417 and µ3 = 1.917.we annot get an impliit urve for these kinds of CDS data for whih the default riskswings along the time.Sine it is not possible to �nd impliit parameters, we now want to disuss the possibilityto alibrate several barriers. Calibrating more than one barrier is not really easy in pratie.First of all, we have observed that the alibration with one barrier was already ill-posed(see Figure 1) beause two di�erent sets of parameters an lead to the same distributionfuntion. Obviously, this will not improve when adding parameters. The seond reasonis that, beyond the meaning of the alibrated parameters, the alibration with only onebarrier in Setion 4 was already rather satisfying and it is in pratie rather di�ult to geta signi�antly better �t of CDS data with two or more barriers. This is why we have mainlyfoused on an example where the alibration with only one barrier is not fully satisfying.Namely, we have again onsidered the data of PSA in Marh 2009. Even if CDS data arereasonably �tted, the alibrated parameters in 5 are rather stressed b ≈ 15 and m ≈ 5,whih makes the di�usion part rather negligible. Roughly speaking, the intensity is mainlyequal to µ2 before 3Y and to µ1 after 3Y from Equation (8) and somehow, the alibratedmodel is not really far from a deterministi intensity model. Thus, it does not really dependon the �rm value. A possible reason of the di�ulty to �t these data ould be the alternateshape of the alibrated pieewise intensity in Figure (7) whih annot be aptured by ourmodel as it has already been mentioned before. To orret this drawbak, it is possible inpratie to add a deterministi shift as suggested in Remark 3.2. However, for the sakeof simpliity, we have instead deided to ignore the 10Y CDS data and minimize the ostfuntion (22) with ν = 7. Doing so, we have not been able to signi�antly improve the



A losed-form extension to the Blak-Cox model 19alibration obtained in Figure 5 with one barrier. Instead, we have been able to �t ratherwell the CDS data up to 7Y by adding a seond barrier as given in Figure 7. In partiular,the initial bump is partiularly well �tted. We also observe that it was useful to removethe 10Y data from the alibration. The alibrated parameters have been obtained by usingsome heuristi arguments on the expeted time spent below a barrier. Explaining thedetails would lead to a rather tedious disussion whih we prefer to skip.To onlude this setion, we would like to stress that alibrating with more than onebarrier is di�ult and in general does not signi�antly improve the �t to CDS data. Eventhough in some ases we get a better �t by adding one barrier, the alibrated parametersare also not so meaningful sine we only have 8 data. However, the model with manybarriers an be interesting to �t other possible liquid produts like options on CDS.6 Numerial methods for Laplae inversionFrom Theorem 1.1, we know that the default time distribution is tratable using thesemi-analytial formula for its Laplae transform. In this setion, we are investigatingdi�erent ways of inverting this Laplae transform to reover the umulative distributionfuntion of the default time τ , and also its �rst order derivatives with respet to eahparameter. Reovering these derivatives enables us to quikly ompute the sensitivitieswith respet to the di�erent parameters, whih is of a great importane for the alibrationproedure, if one wants to use a gradient algorithm to minimize some distane between thereal and theoretial pries.In this setion, f : R → R is a real valued funtion vanishing on R− and suh that
f(t) e−γt is integrable for some γ > 0. We will denote by f̂(z) =

∫∞
0

e−zt f(t)dt its Laplaetransform for z ∈ C when the integral is well-de�ned, i.e at least when Re (z) ≥ γ. Thesope of this setion is to present numerial methods to reover f from f̂ and analyze theirauraies. Basially in our model, f will be either P(τ ≤ t) or its derivative w.r.t. one ofthe model parameters.6.1 The Fourier series approximationFrom the formulas obtained for the Laplae transform of the default time, it is lear thatthese Laplae transforms are analytial in the omplex half-plane C+. Thanks to [18℄, weknow how to reover a funtion from its Laplae transform.Theorem 6.1. Let f be a ontinuous funtion de�ned on R+ and γ a positive number. Ifthe funtion f(t) e−γt is integrable, then its Laplae transform f̂(z) =
∫∞
0

e−zt f(t)dt is wellde�ned on {z ∈ C,Re (z) ≥ γ}, and f an be reovered from the ontour integral
f(t) =

1

2πi

∫ γ+i∞

γ−i∞
est f̂(s)ds =

eγt

2π

∫ +∞

−∞
e−ist f̂(γ − is)ds, t > 0. (23)



A losed-form extension to the Blak-Cox model 20For any real valued funtion satisfying the hypotheses of Theorem 6.1, we introduethe following disretisation of Equation (23) with step h > 0

fh(t) =
h eγt

2π

∞∑

k=−∞
e−ikht f̂ (γ − ikh) . (24)From [1, Theorem 5℄, one an prove using the Poisson summation formula thatProposition 6.2. If f is a ontinuous bounded funtion satisfying f(t) = 0 for t < 0, wehave

∀t < 2π/h, |f(t) − fh(t)| ≤ ‖f‖∞
e−2πγ/h

1 − e−2πγ/h
. (25)6.2 The fast Fourier transform approahIn this setion, we fous on the inversion using an FFT based algorithm. First, let usreall that for a given integer N ∈ N

∗, the forward disrete Fourier transform (DFT) of
(xk, k = 0, . . . , N − 1) is de�ned by

x̂l =

N−1∑

k=0

e−2iπkl/N xk, for l = 0, . . . , N − 1.It is well known that there are Fast Fourier Transform algorithms to ompute (x̂l, l =
0, . . . , N − 1) with a time omplexity proportional to N log(N). In their pathbreakingpaper, Cooley and Tukey [12℄ have given suh an algorithm for the speial ase where N isa power of 2. Many improvements of this algorithm have been proposed in the literaturerelaxing this onstraint on N . In �nane, the use of the FFT for option priing has beenpopularized by Carr and Madan [9℄. Here, we use the FFT algorithm in a di�erent mannerto ompute the df of τ and its derivatives with respet to eah parameter up to some time
T > 0.Let us assume that we want to reover the funtion f on the interval [0, T ]. Typially,
T will represent the largest maturity of the CDS that one wishes to onsider. We set
h < 2π/T , so that h < 2π/t for any t ∈ (0, T ] and we an therefore ontrol the errorbetween the Fourier series fh and f thanks to Proposition 6.2:

∀t ∈ (0, T ], |f(t) − fh(t)| ≤ ‖f‖∞
e−2πγ/h

1 − e−2πγ/h
.Sine f is real valued, f̂(z̄) = f̂(z), and we obtain

fh(t) =
h eγt

2π
f̂(γ) +

h eγt

π
Re

( ∞∑

k=1

e−ikht f̂ (γ − ikh)

)

, (26)



A losed-form extension to the Blak-Cox model 21whih an be approximated by the following �nite sum
fN

h (t) =
h eγt

2π
f̂(γ) +

h eγt

π
Re

(
N∑

k=1

e−ikht f̂ (γ − ikh)

)
. (27)For 1 ≤ l ≤ N , we set tl = 2πl/(Nh) to get

fN
h (tl) =

h eγtl

2π
f̂(γ) +

h eγtl

π
Re

(
N∑

k=1

e−2iπkl/N f̂ (γ − ikh)

)

=
h eγtl

2π
f̂(γ) +

h eγtl

π
Re

(
e−2iπ(l−1)/N

N∑

k=1

e−2iπ(k−1)(l−1)/N e−2ikπ/N f̂ (γ − ikh)

)
.Therefore, (fN

h (tl), l = 1, . . . , N) an be omputed easily using the diret FFT algorithmon the vetor (e−2ikπ/N f̂ (γ − ikh) , k = 1, . . . , N).Now, let us analyze the error indued by approximating (f(tl))l by (fN
h (tl))l. Thefollowing proposition gives an upper bound of the error involved in the trunation of theseries appearing in fh.Proposition 6.3. Let f be a funtion of lass C3 on R+ suh that there exists ǫ > 0satisfying ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s). Let us assume moreover that f(0) = 0. Let

A ∈ (0, 2π). Then, there exists a onstant K > 0 independent of t suh that:
∀t ∈ (0, A/h], |fN

h (t) − fh(t)| ≤ K(1 + 1/t)
eγt

N2
. (28)Proof. From three suessive integrations by parts, we get:

f̂ (γ − ikh) =

∫ ∞

0

e(ikh−γ)u f(u)du

=
−f ′(0)

(ikh − γ)2
+

f ′′(0)

(ikh − γ)3
−
∫ ∞

0

f (3)(u)

(ikh − γ)3
e(ikh−γ)u du.We set Ek =

∑k−1
j=0 e−ijht = (1 − e−ikht)/(1 − e−iht) and get by a summation by parts

N∑

k=0

e−ikht

(ikh − γ)2
=

EN+1

(iNh − γ)2
+

N∑

k=1

Ek
h(2γ + i(2k − 1)h)

(ikh − γ)2(i(k − 1)h − γ)2
− 1

γ2
.Therefore, we dedue that:

2π

heγt
(fN

h (t) − fh(t)) = 2f ′(0)Re

(
EN+1

(iNh − γ)2
+

∞∑

k=N+1

Ek
h(2γ + i(2k − 1)h)

(ikh − γ)2(i(k − 1)h − γ)2

)

+2Re

( ∞∑

k=N+1

e−ikht f ′′(0) −
∫∞
0

f (3)(u) e(−γ+ikh)u du

(ikh − γ)3
du

)
.



A losed-form extension to the Blak-Cox model 22Then, using that for any k ∈ N |Ek| ≤ 2/|1 − e−iht|, we get:
∣∣∣

2π

heγt
(fN

h (t) − fh(t))
∣∣∣ ≤ 4|f ′(0)|

|1 − e−iht|

(
1

γ2 + (Nh)2
+

∞∑

k=N+1

h

√
(2γ)2 + ((2k − 1)h)2

(γ2 + (kh)2)(γ2 + ((k − 1)h)2)

)

+2(|f ′′(0)| + C/ǫ)
∞∑

k=N+1

1

(γ2 + (kh)2)3/2
,where C = supt≥0 |f (3)(t) e(ǫ−γ)t |. The result follows from notiing that supy∈[0,A]

y
|1−e−iy| <

∞.Corollary 6.4. Let f be a bounded funtion of lass C3 on R+ suh that there exists ǫ > 0satisfying ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s). Let A ∈ (0, 2π) and h ≤ A/T .Then, there exists a onstant K > 0 suh that
∀l ≥ 1, tl ≤ T, |fN

h (tl) − f(tl)| ≤ K max

(
eγT

N2
,

h

2πN

)
+ ‖f‖∞

e−2πγ/h

1 − e−2πγ/h
.Proof. It is su�ient to use Propositions 6.2 and 6.3, and to notie that maxt∈[t1,T ](e

γt /t) ≤
max(eγt1 /t1, e

γT /T ).Remark 6.5. When there is only one barrier (n = 2) the results obtained in Appendix A.2enable to hek the regularity needed in the above orollary to ompute the umulativedistribution funtion of the default time.When b 6= 0, the funtions Pb,m,µ1,µ2(t) and ∂pPb,m,µ1,µ2(t) for p ∈ {b, m, µ1, µ2} satisfythe above assumption thanks to Proposition A.3.When b = 0, we an hek from (4) that there exist some onstants c and cp for
p ∈ {m, µ1, µ2} suh that the following expansions hold when k → +∞:
L0,m,µ1,µ2(γ−ikh) =

c

(γ − ikh)2
+O(1/k3), and ∂pL0,m,µ1,µ2(γ−ikh) =

cp

(γ − ikh)2
+O(1/k3).Therefore, we an use the same proof as in Proposition 6.3 to bound the trunation errorby K(1+1/t) eγt

N2 . On the ontrary, the derivative with respet to b satis�es ∂bL0,m,µ1,µ2(γ−
ikh) = (m +

√
2(γ − ikh + µ1) + m2)L0,m,µ1,µ2(γ − ikh) = cb

(γ−ikh)3/2 + O(1/k5/2). Thus,the same proof only gives a trunation error bounded by K(1+1/t) eγt

N3/2 in this ase, whihhowever still goes to zero when N is large enough.6.3 Pratial implementation in our model.Now, let us explain how to hoose the parameters in our model in order to ahieve anauray of order ε > 0. We start with the one barrier ase (n = 2) for whih we an take
γ > 0 as lose to 0 as we wish thanks to Proposition A.3. The following onditions

h < 2π/T,
2πγ

h
= log(1 + 1/ε), N > max

(
h

2πε
,

√
eγT

ε

) (29)



A losed-form extension to the Blak-Cox model 23ensure by Corollary 6.4 that supl≥1,tl≤T |fN
h (tl) − f(tl)| is of order ε.In pratie, it is important to make the time grid (tl, l = 1 . . .N) on whih we reoverthe df (and its derivatives) oinide with the payment dates of all the produts onsidered.Typially, this grid should enompass the quarterly time grid to easily ompute the CDSpries and their sensitivities. More preisely, we will ompute the integrals de�ning defaultand payment leg pries in (17) and (18) using the Simpson rule, whih is very e�ient sinethe integrated funtions are regular enough (namely C4) as stated by Proposition A.3. Todo so, we need a time grid at least twie thinner than the payment grid, and therefore 1/8has to be a multiple of t1 = 2π

Nh
. Sine in this paper we onsider CDS up to T = 10 years,we make the following hoie when onsidering only one barrier (n = 2):

T = 10, h =
5π

8T
, γ =

h

2π
log(1 + 1/ε), N = max

(

2

‰

log2

„

max

„

h
2πε

,

q

eγT

ε

««ı

, 27

)

. (30)This hoie automatially guarantees the latter ondition: 1/8 is learly a multiple of
t1 = 16/N .When onsidering more than one barrier, we no longer have theoretial results on thetime regularity of the df of the default time like the one obtained in Appendix A.2.However, the numerial proedure still works. From our numerial experiments, we havenotied that it is wise to derease h, espeially when b1 or bn−1 are far away from 0. Inthat ase we have used the following parameters:

T = 10, h =
5π

32T
, γ =

h

2π
log(1 + 1/ε), N = max

(
2

‰

log2

„

max

„

h
2πε

,

q

eγT

ε

««ı

, 29

)
. (31)6.4 The Euler summationThe Laplae inversion based on the FFT is very e�ient and enables to very quiklyompute the df and its derivatives on the whole time interval. However, the time grid hasto be regular, whih may be a possible drawbak when dealing with bespoke produts thathave unusual payment dates. Here, we present another method to reover the funtion ffrom its Laplae transform at a given time t ≥ 0.Unlike the FFT approah, we an here hoose h as a funtion of t, and the trik onsistsin hoosing h = π/t to get an alternating series in (26):

fπ/t(t) =
eγt

2t
f̂(γ) +

eγt

t

∞∑

k=1

(−1)k Re

(
f̂

(
γ + i

kπ

t

))
. (32)Rather than simply trunating the series like in the FFT algorithm, we use the Eulersummation tehnique as desribed by [1℄, whih onsists in omputing the binomial averageof q terms from the N-th term of the series appearing in (32). The following propositiondesribes the onvergene rate of the binomial average to the in�nite series fπ/t(t) when pgoes to ∞. Its proof an be found in Labart and Lelong [15℄.



A losed-form extension to the Blak-Cox model 24Proposition 6.6. Let q ∈ N∗ and f be a funtion of lass Cq+4 suh that there exists ǫ > 0satisfying ∀k ≤ q+4, f (k)(s) = O(e(γ−ǫ)s). We onsider the trunation of the series in (32)
fN

π/t(t) =
eγt

2t
f̂(γ) +

eγt

t

N∑

k=1

(−1)k Re

(
f̂

(
γ + i

πk

t

))
,and E(q, N, t) =

∑q
k=0

(
q
k

)
2−qfN+k

π/t (t). Then,
∣∣fπ/t(t) − E(q, N, t)

∣∣ ≤ t eγt |f ′(0) − γf(0)|
π2

N ! (q + 1)!

2q (N + q + 2)!
+ O

(
1

N q+3

)when N goes to in�nity.In pratie, for q = N = 15 and γ = 11.5/t, we have eγt N ! (q+1)!
2q (N+q+2)!

≈ 3.13 × 10−10, andit is therefore su�ient to make the summation aurate up to the 9th deimal plae. Onthe other hand, we have |fπ/t(t)− f(t)| ≤ ‖f‖∞ e−2γt

1−e−2γt from (6.2), whih is of order 10−10.Finally, the overall error is of order 10−10. Note that, for a �xed t, the omputation ostof E(q, N, t) is proportional to N + q.7 Conlusion and further prospetsIn this paper, we have proposed a very simple and natural extension of the Blak-Coxmodel. It is an hybrid model, and ontrary to hitting time models, it has a non-zero defaultintensity away from the threshold. Besides, the parameters have a lear heuristi meaning.The strength of this Blak-Cox extension is that the umulative distribution funtion ofthe default time remains known expliitly through its Laplae transform. This allows toinstantaneously ompute CDS pries and their sensitivities to the model parameters. Itespeially enables to get a quik way to alibrate the parameters to the CDS data. Asshown in Setion 4, onsidering the model with only one barrier is su�ient to orretly �ta wide range of CDS spread urves. Nonetheless, one has to be areful beause even thoughthis alibration generally leads to a orret �t of the default distribution, it may happenthat the parameters themselves are not meaningful. Two signi�antly di�erent parametersets an give similar CDS spreads, and one has to get further information to neatly �t theparameters.In our study, we have onsidered the parameters of the model as free parameters andwe have �tted them to CDS market pries. Doing so, it is alibrated under a risk-neutralprobability and an be used for priing and hedging purposes. However, it is also possibleto have a �strutural approah� and to determine the model parameters by analyzing �rm'seonomi data. Thus, it would be interesting to determine from the balane sheet of a �rmwhat the value of V0 and of the other di�erent model parameters would be. In that ase,the thresholds Ci ould be related to redit events of the �rm or to some ritial �rmvalues around whih its poliy has to be hanged. This would give an interesting way ofestimating the default probabilities under the historial probability measure. A possible



A losed-form extension to the Blak-Cox model 25way of implementing this would be to onsider the rating of the �rm by an ageny, andassoiate to eah rating a default intensity µi. Then, the barriers Ci and the parameter αwould be obtained from the balane sheet of the �rm by some eonomial analysis. Thiskind of strutural approah for the alibration would be of ourse also really interesting.However, it obviously requires additional data and expertise in eonomi analysis, and weleave it for future work.Another interesting ontinuation of this work would be to study how this model anbe used in the multiname setting using the so-alled bottom-up approah (see for exampleBieleki et al. [3℄). More preisely, let us onsider a basket of default times and let us assumethat the underlying �rm values follow a multidimensional Blak-Sholes model. We haveexplained in this paper how it is possible to �t the CDS data of eah basket omponentwith one barrier. One we have �tted C, α, µ1 and µ2 for eah �rm, we would like to �t thewhole model to multiname produts suh as CDO tranhes. To do so, one has to alibratethe orrelation matrix between the �rm values and, if neessary, the dependeny betweenthe exponential variables, whih trigger the default times. However, the orrelation matrixof the �rm values is also losely related to the one of the stoks. Ideally, one would like to�nd a alibration proedure that is both onsistent with equity and redit markets. Moresimply, this kind of model ould make a bridge between these markets and qualitativelyompare how they prie the dependeny between ompanies.A Mathematial properties of the df of τThe sope of this setion is to state some mathematial properties of the umulative dis-tribution funtion of τ . We will denote by
Πn = {(b, m, µ) ∈ R

n−1 × R × R
n
+, b1 > · · · > bn−1, µ1 < · · · < µn},the set of admissible parameters in a setting with n− 1 barriers. We reall the onvention

b0 = +∞ and bn = −∞.A.1 Basi properties and regularity w.r.t parametersFirst, we state a result on the monotoniity with respet to eah parameter.Proposition A.1. For any t ≥ 0, the funtion Pb,m,µ(t) is nondereasing with respet toeah bi and eah µi, and is noninreasing with respet to m.Proof. From (9), Pb,m,µ(t) = 1 − E

[
e−

R t
0

Pn
i=1 µi1{bi≤Ws+ms<bi−1}

ds
]
. It is then su�ient toobserve that ∑n

i=1 µi1{bi≤x<bi−1} = µ1 +
∑n−1

i=1 (µi+1 − µi)1{x<bi} is noninreasing w.r.t x,nondereasing w.r.t. eah µi for i = 1, . . . , n, and nondereasing w.r.t. eah bi for i =
1, . . . , n − 1 thanks to (5).In the alulation of the Laplae transform in Theorem 2.1, we have obtained di�erentformulas aording to the integer i suh that bi ≤ 0 < bi−1. However, Pb,m,µ(t) and



A losed-form extension to the Blak-Cox model 26its derivatives w.r.t eah parameter are ontinuous funtions of (b, m, µ). This featureis important when dealing with alibration, sine we will use a gradient algorithm tominimize some distane between the real and theoretial pries: there is no disontinuitywhen rossing barriers (i.e. when ∃i ∈ {1, . . . , n − 1}, bi = 0).Proposition A.2. The funtion Pb,m,µ(t) is ontinuous w.r.t. (b, m, µ) ∈ Πn, t ≥ 0. Ithas derivative w.r.t. bi, i = 1, . . . , n−1 (resp. m and eah µi, i = 1, . . . , n) and ∂bi
Pb,m,µ(t)(resp. ∂mPb,m,µ(t) and ∂µi

Pb,m,µ(t)) is ontinuous w.r.t. (b, m, µ) ∈ Πn and t ≥ 0.Proof. We set for t ≥ 0,
dP̃

dP

∣∣∣
Gt

= exp(−mWt − m2t/2),so that (W̃s = Ws +ms, s ∈ [0, t]) is a Brownian motion under P̃. We get from (9) by usingGirsanov's Theorem:
P c

b,m,µ(t) = e−µ1t
E

[
e−

R t
0

Pn−1
i=1 (µi+1−µi)1{Ws+ms<bi}

ds
]

= e−µ1t
Ẽ

[
emW̃t−m2t/2 e

−
R t
0

Pn−1
i=1 (µi+1−µi)1{W̃s<bi}

ds
]

= e−µ1t
Ẽ

[
emW̃t−m2t/2 e−

Pn−1
i=1 (µi+1−µi)

R bi
−∞ ℓ̃t(x)dx

]
,where ℓ̃s(x) denotes the loal time assoiated to (W̃s, s ∈ [0, t]) and is ontinuous withrespet to (s, x). Therefore, it is ontinuous w.r.t. (b, m, µ) ∈ Πn and t ≥ 0. Moreover, foreah parameter, we an di�erentiate inside the expetation using Lebesgue's theorem andthe derivative is ontinuous w.r.t. (b, m, µ) ∈ Πn and t ≥ 0, whih yields the result.A.2 Time regularity when n = 2In order to study the auray of the di�erent algorithms presented in Setion 4 to numer-ially invert the Laplae transform of τ , it is essential to know how regular the distributionfuntion an be expeted to be. Our analysis relies on the formula of the Laplae trans-form (4). This is why we only onsider here the ase n = 2.Proposition A.3. When b 6= 0, the funtions Pb,m,µ1,µ2(t) and ∂pPb,m,µ1,µ2(t) for p ∈

{b, m, µ1, µ2} are of lass C∞ on [0,∞). Moreover, for any ε > 0, we have
∀k ∈ N

∗, P
(k)
b,m,µ1,µ2

(t) =
t→∞

O(e(ε−µ1)t) and ∀k ∈ N, ∂pP
(k)
b,m,µ1,µ2

(t) =
t→∞

O(e(ε−µ1)t).In partiular, these funtions are bounded on R+ when µ1 > 0.When b = 0, P0,m,µ1,µ2 is of lass C1 on [0,∞) but not C2 and of lass C∞ on (0,∞).Remark A.4. Sine Pb,m,µ1,µ2 is at least of lass C1 on [0,∞), ∀t < ∞ P(τ = t) = 0.



A losed-form extension to the Blak-Cox model 27Proof of Proposition A.3. First, we onsider the ase b 6= 0.
b 6= 0 : From Theorem 1.1, we know that the Laplae transform of Pb,m,µ1,µ2 is givenby

Lb,m,µ1,µ2(z) = emb−|b|
√

2(z+µb)+m2

(
1

z + µ1
− 1

z + µ2

)
×
{

− 1{b>0}

+
−m +

√
2(z + µ2) + m2

√
2(z + µ1) + m2 +

√
2(z + µ2) + m2

}

+
1

z
− 1

z + µb
.We notie that 1

z
− 1

z+µb
is the Laplae transform of the umulative density funtion of theexponential distribution with parameter µb.For any ε − µ1 > γ > −µ1, we have

Pb,m,µ1,µ2(t) =(1 − e−µbt)1{t≥0} +
1

2πi

∫ ∞

−∞
e(γ+is)t emb−|b|

√
2(γ+is+µb)+m2

(
1

γ + is + µ1
− 1

γ + is + µ2

)
×
{

− 1{b>0}

+
−m +

√
2(γ + is + µ2) + m2

√
2(γ + is + µ1) + m2 +

√
2(γ + is + µ2) + m2

}

dsThe funtion s 7−→ sk e(γ+is)t emb−|b|
√

2(γ+is+µb)+m2
(

1
γ+is+µ1

− 1
γ+is+µ2

)
×
{
− 1{b>0} +

−m+
√

2(γ+is+µ2)+m2√
2(γ+is+µ1)+m2+

√
2(γ+is+µ2)+m2

} is integrable and ontinuous on R for all k ∈ N, sine
Re
(√

2(γ + is + µb) + m2
)

∼
|s|→+∞

√
s. Hene, the funtion Pb,m,µ1,µ2 is of lass C∞ whihimplies that the random variable τ admits a density w.r.t Lebesgue's measure and moreoverfor every k ∈ N∗ and all t ≥ 0

P
(k)
b,m,µ1,µ2

(t) = − (−µb)
k e−µbt +

1

2πi

∫ ∞

−∞
eist(γ + is)k eγt emb−|b|

√
2(γ+is+µb)+m2

(
1

γ + is + µ1
− 1

γ + is + µ2

)
×
{

− 1{b>0}

+
−m +

√
2(γ + is + µ2) + m2

√
2(γ + is + µ1) + m2 +

√
2(γ + is + µ2) + m2

}
dsUsing the Riemann-Lebesgue lemma (∫ +∞

−∞ f(s) eist ds →
t→+∞

0 if f is integrable), we get that
P

(k)
b,m,0,µ(t) = O(eγt) when t → ∞. By di�erentiating this equation with respet to eahparameter, we also get that ∂bP

(k)
b,m,0,µ(t), ∂mP

(k)
b,m,µ1,µ2

(t), ∂µ1P
(k)
b,m,0,µ(t) and ∂µ2P

(k)
b,m,0,µ(t) are
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O(eγt).

b = 0 : Whereas when b 6= 0, the proof is based on the integrability of the Laplaetransform given in Theorem 1.1, to treat the ase b = 0, we use the expression of P c
0,m,0,µgiven by:

P c
0,m,0,µ(t) = e−µt(1 − e−m2t/2) +

1

π

∫ t

0

e−(µ+m2/2)s

√
s

e−m2(t−s)/2

√
t − s

ds (33)
+

m√
2π

[
−
∫ t

0

e−(µ+m2/2)s

√
s

Φ(m
√

t − s) e−µ(t−s) ds +
1

µ

∫ t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

Φ(m
√

t − s) ds

−1

µ

∫ t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

e−µ(t−s) Φ(−m
√

t − s)ds +

∫ t

0

e−(µ+m2/2)s

√
s

Φ(−m
√

t − s) e−µ(t−s) ds

]
.Equation (33) an be derived from results of Chesney et al. [11℄, or one an hek that itsLaplae transform omplies with the one given in (4).The �rst term in Equation (33) is obviously of lass C∞ on [0,∞). Using the hange ofvariable s = tu, the seond term of Equation (33) an be rewritten

e−m2t/2

π

∫ 1

0

e−µtu

√
u(1 − u)

duand is therefore of lass C∞ on [0,∞). Let I1, I2, I3, I4 respetively denote the last fourterms of Equation (33) that are between square brakets. Closely looking at the remainingintegrals and performing the same hange of variables, it learly appears that we only haveto onsider two di�erent types of integrals. For β, ρ ∈ R, we introdue
J1(β, ρ) =

∫ 1

0

eβtu
√

t√
u

Φ(ρ
√

t
√

1 − u)du (34)
J2(β, ρ) =

∫ 1

0

e−m2tu/2

√
t
√

u3
(1 − e−βtu)Φ(ρ

√
t
√

1 − u)du. (35)An integration by parts in Equation (34) leads to
J1(β, ρ) =

√
t

2

∫ 1

0

eβtu

√
u

du +

∫ 1

0

(∫ u

0

eβtv

√
v

dv

)
ρt e−ρ2t(1−u)/2

2
√

2π
√

1 − u
du.We notie that I1 + I4 = e−µt(−J1(−m2/2, m) + J1(−m2/2,−m)). Hene,

I1 + I4 =
−mt e−µt

√
2π

∫ 1

0

(∫ u

0

e−m2tv/2

√
v

dv

)
e−m2t(1−u)/2

√
1 − u

du.



A losed-form extension to the Blak-Cox model 29This new formula makes lear that as a funtion of t, I1 + I4 is of lass C∞ on [0,∞).The term J2 is handled by a similar integration by parts:
J2(β, ρ) =

1

2

∫ 1

0

e−m2tu/2(1 − e−βtu)√
t
√

u3
du

+

∫ 1

0

(∫ u

0

e−m2tv/2(1 − e−βtv)√
v3

dv

)
ρ

2
√

2π
√

1 − u
e−ρ2t(1−u)/2 duAs a funtion of t, the seond integral is learly of lass C∞ on [0,∞) from Lebesgue'sbounded onvergene theorem. Notiing that I2 + I3 = J2(µ, m) + J2(−µ,−m) e−µt,

∫ 1

0
e−m2tu/2(1−e−βtu)√

t
√

u3
du =

∫ t

0
e−m2s/2(1−e−βs)√

s3
ds and

d

dt

(∫ t

0

e−m2s/2(1 − e−µs)√
s3

ds + e−µt

∫ t

0

e−m2s/2(1 − eµs)√
s3

ds

)
= −µ e−µt

2

∫ t

0

e−m2s/2(1 − eµs)√
s3

dswe get that I2 + I3 is (as a funtion of t) of lass C∞ on (0,∞) but only of lass C1 on
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