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tIn the Bla
k-Cox model, a �rm defaults when its value hits an exponential barrier. Here, wepropose an hybrid model that generalizes this framework. The default intensity 
an take twodi�erent values and swit
hes when the �rm value 
rosses a barrier. Of 
ourse, the intensity levelis higher below the barrier. We get an analyti
 formula for the Lapla
e transform of the defaulttime. This result 
an be also extended to multiple barriers and intensity levels. Then, we explainhow this model 
an be 
alibrated to Credit Default Swap pri
es and show its tra
tability on dif-ferent kinds of data. We also present numeri
al methods to numeri
ally re
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A 
losed-form extension to the Bla
k-Cox model 21 Introdu
tion and model setupModelling �rm defaults is one of the fundamental matter of interest in �nan
e. It hasstimulated resear
h over the past de
ades. Clearly, the re
ent worldwide �nan
ial 
risisand its bun
h of resounding bankrupt
ies have underlined on
e again the need to betterunderstand 
redit risk. In this paper, we fo
us on the modelling of a single default. Usu-ally, these models are divided into two main 
ategories: stru
tural and redu
ed form (orintensity) models.Stru
tural models aim at explaining the default time with e
onomi
 variables. In hispath breaking work, Merton [16℄ 
onne
ted the default of a �rm with its ability to payba
k its debt. The �rm value is de�ned as the sum of the equity value and the debt value,and is supposed to be a geometri
 Brownian motion. At the bond maturity, default o

ursif the debtholders 
annot be reimbursed. In this framework, the equity value is seen as a
all option on the �rm value. Then, Bla
k and Cox [5℄ have extended this framework bytriggering the default as soon as the �rm value goes below some 
riti
al barrier. Thus, thedefault 
an o

ur at any time and not only at the bond maturity. Many extensions of theBla
k Cox model, based on �rst passage time, have been proposed in the literature. Werefer to the book of Biele
ki and Rutkowski [4℄ for a ni
e overview. Re
ently, attentionhas be paid to the 
alibration of these models to Credit Default Swap (CDS in short) data(Brigo and Morini [7℄, Dor�eitner et al. [13℄). However, though e
onomi
ally sounded,these models 
an hardly be used intensively on markets to manage portfolios espe
ially forhedging. Unless 
onsidering dynami
s with jumps (see Zhou [20℄ for example), their majordrawba
k is that the default time is predi
table and no default 
an o

ur when the �rmvalue is 
learly above the barrier. In other words, they underestimate default probabilitiesand 
redit spreads for short maturities.The prin
iple of redu
ed form models is to des
ribe the dynami
s of the instantaneousprobability of default that is also 
alled intensity. This intensity is des
ribed by someautonomous dynami
s and the default event is thus not related to any 
riterion on thesolven
y of the �rm. We refer to the book of Biele
ki and Rutkowski [4℄ for an overviewof these models. In general, they are designed for being easily 
alibrated to CDS marketdata and are in pra
ti
e more tra
table to manage portfolios.However, none of these two kinds of model is fully satisfa
tory. In �rst passage timemodels, the default intensity is zero away from the barrier and the default event 
an before
ast. Intensity models are in line with CDS market data, but remain dis
onne
ted tothe rationales of the �rm like its debt and equity values. Thus, they 
annot exploit theinformation available on equity markets. To over
ome this short
oming, and to provide auni�ed framework for pri
ing equity and 
redit produ
ts, hybrid models have been intro-du
ed, assuming that the default intensity is a (de
reasing) fun
tion of the sto
k. Here,we mention the works of Atlan and Leblan
 [2℄, and Carr and Linetsky [8℄ who 
onsiderthe 
ase of a defaultable 
onstant elasti
ity model.In this paper, we propose an hybrid model, whi
h extends the Bla
k-Cox model andin whi
h the default intensity depends on the �rm value. We present in this introdu
tiona simple version of it, and the full model is given in Se
tion 2. We 
onsider the usual



A 
losed-form extension to the Bla
k-Cox model 3framework when dealing with 
redit risk and �rm value models. Namely, we assume thatwe are under a risk-neutral probability measure P and that the (riskless) short interest rateis 
onstant and equal to r > 0. We denote by (Ft, t ≥ 0) the default-free �ltration and
onsider a (Ft)-Brownian motion (Wt, t ≥ 0). We assume that the �rm value (Vt, t ≥ 0)evolves a

ording to the Bla
k-S
holes model and therefore satis�es the following dynami
s:
dVt = rVtdt + σVtdWt, t ≥ 0, (1)where σ > 0 is the volatility 
oe�
ient. To model the default event, we assume that thedefault intensity has the following form:

λt = µ21{Vt<C eαt} + µ11{Vt≥C eαt}, (2)where C > 0, α ∈ R, and µ2 > µ1 ≥ 0. This means that the �rm has an instantaneousprobability of default equal to µ2 or µ1 depending on whether its value is below or abovethe time-varying barrier C eαt. More pre
isely, let ξ denote an exponential random variableof parameter 1 independent of the �ltration F . Then, we de�ne the default time of the�rm by:
τ = inf{t ≥ 0,

∫ t

0

λsds ≥ ξ}. (3)As usual, we also introdu
e (Ht, t ≥ 0) the �ltration generated by the pro
ess (τ ∧ t, t ≥ 0)and de�ne Gt = Ft ∨ Ht, so that (Gt, t ≥ 0) embeds both default-free and defaultableinformation.This framework is a natural extension of the pioneering Bla
k-Cox model introdu
edin [5℄, whi
h 
an indeed be simply seen as the limiting 
ase of our model when µ1 = 0and µ2 → +∞. In the work of Bla
k and Cox, bankrupt
y 
an in addition happen at thematurity date of the bonds issued by the �rm when the �rm value is below some level. Here,we do not 
onsider this possibility, even though it is te
hni
ally feasible, be
ause it wouldmake the default predi
table in some 
ases. In the Bla
k-Cox model, the barrier C eαt ismeant to be a safety 
ovenant under whi
h debtholders 
an ask for being reimbursed. Here,default 
an happen either above or below the barrier, whi
h represents instead the borderbetween two 
redit grades. Let us brie�y explain what typi
al parameter 
on�gurations
ould be for this model. For a very safe �rm, we expe
t that its value start above thebarrier with µ1 very 
lose to 0. The parameter µ2 should also be rather small sin
e it
annot be downgraded too drasti
ally. Instead, for �rms that are 
lose to bankrupt
y, weexpe
t to have C < V0 and a high intensity of default µ2. Then, the parameters should besu
h that the �rm is progressively drifted to the less risky region (i.e. r−σ2/2−α > 0). Infa
t, the CDS pri
es often re�e
t two possible out
omes in su
h 
riti
al situations. Eitherthe �rm makes bankrupt
y in the next future, or it survives and is then strengthened (seeBrigo and Morini [7℄ for the Parmalat 
risis 
ase).Now, we state the main theoreti
al result on whi
h this paper is based. It gives theexpli
it formula for the Lapla
e transform of the default time distribution.



A 
losed-form extension to the Bla
k-Cox model 4Theorem 1.1. Let us set b = 1
σ

log(C/V0), m = 1
σ
(r − α − σ2/2) and µb = µ21{b>0} +

µ11{b≤0}. The default 
umulative distribution fun
tion P(τ ≤ t) is a fun
tion of t, b, m,
µ1 and µ2 and is fully 
hara
terized by its Lapla
e transform de�ned for z ∈ C+ := {z ∈
C,Re (z) > 0},

∫ ∞

0

e−zt
P(τ ≤ t)dt = emb−|b|

√
2(z+µb)+m2

(
1

z + µ1
− 1

z + µ2

)
×
{

− 1{b>0} (4)
+

−m +
√

2(z + µ2) + m2

√
2(z + µ1) + m2 +

√
2(z + µ2) + m2

}
+

1

z
− 1

z + µb

.Theorem 1.1 
an a
tually �t in the framework of Theorem 2.1 with n = 2, wherethe intensity 
an take n ≥ 2 di�erent values instead of 2. Hen
e, we refer the reader toSe
tion 2 for a proof of Theorem 1.1, whi
h in fa
t 
omes from a result by Ka
. Then, ourpoint of view in this paper is to take advantage of this result and obtain a fast 
alibrationpro
edure to CDS market data.The Lapla
e transform (4) 
an also be obtained thanks to the results on Parisianoptions by Chesney et al. [11℄. This was done in a former version of this paper available onhttp://hal.ar
hives-ouvertes.fr. The default time τ , de�ned by (3), is related to thetime spent below and above the barrier. Other Bla
k-Cox extensions based on analyti
alformulas for Parisian type options have been proposed in the re
ent past. Namely, Chenand Su
hane
ki [10℄, Moraux [17℄ and Yu [19℄ 
onsidered the 
ase where the default istriggered when the sto
k has spent a 
ertain amount of time in a row or not under thebarrier. Nonetheless, both extensions present the drawba
k that the default is a
tuallypredi
table and the default intensity is either 0 or non-�nite. This does not hold in ourframework.The paper is stru
tured as follows. In Se
tion 2, we present the full model for whi
hthe intensity 
an take n ≥ 2 di�erent values and we obtain a 
losed formula for the Lapla
etransform of the default time. Se
tion 3 is devoted to the pri
ing of CDS and states simplebut interesting properties of the CDS spreads in fun
tion of the model parameters. Then,we fo
us on the 
alibration issue. Se
tion 4 is devoted to the 
alibration of the modelpresented above while in Se
tion 5, we dis
uss the 
alibration of the full model with n ≥ 3.We present a general 
alibration pro
edure for the model and show on di�erent pra
ti
alsettings how the model 
an �t the market data. We �nd our 
alibration results ratheren
ouraging. Last, we give in Se
tion 6 two methods to numeri
ally invert the Lapla
etransform of the default 
umulative distribution fun
tion given by Theorems 1.1 and 2.1.For ea
h method, we state in a pre
ise way its a

ura
y whi
h heavily relies on the regularityof the fun
tion to be re
overed. The required regularity assumptions are a
tually provedto be satis�ed by the default 
umulative distribution fun
tion in Appendix A.



A 
losed-form extension to the Bla
k-Cox model 52 The Lapla
e transform of the default distributionIn the introdu
tion, we have 
onsidered a default intensity whi
h takes two di�erent valuesdepending on whether the �rm value is below or above some barrier. Here, we present thefull model where the default intensity 
an take n ≥ 2 di�erent values,
0 ≤ µ1 < · · · < µn. (5)We set C0 = +∞ and Cn = 0, and 
onsider C1, . . . , Cn−1 su
h that Cn < Cn−1 < · · · <

C1 < C0. At time t ≥ 0, we assume that the default intensity of the �rm is equal to µi,when its value is between Ci e
αt and Ci−1 eαt. Thus, we set
λt =

n∑

i=1

µi1{Ci eαt≤Vt<Ci−1 eαt}, (6)and we de�ne the default time τ exa
tly as in (3). Assumption (5) means that the defaultintensity is in
reased (resp. de
reased) ea
h time it 
rosses downward (resp. upward) abarrier. Heuristi
ally, these 
onstant intensities 
an be related to the 
redit grades of the�rm. For a �rm in di�
ulty, 
rossing downward the barriers 
an also represent the di�erent
redit events that pre
ede a bankrupt
y.Now, we introdu
e notations that will be used throughout the paper. We set m =
r − α − σ2/2 and

b0 = +∞, bi =
1

σ
log(Ci/V0), i = 1, . . . , n − 1 and bn = −∞. (7)Thus, the default intensity (6) is equal to

λt =

n∑

i=1

µi1{bi≤Wt+mt<bi−1}. (8)From (3), we have
P(τ > t) = E

[
e−

R t
0

Pn
i=1 µi1{bi≤Ws+ms<bi−1}

ds
]
. (9)Therefore, the default distribution (and its Lapla
e transform) only depend on b = (bi)i=1,...,n−1,

m and µ = (µi)i=1,...,n. We set for t ≥ 0 and z ∈ C+

Pb,m,µ(t) = P(τ ≤ t) and P c
b,m,µ(t) = P(τ > t) = 1 − Pb,m,µ, (10)

Lb,m,µ(z) =

∫ +∞

0

e−zt
P(τ ≤ t)dt and Lc

b,m,µ(z) = 1/z − Lb,m,µ(z), (11)that are respe
tively the 
umulative distribution fun
tion, the survival probability fun
tionand their Lapla
e transforms. When n = 2, we use the same notations as in the introdu
-tion and simply denote by b = log(C1/V0)/σ the barrier level. We also respe
tively denoteby Pb,m,µ1,µ2(t), P c
b,m,µ1,µ2

(t), Lb,m,µ1,µ2(z) and Lc
b,m,µ1,µ2

(z) the quantities de�ned in (10)and (11).The following theorem gives a straightforward way to 
ompute the Lapla
e trans-form Lb,m,µ(z).



A 
losed-form extension to the Bla
k-Cox model 6Theorem 2.1. In the above setting, Lb,m,µ(z) is given for z ∈ C+ by
Lb,m,µ(z) =

n∑

i=1

1{bi≤0<bi−1}

{
1

z
− 1

z + µi

− β+
i − β−

i

}
,where R±(µ) = −m ±

√
m2 + 2(z + µ). The 
oe�
ients βi = [β−

i β+
i ]′ are uniquelydetermined by the indu
tion:

βi = Πi−1β1 + vi−1, i = 1, . . . , n (12)and the 
onditions β+
1 = β−

n = 0. Here, Π0 = Id and Πi = Pi × · · · × P1, v0 = 0 and
vi = A−1(µi+1, bi)

[
1

z+µi
− 1

z+µi+1
0
]′

+ Pivi−1 with:
Pi =

1

[R+(µi+1) − R−(µi+1)]
× (13)

[
(R+(µi+1) − R−(µi)) ebi(R−(µi)−R−(µi+1)) (R+(µi+1) − R+(µi)) ebi(R+(µi)−R−(µi+1))

(R−(µi) − R−(µi+1)) ebi(R−(µi)−R+(µi+1)) (R+(µi) − R−(µi+1)) ebi(R+(µi)−R+(µi+1))

]and
A−1(µi+1, bi) =

1

R+(µi+1) − R−(µi+1)

[
R+(µi+1) e−R−(µi+1)bi − e−R−(µi+1)bi

−R−(µi+1) e−R+(µi+1)bi e−R+(µi+1)bi

]
.To solve the indu
tion, one has �rst to determine β−

1 by using that β+
1 = β−

n = 0and (12) with i = n. Then, all the βi 
an be obtained with (12). When there is only onebarrier (i.e. n = 2), this 
an be solved expli
itly and the solution is given in Theorem 1.1.Proof. We introdu
e for x ∈ R and t ≥ 0, Xx
t = x + Wt + mt,

λ(x) =
n∑

i=1

µi1{xi≤x<xi−1} and p(t, x) = E

[
e−

R t
0

λ(Xx
s )ds
]
.From (3) and (8), p(t, 0) = P(τ > t) is the survival probability fun
tion of τ .Thanks to the Girsanov theorem, we have p(t, x) = e−mx Ẽ

[
emXx

t −m2t/2 e−
R t
0 λ(Xx

s )ds
]where Xx

t is a Brownian motion starting from x under P̃. For z > 0, we 
onsider theLapla
e transform of p(t, x):
x ∈ R, z > 0, Lc(z, x) =

∫ ∞

0

e−zt p(t, x)dt = e−mx
Ẽ

[∫ ∞

0

e−(z+m2/2)t emXx
t −

R t
0 λ(Xx

s )ds dt

]
.Now, from a result by Ka
 ([14℄, Theorem 4.9 p.271), it 
omes out that the Lapla
etransform Lc(z, x) is C1 and pie
ewise C2 w.r.t. x, and solves:

∀i ∈ {1, . . . , n}, bi ≤ x < bi−1, 1− (z + µi)L
c(z, x) + m∂xL

c(z, x) +
1

2
∂2

xL
c(z, x) = 0. (14)



A 
losed-form extension to the Bla
k-Cox model 7This is a pie
ewise a�ne ODE of order 2 whi
h admits the following solutions:
bi ≤ x < bi−1, Lc(z, x) =

1

z + µi

+ β−
i eR−(µi)x +β+

i eR+(µi)x .Now, we write that the Lapla
e transform is C1 at bi for i = 1, . . . , n − 1:
{

β−
i eR−(µi)bi +β+

i eR+(µi)bi = 1
z+µi+1

− 1
z+µi

+ β−
i+1 eR−(µi+1)bi +β+

i+1 eR+(µi+1)bi

β−
i R−(µi) eR−(µi)bi +β+

i R+(µi) eR+(µi)bi = β−
i+1R−(µi+1) eR−(µi+1)bi +β+

i+1R+(µi+1) eR+(µi+1)bi .(15)We rewrite this in a matrix form:
A(µi, bi)

[
β−

i

β+
i

]
=

[ 1
z+µi+1

− 1
z+µi

0

]
+A(µi+1, bi)

[
β−

i+1

β+
i+1

]
, A(µ, x) =

[
eR−(µ)x eR+(µ)x

R−(µ) eR−(µ)x R+(µ) eR+(µ)x .

](16)We set for i = 1, . . . , n − 1, Pi = A−1(µi+1, bi)A(µi, bi), whi
h is given in expli
it formin (13). We also set
v0 = 0, vi = A−1(µi+1, bi)

[
1

z+µi
− 1

z+µi+1
0
]′

+ Pivi−1 and Π0 = Id, Πi = Pi . . . P1,for i = 1 . . . n − 1. We have that βn = Πn−1β1 + vn−1. Sin
e Lc(z, +∞) = 1/(z + µ1) and
Lc(z,−∞) = 1/(z+µn), we have β+

1 = 0 and β−
n = 0. In parti
ular, (Πn−1)1,1β

−
1 +(vn−1)1 =

0 whi
h uniquely determines β−
1 and gives that (Πn−1)1,1 6= 0 sin
e Lc(z, x) is the uniquesolution of (14) (we 
an show indeed that (Πn−1)1,1 > 0 be
ause the entries of Pi arepositive). Then, the 
oe�
ients βi are also uniquely determined for i = 1, . . . , n.Now, we observe that the formula obtained for Lc(z, x) when z > 0 remains valid for

z ∈ C+ sin
e it is the only possible analyti
al extension. Last, we 
on
lude using that
Lc(z, 0) = Lc

b,m,µ(z) for z ∈ C+, sin
e p(t, 0) = P(τ > t).Remark 2.2. Not surprisingly, we 
an also easily handle the 
ase where the barriers movea

ording to a geometri
 Brownian motion, i.e.
λt =

n∑

i=1

µi1{Ci e(α−η2/2)t+ηZt≤Vt<Ci−1 e(α−η2/2)t+ηZt}, with 〈W, Z〉t = ρt.We ex
lude the trivial 
ase ρ = 1 with η = σ and set ς =
√

σ2 + η2 − 2ρση > 0 sothat Bt = (σWt − ηZt)/ς is a standard Brownian motion. Sin
e 1{Vt≤Ci e(α−η2/2)t+ηZt} =

1{Bt+
1
ς
(r−α−(σ2−η2)/2)t≤ 1

ς
bi}, we get the Lapla
e transform of P(τ ≤ t) by simply taking

b =
1

ς
log(C/V0) and m =

1

ς
(r − α − (σ2 − η2)/2)in Theorem 2.1. Said di�erently, 
onsidering geometri
 Brownian motion barriers does notlead to a ri
her family of default distributions.



A 
losed-form extension to the Bla
k-Cox model 83 CDS Pri
ingIn this se
tion, we brie�y re
all what a Credit Default Swap is and give its theoreti
al pri
eunder the intensity model (6). We also give straightforward but interesting properties ofthe CDS spread in fun
tion of the di�erent parameters.Credit Default Swaps are produ
ts providing a �nan
ial prote
tion against a �rm goingbankrupt on a given period in ex
hange of regular payments. Here, we des
ribe a syntheti
CDS on a unity notional value starting at time 0, with a maturity T and a payment grid
T0 = 0 < T1 < · · · < Tp = T . Usually, payments o

ur quarterly. For t ∈ [0, T ), β(t)denotes the index in {1, . . . , p} of the next payment date, i.e. su
h that Tβ(t)−1 ≤ t < Tβ(t).If the default happens before T , the default leg pays the fra
tion LGD of the notionalthat is not re
overed (loss given default). For the sake of simpli
ity, we assume that LGD ∈
[0, 1] is deterministi
. Sin
e we also 
onsider a 
onstant interest rate r > 0, the default legpri
e is then given by

DL(0, T ) = E[e−rτ
1{τ≤T}LGD] = LGD

[
e−rT

P(τ ≤ T ) +

∫ T

0

r e−ru
P(τ ≤ u)du

]
. (17)The payment leg 
onsists in regular (time-proportional) payments up to time τ ∧ T .This means that they o

ur until the maturity T as long as the �rm has not defaulted yet.The rate R of these payments is de
ided at the beginning of the CDS 
ontra
t, and thepri
e at time 0 of the payment leg is given by:

PL(0, T ) = R × E

[
p∑

i=1

(Ti − Ti−1) e−rTi 1{τ>Ti} + (τ − Tβ(τ)−1) e−rτ
1{τ≤T}

]
.By integrating by parts, we get that

E[(τ − Tβ(τ)−1) e−rτ
1{τ≤T}] = −

∫ T

0

e−ru(u − Tβ(u)−1)dP(τ > u)

= −
p∑

i=1

e−rTi(Ti − Ti−1)P(τ > Ti) +

∫ T

0

e−ru
P(τ > u)du

−
∫ T

0

r e−ru(u − Tβ(u)−1)P(τ > u)du,and therefore, we obtain that
PL(0, T ) = R

[∫ T

0

e−ru
P(τ > u)du −

∫ T

0

r e−ru(u − Tβ(u)−1)P(τ > u)du

]
. (18)The se
ond term in the bra
ket 
an often be negle
ted in pra
ti
e, but we have to keepit in our numeri
al experiments. We also noti
e that this is the only term depending onthe time-grid stru
ture. This is the reason why we do not re
all this dependen
y in ournotations for the payment leg whi
h mainly depends on the starting and ending dates.



A 
losed-form extension to the Bla
k-Cox model 9Up to now1, the market pra
ti
e has been to quote the fair CDS spread R(0, T ) whi
hmakes both legs equal:
R(0, T ) = LGD

e−rT P(τ ≤ T ) +
∫ T

0
r e−ru P(τ ≤ u)du

∫ T

0
e−ru P(τ > u)du−

∫ T

0
r e−ru(u − Tβ(u)−1)P(τ > u)du

. (19)This rate depends on the default time only through its 
umulative distribution fun
tion
(P(τ ≤ t), t ∈ [0, T ]). In our model, it is denoted by Pb,m,µ(t), and we get the followingresult.Proposition 3.1. With a deterministi
 interest rate r > 0 and a deterministi
 re
overyrate 1 − LGD ∈ [0, 1], the CDS pri
e with the intensity model (6) is given by:

Rmodel(0, T ) = LGD
e−rT Pb,m,µ(T ) +

∫ T

0
r e−ru Pb,m,µ(u)du

∫ T

0
e−ru P c

b,m,µ(u)du−
∫ T

0
r e−ru(u − Tβ(u)−1)P

c
b,m,µ(u)du

,where b = 1
σ

log(C/V0) and m = 1
σ
(r−α−σ2/2). Moreover, if we negle
t the se
ond integralin the denominator this rate is nonde
reasing with respe
t to ea
h Ci, α and ea
h µi. Wehave also the following bounds:

µ1 .
Rmodel(0, T )

LGD
. µn. (20)Proof. The monotoni
ity property is a dire
t 
onsequen
e of Proposition A.1. Let usprove (20). From (6), we 
learly have µ1 ≤ λt ≤ µn for any t ≥ 0. From (3), we have

P c
b,m,µ(t) = E[e−

R t
0

λsds] and then:
e−µnt ≤ P c

b,m,µ(t) ≤ e−µ1t, 1 − e−µ1t ≤ Pb,m,µ(t) ≤ 1 − e−µnt .Plugging these inequalities in (17) and (18), and negle
ting ∫ T

0
r e−ru(u−Tβ(u)−1)P

c
b,m,µ(u)duin (18), we get:

µ1

r + µ1
(1 − e−(r+µ1)T ) ≤ DLmodel(T )

LGD
≤ µn

r + µn
(1 − e−(r+µn)T ),

1

r + µn

(1 − e−(r+µn)T ) . PLmodel(T ) .
1

r + µ1

(1 − e−(r+µ1)T ),whi
h gives (20).Remark 3.2. It is possible to extend the intensity model (6) by adding a deterministi
nonnegative shift fun
tion ϕ(t). Namely, if the default τ is de�ned by (3) and
λt =

n∑

i=1

µi1{Ci eαt≤Vt<Ci−1 eαt} + ϕ(t),1The ISDA has re
ommended in early 2009 to swit
h and to quote CDS through the upfrontvalue U(0, T ) su
h that U(0, T ) + PL(0, T ) = DL(0, T ). The CDS spread R is then standardized tosome spe
i�
 values. (see www.
dsmodel.
om/information/
ds-model)
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losed-form extension to the Bla
k-Cox model 10its survival probability satis�es P(τ > t) = e−
R t
0 ϕ(s)ds P c

b,m,µ(t) for t ≥ 0. In pra
ti
e,the fun
tion ϕ(t) 
an be assumed to be pie
ewise 
onstant between the CDS maturities.Following the same 
onstru
tion as the one given in [6℄, this fun
tion 
an be 
hosen to�t exa
tly the CDS market 
urve while the remaining parameters (b, m, µ) 
an be used to
alibrate further produ
ts.4 Calibration to CDS data with one barrier (n = 2)In this se
tion, we want to illustrate how the model presented in this paper 
an be 
alibratedto the CDS market data. Here, we fo
us on the simplest form of the model with only onebarrier. The 
alibration issue with n > 2 is dis
ussed in Se
tion 5. Here, our aim is not toprovide the ultimate 
alibration pro
edure for the model. This task would require to havea market feedba
k, and we leave it to pra
titioners. We have de
ided instead to make oneof the simplest 
hoi
e, and we minimize the Eu
lidean distan
e between the theoreti
aland market CDS pri
es. Thus, we want to illustrate on market data pi
ked from the pastin whi
h 
ases the model seems to give a rather good �t.4.1 The Calibration pro
edureNow, we want to des
ribe the 
alibration method we have used in our numeri
al ex-periments. We denote by T (1) < · · · < T (ν) the maturities of the quoted CDS, and
Rmarket(0, T (1)), . . . , Rmarket(0, T (ν)) their market pri
es. In pra
ti
e, we have ν = 8 mar-ket data sets for
T (1) = 0.5, T (2) = 1, T (3) = 2, T (4) = 3, T (5) = 4, T (6) = 5, T (7) = 7 and T (8) = 10 years,(21)and quarterly payments. From Theorem 1.1, the default distribution depends on the fourparameters b, m, µ1 and µ2. Our goal is to minimize the following distan
e between modeland market pri
es:

min
b,m∈R,0<µ1<µ2

ν∑

i=1

(Rmodel(0, T (i)) − Rmarket(0, T (i)))2. (22)As already mentioned, there are probably better 
riteria to be minimized a

ording to themarket data and the purpose of the 
alibration. Here, we do not wish to dis
uss this point,but we rather want to qualitatively show what kind of CDS rate 
urves T 7→ Rmarket(0, T )the model 
an �t. That is why we have 
hosen a very simple 
riterion to minimize.To minimize (22), we simply use a gradient algorithm, whi
h is very fast and takes ad-vantage of the 
losed formula (4) and the Lapla
e inversion methods presented in Se
tion 6.To do so, we need to 
ompute the CDS pri
es Rmodel(0, T (i)) and their derivatives withrespe
t to ea
h parameter p ∈ {b, m, µ1, µ2}. In Se
tion 6.2, we have explained in detailhow to re
over Pb,m,µ1,µ2(t) on a time-grid from its Lapla
e transform (4) using the FFT.More pre
isely, we have used the FFT parameters given by (30) with ε = 10−5. Similarly,
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losed-form extension to the Bla
k-Cox model 11we obtain by FFT the derivatives ∂pPb,m,µ1,µ2(t) on the same time-grid. Their Lapla
etransforms 
an be obtained by simply di�erentiating formula (4). However, we have no-ti
ed that �nite di�eren
es 
an also be used as a good proxy of the derivatives. Then, it iseasy to 
ompute the default and payment legs and their sensitivities with respe
t to ea
hparameter. Numeri
al integration is performed using Simpson's rule. This is very e�
ientthanks to the regularity of the 
df (Proposition A.3). Last, we 
ompute CDS pri
es andtheir derivatives.To test this 
alibration pro
edure, we have 
omputed CDS pri
es in our model 
on-sidering them as Market data, and then we have tried to �nd ba
k the parameters byminimizing (22). The minimization is really fast and takes very few se
onds. Thanksto (20), we start the gradient algorithm from the point
b = 0, m = 0, µ1 = min

i=1,...,ν
Rmarket(0, T (i))/LGD, µ2 = max

i=1,...,ν
Rmarket(0, T (i))/LGD.Unfortunately, it sometimes fails and the gradient algorithm is trapped in lo
al minima.This is partly due to a rather sensitive dependen
y between the parameters b and m. Then,it 
an be worth starting the gradient algorithm from a point where these parameters areboth non zero. However, it is di�
ult to have a guess on the values of b and m. We haveused the following way to get a prior on (b, m).

• We take a �nite set S ⊂ R2, typi
ally S = {−B + 2iB/p, i = 0, . . . , p} × {−M +
2iM/p, i = 0, . . . , p} for some B, M > 0, p ∈ N∗. For (b, m) ∈ S, we minimize the
riterion (22) with respe
t to µ1 and µ2, keeping b and m 
onstant. In pra
ti
e, wehave mostly taken B, M ∈ {1, 2} and p = 8.

• Then, we sele
t the 
ouple (b, m) ∈ S whi
h a
hieves the smallest s
ore and useit (with the optimized parameters µ1 and µ2) as the initial point of the gradientalgorithm for (22).This pro
edure generally improves the basi
 one. However, our minimization problemis ill-posed and signi�
antly di�erent parameters 
an lead to rather 
lose CDS rates. Letus take the 
ase of a 
onstant intensity model λ > 0, whi
h leads to a �at CDS rate
urve from (20). This 
ase 
orresponds to many di�erent sets of parameters in our model,namely:1. µ1 = µ2 = λ, with b, λ ∈ R arbitrarily 
hosen,2. µ1 = λ, b → −∞, with m ∈ R and µ2 > µ1 arbitrarily 
hosen,3. µ2 = λ, b → +∞, with m ∈ R and µ2 > µ1 arbitrarily 
hosen.Thus, 
alibrating very �at CDS spreads 
an lead to many di�erent satisfa
tory parameter
on�gurations. We have found other less trivial examples when testing our 
alibrationpro
edure. In Figure 1, we give two sets of parameters leading to CDS pri
es whi
h are
lose up to a 1% relative error but have very similar 
dfs. This shows that only 
alibratingthe model to CDS pri
es, whi
h only depend on the default 
df, may not be su�
ient todetermine parameters uniquely. Further information on the dependen
y between the �rmvalue and the default event 
an be ne
essary in some 
ases for that.
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Figure 1: In the l.h.s. pi
ture the CDS pri
es are plotted as fun
tions of the matu-rities (21). Pri
es are given in basis points (10−4) with LGD = 1 and r = 5%. Ther.h.s pi
ture shows the 
orresponding 
umulative distribution fun
tions. The dashed lineis obtained with b = −0.2, m = 0.6, µ1 = 0.005 and µ2 = 0.3 and the solid line is with
b = 2.168849, m = 0.912237, µ1 = 0.008414 and µ2 = 0.067515.
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losed-form extension to the Bla
k-Cox model 134.2 Calibration on Market dataNow, we want to give 
alibration results under very di�erent CDS rate data. Here, we
hose to 
alibrate all the four parameters (b, m, µ1, µ2) to 
he
k if they are su�
ient to�t the market data well. However, some of these parameters have an e
onomi
 meaning.For example, the �rm value 
an be related to its balan
e sheet and any other relevantinformation available in pra
ti
e. In that 
ase, one would like to �x some parameters orrestri
t them to lie in some interval. Here, for the sake of simpli
ity, we only 
onsider theinformation given by the CDS pri
es and leave a more elaborated 
alibration for furtherresear
h.We have pi
ked up very di�erent examples from 2006 to 2009 on Crédit Agri
ole (bank,CA in short), PSA, Ford (
ar 
ompanies) and Saint-Gobain (glass maker, SG in short).In all our examples, we have set LGD = 0.6, ex
ept for Crédit Agri
ole for whi
h wehave taken LGD = 0.8 as it is 
ommonly done for bank 
ompanies. We have also taken
r = 5% for the sake of simpli
ity, sin
e r has anyway a rather minor impa
t on the CDSspread values. The maturities observed on the market are the one listed in (21). In allthe �gures, we have plotted in dotted lines the CDS market data and in solid lines theCDS pri
es obtained with the 
alibrated model. Pri
es are given in basis points (10−4).For ea
h example, we give the 
alibrated parameters (b, m, µ1, µ2). To interpret theminto the original �rm value framework, we have also indi
ated the 
orresponding values of
V0/C = e−bσ and α = r − σm − σ2/2, taking the one-year at-the-money implied volatilityas a proxy of the �rm value volatility. However, as pointed in Se
tion 4.1, signi�
antlydi�erent parameters 
an lead to analogous CDS pri
es. The 
alibration to CDS pri
es onlyallows to �t the default 
df. This is why we have added in ea
h 
ase a subplot of the
alibrated 
df, (Pb,m,µ1,µ2(t), t ∈ [0, T (8)]).We have split the results into three 
lasses.

• The 
urve T 7→ Rmarket(0, T ) is mostly in
reasing. Roughly speaking, it happenswhen the �rm's future is more unsure than its present.
• The 
urve T 7→ Rmarket(0, T ) is mostly de
reasing. This usually means that the �rmis in a 
riti
al period. If it over
omes this time, its future will be less risky.
• Most of the market data 
orrespond to the two previous 
ases. However, when a �rmswit
hes from one regime to the other, the CDS 
urve tends to be �at, keeping oftenhowever a gentle slope.4.2.1 In
reasing CDS spreadsWe start with data prior to the subprime 
risis on 
ompanies presenting a low risk pro�le.Their 
alibration are plotted in Figure 2. Not surprisingly, in this 
ase the model is ableto �t the pri
es well, with a relative error of a few per
ents. As one 
ould expe
t, the �rmvalue starts in both 
ases above the threshold C in the �µ2 region� and is drifted to the�µ1 region� sin
e the parameter m is negative (or equivalently, α > r − σ2/2).We have also 
onsidered in
reasing patterns with a higher level of risk, and the 
al-ibrating results are drawn in Figure 3. The Ford 
urve (left) is really well �tted. The
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Figure 2: Left, CA 08/31/06: b = −2.3415, m = −0.2172, µ1 = 2.164 × 10−4, µ2 =
5.597× 10−3, V0/C = 1.753, α = −1.78× 10−2. Right, PSA 05/03/06: b = −2.3878, m =
−0.3745, µ1 = 5.581 × 10−4, µ2 = 2.214 × 10−2, V0/C = 1.757, α = 2.038 × 10−2.Saint-Gobain rates (left) are globally well 
aptured, but some irregularities are smoothedby the 
alibrated 
urve. On
e again, the �rm value starts above the threshold in the saferside, whi
h 
on�rms the heuristi
 interpretation made above on in
reasing CDS 
urves.4.2.2 De
reasing CDS spreadsNow, we want to test if the model is also able to �t de
reasing CDS 
urves. As alreadymentioned, it happens when a �rm goes through a di�
ult period. We give in Figure 4two stressed examples on Ford 
ompany, taken at the 
limax of its 
risis in November 2008(left) and in February 2009 (right). Both 
urves are 
orre
tly �tted. The most signi�
antrelative di�eren
e between market and model pri
es is equal to 6% on November data and2% on February data. As expe
ted, in both 
ases, the �rm value starts below the thresholdin the �µ2 region� and goes gradually to the �µ1 region� sin
e m > 0 (or equivalently,
α < r − σ2/2).Now, we want to test the model on de
reasing but less stressed patterns. We also wantto see if it 
an in addition �t an initial bump. Indeed, it happens quite often on de
reasing
urves that the 6-month rate is however lower than the one-year rate. Roughly speaking,this means that the �rm is in di�
ulty but the market however believes that it has someguarantee to live in the very short future. We have drawn in Figure 5 two examples onPSA (left) and Saint-Gobain (right). In the �rst 
ase, the model does not seem able torepli
ate the initial bump, but the remaining part of the 
urve is well �tted. The bumpis approximated by a �at 
urve in between. Doing this, the gradient algorithm explores
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Figure 3: Left, Ford 11/30/06: b = −1.734, m = −1.363, µ1 = 1.2 × 10−2, µ2 = 7.05 ×
10−2, V0/C = 2.173, α = 0.436. Right, SG 10/08/08: b = −1.897, m = 0.1725, µ1 =
2.135 × 10−2, µ2 = 0.652, V0/C = 2.8506, α = −0.3213.rather large and unrealisti
 parameters for b and m. Instead, on the Saint-Gobain example,the whole shape is well �tted with very rational parameters.4.2.3 Almost �at CDS spreadsLast, we give two examples of rather �at CDS rate 
urves. This kind of pattern is moreun
ommon and is observed in parti
ular when a �rm swit
hes from an in
reasing to ade
reasing 
urve like Saint-Gobain between 10/08/08 (Fig. 3) and 12/01/08 (Fig. 5). Flat
urves are a priori not very di�
ult to �t sin
e a 
onstant intensity model 
an alreadygive a �rst possible approximation. We show in Figure 6 the transition made by the Saint-Gobain 
urve. On these �at shapes, the �tting is really good and the relative error onpri
es does not ex
eed 1%.Let us draw a short 
on
lusion on these 
alibration results. The model is able to �t a widerange of CDS data, from a very low risk level (Fig. 2) to highly stressed spreads (Fig. 4) aswell as intermediate settings (Fig. 3, 5, 6) that are more frequently observed. Of 
ourse,not all the pri
es are perfe
tly mat
hed, but the spread 
urves are globally well 
aptured.Con
erning the meaning of the parameters, one has to be 
areful sin
e only 
alibrating tothe CDS rates is a priori not enough to determine them (see Fig. 1). However, at least inthe extreme settings, the values of V0/C and α whi
h we have obtained are as expe
tedgreater (resp. lower) than 1 and r − σ2/2 in Fig. 2 (resp. Fig. 4), whi
h means that the�rm value gradually shifts from the µ1 (resp. µ2) to the µ2 (resp. µ1) area.
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Figure 4: Left, Ford 11/24/08: b = 0.209, m = 0.344, µ1 = 0.2014, µ2 = 1.986, V0/C =
0.716, α = −1.3. Right, Ford 02/25/09: b = 0.8517, m = 0.5277, µ1 = 6.85× 10−2, µ2 =
0.7806, V0/C = 0.3355, α = −1.2676

1 2 3 4 5 6 7 8 9 10

500

520

540

560

580

600

620 ×

×

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

500

520

540

560

580

600

620

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

400

410

420

430

440

×

×

×

×

×

×

×

×

1 2 3 4 5 6 7 8 9 10

400

410

420

430

440

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Figure 5: Left, PSA 03/06/09: b = 15.55, m = 4.889, µ1 = 6.055 × 10−2, µ2 =
0.104, V0/C = 6.32×10−5, α = −3.3. Right, SG 12/01/08: b = −0.268, m = 0.567, µ1 =
5.46 × 10−2, µ2 = 0.154, V0/C = 1.1837, α = −0.6213.
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Figure 6: Left, SG 10/21/08: b = −1.032, m = 0.493, µ1 = 4.75 × 10−2, µ2 = 9.23 ×
10−2, V0/C = 1.83, α = −0.531. Right, SG 10/31/08: b = −3.42 × 10−2, m = 4.69 ×
10−2, µ1 = 1.45 × 10−2, µ2 = 9.295 × 10−2, V0/C = 1.021, α = −0.282.5 Calibration with multiple barriers (n ≥ 3)In the previous se
tion, we have only 
onsidered the 
alibration with one barrier. We havenoti
ed that the model already �ts the market well in that 
ase for a rather wide range ofdata. Here, we want to dis
uss the 
alibration of the full model. The default distributionis parametrized by 2n parameters (m, b1, . . . , bn−1 and µ1, . . . , µn).A �rst natural idea would be to �nd impli
it parameters. Thus, CDS market data 
ouldbe expressed as an impli
it fun
tion that gives the intensity as a fun
tion of the �rm value.For example, we 
ould �x µ1, . . . , µn to some standard values 
orresponding to 
redit gradesand look for parameters m, b1, . . . , bn−1 whi
h exa
tly �t the CDS market data. However,it is not possible in general to get an impli
it 
urve like this. We explain why by giving aheuristi
 argument. From (8), we 
an see that the default intensity will basi
ally in
rease(resp. de
rease) when m < 0 (resp m > 0). Thanks to the Brownian di�usion, this globaltrend 
an be moderated. For example, if we 
onsider the 
ase with one negative barrierand m > 0, the default intensity 
an in
rease for short maturities be
ause the di�usionpart enables to explore the riskiest region at the beginning. This is what happens in theright hand side example of Figure 5 and gives a bump shape for CDS spreads. However,not all kinds of CDS shapes 
an be obtained with the intensity model (6). In Figure 7, wehave plotted the deterministi
 pie
ewise default intensity whi
h exa
tly mat
hes CDS datafor PSA in Mar
h 2009. We observe that it is nonde
reasing up to 2 years, nonin
reasingbetween 2Y and 7Y, and again nonde
reasing on the last period. Typi
ally, the model (6)
annot reprodu
e this kind of alternate pro�le and 
an only 
apture a global trend. Thus,
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Figure 7: PSA 03/06/09: Left: pie
ewise 
onstant deterministi
 intensity fun
tion thatexa
tly �ts CDS spreads data. Right: 
alibration with n = 3 of CDS spreads up to maturity7Y: m = 0.4, b1 = 0.5, b2 = −1.5, µ1 = 3.398 × 10−2, µ2 = 0.11417 and µ3 = 1.917.we 
annot get an impli
it 
urve for these kinds of CDS data for whi
h the default riskswings along the time.Sin
e it is not possible to �nd impli
it parameters, we now want to dis
uss the possibilityto 
alibrate several barriers. Calibrating more than one barrier is not really easy in pra
ti
e.First of all, we have observed that the 
alibration with one barrier was already ill-posed(see Figure 1) be
ause two di�erent sets of parameters 
an lead to the same distributionfun
tion. Obviously, this will not improve when adding parameters. The se
ond reasonis that, beyond the meaning of the 
alibrated parameters, the 
alibration with only onebarrier in Se
tion 4 was already rather satisfying and it is in pra
ti
e rather di�
ult to geta signi�
antly better �t of CDS data with two or more barriers. This is why we have mainlyfo
used on an example where the 
alibration with only one barrier is not fully satisfying.Namely, we have again 
onsidered the data of PSA in Mar
h 2009. Even if CDS data arereasonably �tted, the 
alibrated parameters in 5 are rather stressed b ≈ 15 and m ≈ 5,whi
h makes the di�usion part rather negligible. Roughly speaking, the intensity is mainlyequal to µ2 before 3Y and to µ1 after 3Y from Equation (8) and somehow, the 
alibratedmodel is not really far from a deterministi
 intensity model. Thus, it does not really dependon the �rm value. A possible reason of the di�
ulty to �t these data 
ould be the alternateshape of the 
alibrated pie
ewise intensity in Figure (7) whi
h 
annot be 
aptured by ourmodel as it has already been mentioned before. To 
orre
t this drawba
k, it is possible inpra
ti
e to add a deterministi
 shift as suggested in Remark 3.2. However, for the sakeof simpli
ity, we have instead de
ided to ignore the 10Y CDS data and minimize the 
ostfun
tion (22) with ν = 7. Doing so, we have not been able to signi�
antly improve the
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alibration obtained in Figure 5 with one barrier. Instead, we have been able to �t ratherwell the CDS data up to 7Y by adding a se
ond barrier as given in Figure 7. In parti
ular,the initial bump is parti
ularly well �tted. We also observe that it was useful to removethe 10Y data from the 
alibration. The 
alibrated parameters have been obtained by usingsome heuristi
 arguments on the expe
ted time spent below a barrier. Explaining thedetails would lead to a rather tedious dis
ussion whi
h we prefer to skip.To 
on
lude this se
tion, we would like to stress that 
alibrating with more than onebarrier is di�
ult and in general does not signi�
antly improve the �t to CDS data. Eventhough in some 
ases we get a better �t by adding one barrier, the 
alibrated parametersare also not so meaningful sin
e we only have 8 data. However, the model with manybarriers 
an be interesting to �t other possible liquid produ
ts like options on CDS.6 Numeri
al methods for Lapla
e inversionFrom Theorem 1.1, we know that the default time distribution is tra
table using thesemi-analyti
al formula for its Lapla
e transform. In this se
tion, we are investigatingdi�erent ways of inverting this Lapla
e transform to re
over the 
umulative distributionfun
tion of the default time τ , and also its �rst order derivatives with respe
t to ea
hparameter. Re
overing these derivatives enables us to qui
kly 
ompute the sensitivitieswith respe
t to the di�erent parameters, whi
h is of a great importan
e for the 
alibrationpro
edure, if one wants to use a gradient algorithm to minimize some distan
e between thereal and theoreti
al pri
es.In this se
tion, f : R → R is a real valued fun
tion vanishing on R− and su
h that
f(t) e−γt is integrable for some γ > 0. We will denote by f̂(z) =

∫∞
0

e−zt f(t)dt its Lapla
etransform for z ∈ C when the integral is well-de�ned, i.e at least when Re (z) ≥ γ. Thes
ope of this se
tion is to present numeri
al methods to re
over f from f̂ and analyze theira

ura
ies. Basi
ally in our model, f will be either P(τ ≤ t) or its derivative w.r.t. one ofthe model parameters.6.1 The Fourier series approximationFrom the formulas obtained for the Lapla
e transform of the default time, it is 
lear thatthese Lapla
e transforms are analyti
al in the 
omplex half-plane C+. Thanks to [18℄, weknow how to re
over a fun
tion from its Lapla
e transform.Theorem 6.1. Let f be a 
ontinuous fun
tion de�ned on R+ and γ a positive number. Ifthe fun
tion f(t) e−γt is integrable, then its Lapla
e transform f̂(z) =
∫∞
0

e−zt f(t)dt is wellde�ned on {z ∈ C,Re (z) ≥ γ}, and f 
an be re
overed from the 
ontour integral
f(t) =

1

2πi

∫ γ+i∞

γ−i∞
est f̂(s)ds =

eγt

2π

∫ +∞

−∞
e−ist f̂(γ − is)ds, t > 0. (23)
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k-Cox model 20For any real valued fun
tion satisfying the hypotheses of Theorem 6.1, we introdu
ethe following dis
retisation of Equation (23) with step h > 0

fh(t) =
h eγt

2π

∞∑

k=−∞
e−ikht f̂ (γ − ikh) . (24)From [1, Theorem 5℄, one 
an prove using the Poisson summation formula thatProposition 6.2. If f is a 
ontinuous bounded fun
tion satisfying f(t) = 0 for t < 0, wehave

∀t < 2π/h, |f(t) − fh(t)| ≤ ‖f‖∞
e−2πγ/h

1 − e−2πγ/h
. (25)6.2 The fast Fourier transform approa
hIn this se
tion, we fo
us on the inversion using an FFT based algorithm. First, let usre
all that for a given integer N ∈ N

∗, the forward dis
rete Fourier transform (DFT) of
(xk, k = 0, . . . , N − 1) is de�ned by

x̂l =

N−1∑

k=0

e−2iπkl/N xk, for l = 0, . . . , N − 1.It is well known that there are Fast Fourier Transform algorithms to 
ompute (x̂l, l =
0, . . . , N − 1) with a time 
omplexity proportional to N log(N). In their pathbreakingpaper, Cooley and Tukey [12℄ have given su
h an algorithm for the spe
ial 
ase where N isa power of 2. Many improvements of this algorithm have been proposed in the literaturerelaxing this 
onstraint on N . In �nan
e, the use of the FFT for option pri
ing has beenpopularized by Carr and Madan [9℄. Here, we use the FFT algorithm in a di�erent mannerto 
ompute the 
df of τ and its derivatives with respe
t to ea
h parameter up to some time
T > 0.Let us assume that we want to re
over the fun
tion f on the interval [0, T ]. Typi
ally,
T will represent the largest maturity of the CDS that one wishes to 
onsider. We set
h < 2π/T , so that h < 2π/t for any t ∈ (0, T ] and we 
an therefore 
ontrol the errorbetween the Fourier series fh and f thanks to Proposition 6.2:

∀t ∈ (0, T ], |f(t) − fh(t)| ≤ ‖f‖∞
e−2πγ/h

1 − e−2πγ/h
.Sin
e f is real valued, f̂(z̄) = f̂(z), and we obtain

fh(t) =
h eγt

2π
f̂(γ) +

h eγt

π
Re

( ∞∑

k=1

e−ikht f̂ (γ − ikh)

)

, (26)



A 
losed-form extension to the Bla
k-Cox model 21whi
h 
an be approximated by the following �nite sum
fN

h (t) =
h eγt

2π
f̂(γ) +

h eγt

π
Re

(
N∑

k=1

e−ikht f̂ (γ − ikh)

)
. (27)For 1 ≤ l ≤ N , we set tl = 2πl/(Nh) to get

fN
h (tl) =

h eγtl

2π
f̂(γ) +

h eγtl

π
Re

(
N∑

k=1

e−2iπkl/N f̂ (γ − ikh)

)

=
h eγtl

2π
f̂(γ) +

h eγtl

π
Re

(
e−2iπ(l−1)/N

N∑

k=1

e−2iπ(k−1)(l−1)/N e−2ikπ/N f̂ (γ − ikh)

)
.Therefore, (fN

h (tl), l = 1, . . . , N) 
an be 
omputed easily using the dire
t FFT algorithmon the ve
tor (e−2ikπ/N f̂ (γ − ikh) , k = 1, . . . , N).Now, let us analyze the error indu
ed by approximating (f(tl))l by (fN
h (tl))l. Thefollowing proposition gives an upper bound of the error involved in the trun
ation of theseries appearing in fh.Proposition 6.3. Let f be a fun
tion of 
lass C3 on R+ su
h that there exists ǫ > 0satisfying ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s). Let us assume moreover that f(0) = 0. Let

A ∈ (0, 2π). Then, there exists a 
onstant K > 0 independent of t su
h that:
∀t ∈ (0, A/h], |fN

h (t) − fh(t)| ≤ K(1 + 1/t)
eγt

N2
. (28)Proof. From three su

essive integrations by parts, we get:

f̂ (γ − ikh) =

∫ ∞

0

e(ikh−γ)u f(u)du

=
−f ′(0)

(ikh − γ)2
+

f ′′(0)

(ikh − γ)3
−
∫ ∞

0

f (3)(u)

(ikh − γ)3
e(ikh−γ)u du.We set Ek =

∑k−1
j=0 e−ijht = (1 − e−ikht)/(1 − e−iht) and get by a summation by parts

N∑

k=0

e−ikht

(ikh − γ)2
=

EN+1

(iNh − γ)2
+

N∑

k=1

Ek
h(2γ + i(2k − 1)h)

(ikh − γ)2(i(k − 1)h − γ)2
− 1

γ2
.Therefore, we dedu
e that:

2π

heγt
(fN

h (t) − fh(t)) = 2f ′(0)Re

(
EN+1

(iNh − γ)2
+

∞∑

k=N+1

Ek
h(2γ + i(2k − 1)h)

(ikh − γ)2(i(k − 1)h − γ)2

)

+2Re

( ∞∑

k=N+1

e−ikht f ′′(0) −
∫∞
0

f (3)(u) e(−γ+ikh)u du

(ikh − γ)3
du

)
.
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k-Cox model 22Then, using that for any k ∈ N |Ek| ≤ 2/|1 − e−iht|, we get:
∣∣∣

2π

heγt
(fN

h (t) − fh(t))
∣∣∣ ≤ 4|f ′(0)|

|1 − e−iht|

(
1

γ2 + (Nh)2
+

∞∑

k=N+1

h

√
(2γ)2 + ((2k − 1)h)2

(γ2 + (kh)2)(γ2 + ((k − 1)h)2)

)

+2(|f ′′(0)| + C/ǫ)
∞∑

k=N+1

1

(γ2 + (kh)2)3/2
,where C = supt≥0 |f (3)(t) e(ǫ−γ)t |. The result follows from noti
ing that supy∈[0,A]

y
|1−e−iy| <

∞.Corollary 6.4. Let f be a bounded fun
tion of 
lass C3 on R+ su
h that there exists ǫ > 0satisfying ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s). Let A ∈ (0, 2π) and h ≤ A/T .Then, there exists a 
onstant K > 0 su
h that
∀l ≥ 1, tl ≤ T, |fN

h (tl) − f(tl)| ≤ K max

(
eγT

N2
,

h

2πN

)
+ ‖f‖∞

e−2πγ/h

1 − e−2πγ/h
.Proof. It is su�
ient to use Propositions 6.2 and 6.3, and to noti
e that maxt∈[t1,T ](e

γt /t) ≤
max(eγt1 /t1, e

γT /T ).Remark 6.5. When there is only one barrier (n = 2) the results obtained in Appendix A.2enable to 
he
k the regularity needed in the above 
orollary to 
ompute the 
umulativedistribution fun
tion of the default time.When b 6= 0, the fun
tions Pb,m,µ1,µ2(t) and ∂pPb,m,µ1,µ2(t) for p ∈ {b, m, µ1, µ2} satisfythe above assumption thanks to Proposition A.3.When b = 0, we 
an 
he
k from (4) that there exist some 
onstants c and cp for
p ∈ {m, µ1, µ2} su
h that the following expansions hold when k → +∞:
L0,m,µ1,µ2(γ−ikh) =

c

(γ − ikh)2
+O(1/k3), and ∂pL0,m,µ1,µ2(γ−ikh) =

cp

(γ − ikh)2
+O(1/k3).Therefore, we 
an use the same proof as in Proposition 6.3 to bound the trun
ation errorby K(1+1/t) eγt

N2 . On the 
ontrary, the derivative with respe
t to b satis�es ∂bL0,m,µ1,µ2(γ−
ikh) = (m +

√
2(γ − ikh + µ1) + m2)L0,m,µ1,µ2(γ − ikh) = cb

(γ−ikh)3/2 + O(1/k5/2). Thus,the same proof only gives a trun
ation error bounded by K(1+1/t) eγt

N3/2 in this 
ase, whi
hhowever still goes to zero when N is large enough.6.3 Pra
ti
al implementation in our model.Now, let us explain how to 
hoose the parameters in our model in order to a
hieve ana

ura
y of order ε > 0. We start with the one barrier 
ase (n = 2) for whi
h we 
an take
γ > 0 as 
lose to 0 as we wish thanks to Proposition A.3. The following 
onditions

h < 2π/T,
2πγ

h
= log(1 + 1/ε), N > max

(
h

2πε
,

√
eγT

ε

) (29)
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k-Cox model 23ensure by Corollary 6.4 that supl≥1,tl≤T |fN
h (tl) − f(tl)| is of order ε.In pra
ti
e, it is important to make the time grid (tl, l = 1 . . .N) on whi
h we re
overthe 
df (and its derivatives) 
oin
ide with the payment dates of all the produ
ts 
onsidered.Typi
ally, this grid should en
ompass the quarterly time grid to easily 
ompute the CDSpri
es and their sensitivities. More pre
isely, we will 
ompute the integrals de�ning defaultand payment leg pri
es in (17) and (18) using the Simpson rule, whi
h is very e�
ient sin
ethe integrated fun
tions are regular enough (namely C4) as stated by Proposition A.3. Todo so, we need a time grid at least twi
e thinner than the payment grid, and therefore 1/8has to be a multiple of t1 = 2π

Nh
. Sin
e in this paper we 
onsider CDS up to T = 10 years,we make the following 
hoi
e when 
onsidering only one barrier (n = 2):

T = 10, h =
5π

8T
, γ =

h

2π
log(1 + 1/ε), N = max

(

2

‰

log2

„

max

„

h
2πε

,

q

eγT

ε

««ı

, 27

)

. (30)This 
hoi
e automati
ally guarantees the latter 
ondition: 1/8 is 
learly a multiple of
t1 = 16/N .When 
onsidering more than one barrier, we no longer have theoreti
al results on thetime regularity of the 
df of the default time like the one obtained in Appendix A.2.However, the numeri
al pro
edure still works. From our numeri
al experiments, we havenoti
ed that it is wise to de
rease h, espe
ially when b1 or bn−1 are far away from 0. Inthat 
ase we have used the following parameters:

T = 10, h =
5π

32T
, γ =

h

2π
log(1 + 1/ε), N = max

(
2

‰

log2

„

max

„

h
2πε

,

q

eγT

ε

««ı

, 29

)
. (31)6.4 The Euler summationThe Lapla
e inversion based on the FFT is very e�
ient and enables to very qui
kly
ompute the 
df and its derivatives on the whole time interval. However, the time grid hasto be regular, whi
h may be a possible drawba
k when dealing with bespoke produ
ts thathave unusual payment dates. Here, we present another method to re
over the fun
tion ffrom its Lapla
e transform at a given time t ≥ 0.Unlike the FFT approa
h, we 
an here 
hoose h as a fun
tion of t, and the tri
k 
onsistsin 
hoosing h = π/t to get an alternating series in (26):

fπ/t(t) =
eγt

2t
f̂(γ) +

eγt

t

∞∑

k=1

(−1)k Re

(
f̂

(
γ + i

kπ

t

))
. (32)Rather than simply trun
ating the series like in the FFT algorithm, we use the Eulersummation te
hnique as des
ribed by [1℄, whi
h 
onsists in 
omputing the binomial averageof q terms from the N-th term of the series appearing in (32). The following propositiondes
ribes the 
onvergen
e rate of the binomial average to the in�nite series fπ/t(t) when pgoes to ∞. Its proof 
an be found in Labart and Lelong [15℄.
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k-Cox model 24Proposition 6.6. Let q ∈ N∗ and f be a fun
tion of 
lass Cq+4 su
h that there exists ǫ > 0satisfying ∀k ≤ q+4, f (k)(s) = O(e(γ−ǫ)s). We 
onsider the trun
ation of the series in (32)
fN

π/t(t) =
eγt

2t
f̂(γ) +

eγt

t

N∑

k=1

(−1)k Re

(
f̂

(
γ + i

πk

t

))
,and E(q, N, t) =

∑q
k=0

(
q
k

)
2−qfN+k

π/t (t). Then,
∣∣fπ/t(t) − E(q, N, t)

∣∣ ≤ t eγt |f ′(0) − γf(0)|
π2

N ! (q + 1)!

2q (N + q + 2)!
+ O

(
1

N q+3

)when N goes to in�nity.In pra
ti
e, for q = N = 15 and γ = 11.5/t, we have eγt N ! (q+1)!
2q (N+q+2)!

≈ 3.13 × 10−10, andit is therefore su�
ient to make the summation a

urate up to the 9th de
imal pla
e. Onthe other hand, we have |fπ/t(t)− f(t)| ≤ ‖f‖∞ e−2γt

1−e−2γt from (6.2), whi
h is of order 10−10.Finally, the overall error is of order 10−10. Note that, for a �xed t, the 
omputation 
ostof E(q, N, t) is proportional to N + q.7 Con
lusion and further prospe
tsIn this paper, we have proposed a very simple and natural extension of the Bla
k-Coxmodel. It is an hybrid model, and 
ontrary to hitting time models, it has a non-zero defaultintensity away from the threshold. Besides, the parameters have a 
lear heuristi
 meaning.The strength of this Bla
k-Cox extension is that the 
umulative distribution fun
tion ofthe default time remains known expli
itly through its Lapla
e transform. This allows toinstantaneously 
ompute CDS pri
es and their sensitivities to the model parameters. Itespe
ially enables to get a qui
k way to 
alibrate the parameters to the CDS data. Asshown in Se
tion 4, 
onsidering the model with only one barrier is su�
ient to 
orre
tly �ta wide range of CDS spread 
urves. Nonetheless, one has to be 
areful be
ause even thoughthis 
alibration generally leads to a 
orre
t �t of the default distribution, it may happenthat the parameters themselves are not meaningful. Two signi�
antly di�erent parametersets 
an give similar CDS spreads, and one has to get further information to neatly �t theparameters.In our study, we have 
onsidered the parameters of the model as free parameters andwe have �tted them to CDS market pri
es. Doing so, it is 
alibrated under a risk-neutralprobability and 
an be used for pri
ing and hedging purposes. However, it is also possibleto have a �stru
tural approa
h� and to determine the model parameters by analyzing �rm'se
onomi
 data. Thus, it would be interesting to determine from the balan
e sheet of a �rmwhat the value of V0 and of the other di�erent model parameters would be. In that 
ase,the thresholds Ci 
ould be related to 
redit events of the �rm or to some 
riti
al �rmvalues around whi
h its poli
y has to be 
hanged. This would give an interesting way ofestimating the default probabilities under the histori
al probability measure. A possible
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k-Cox model 25way of implementing this would be to 
onsider the rating of the �rm by an agen
y, andasso
iate to ea
h rating a default intensity µi. Then, the barriers Ci and the parameter αwould be obtained from the balan
e sheet of the �rm by some e
onomi
al analysis. Thiskind of stru
tural approa
h for the 
alibration would be of 
ourse also really interesting.However, it obviously requires additional data and expertise in e
onomi
 analysis, and weleave it for future work.Another interesting 
ontinuation of this work would be to study how this model 
anbe used in the multiname setting using the so-
alled bottom-up approa
h (see for exampleBiele
ki et al. [3℄). More pre
isely, let us 
onsider a basket of default times and let us assumethat the underlying �rm values follow a multidimensional Bla
k-S
holes model. We haveexplained in this paper how it is possible to �t the CDS data of ea
h basket 
omponentwith one barrier. On
e we have �tted C, α, µ1 and µ2 for ea
h �rm, we would like to �t thewhole model to multiname produ
ts su
h as CDO tran
hes. To do so, one has to 
alibratethe 
orrelation matrix between the �rm values and, if ne
essary, the dependen
y betweenthe exponential variables, whi
h trigger the default times. However, the 
orrelation matrixof the �rm values is also 
losely related to the one of the sto
ks. Ideally, one would like to�nd a 
alibration pro
edure that is both 
onsistent with equity and 
redit markets. Moresimply, this kind of model 
ould make a bridge between these markets and qualitatively
ompare how they pri
e the dependen
y between 
ompanies.A Mathemati
al properties of the 
df of τThe s
ope of this se
tion is to state some mathemati
al properties of the 
umulative dis-tribution fun
tion of τ . We will denote by
Πn = {(b, m, µ) ∈ R

n−1 × R × R
n
+, b1 > · · · > bn−1, µ1 < · · · < µn},the set of admissible parameters in a setting with n− 1 barriers. We re
all the 
onvention

b0 = +∞ and bn = −∞.A.1 Basi
 properties and regularity w.r.t parametersFirst, we state a result on the monotoni
ity with respe
t to ea
h parameter.Proposition A.1. For any t ≥ 0, the fun
tion Pb,m,µ(t) is nonde
reasing with respe
t toea
h bi and ea
h µi, and is nonin
reasing with respe
t to m.Proof. From (9), Pb,m,µ(t) = 1 − E

[
e−

R t
0

Pn
i=1 µi1{bi≤Ws+ms<bi−1}

ds
]
. It is then su�
ient toobserve that ∑n

i=1 µi1{bi≤x<bi−1} = µ1 +
∑n−1

i=1 (µi+1 − µi)1{x<bi} is nonin
reasing w.r.t x,nonde
reasing w.r.t. ea
h µi for i = 1, . . . , n, and nonde
reasing w.r.t. ea
h bi for i =
1, . . . , n − 1 thanks to (5).In the 
al
ulation of the Lapla
e transform in Theorem 2.1, we have obtained di�erentformulas a

ording to the integer i su
h that bi ≤ 0 < bi−1. However, Pb,m,µ(t) and
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k-Cox model 26its derivatives w.r.t ea
h parameter are 
ontinuous fun
tions of (b, m, µ). This featureis important when dealing with 
alibration, sin
e we will use a gradient algorithm tominimize some distan
e between the real and theoreti
al pri
es: there is no dis
ontinuitywhen 
rossing barriers (i.e. when ∃i ∈ {1, . . . , n − 1}, bi = 0).Proposition A.2. The fun
tion Pb,m,µ(t) is 
ontinuous w.r.t. (b, m, µ) ∈ Πn, t ≥ 0. Ithas derivative w.r.t. bi, i = 1, . . . , n−1 (resp. m and ea
h µi, i = 1, . . . , n) and ∂bi
Pb,m,µ(t)(resp. ∂mPb,m,µ(t) and ∂µi

Pb,m,µ(t)) is 
ontinuous w.r.t. (b, m, µ) ∈ Πn and t ≥ 0.Proof. We set for t ≥ 0,
dP̃

dP

∣∣∣
Gt

= exp(−mWt − m2t/2),so that (W̃s = Ws +ms, s ∈ [0, t]) is a Brownian motion under P̃. We get from (9) by usingGirsanov's Theorem:
P c

b,m,µ(t) = e−µ1t
E

[
e−

R t
0

Pn−1
i=1 (µi+1−µi)1{Ws+ms<bi}

ds
]

= e−µ1t
Ẽ

[
emW̃t−m2t/2 e

−
R t
0

Pn−1
i=1 (µi+1−µi)1{W̃s<bi}

ds
]

= e−µ1t
Ẽ

[
emW̃t−m2t/2 e−

Pn−1
i=1 (µi+1−µi)

R bi
−∞ ℓ̃t(x)dx

]
,where ℓ̃s(x) denotes the lo
al time asso
iated to (W̃s, s ∈ [0, t]) and is 
ontinuous withrespe
t to (s, x). Therefore, it is 
ontinuous w.r.t. (b, m, µ) ∈ Πn and t ≥ 0. Moreover, forea
h parameter, we 
an di�erentiate inside the expe
tation using Lebesgue's theorem andthe derivative is 
ontinuous w.r.t. (b, m, µ) ∈ Πn and t ≥ 0, whi
h yields the result.A.2 Time regularity when n = 2In order to study the a

ura
y of the di�erent algorithms presented in Se
tion 4 to numer-i
ally invert the Lapla
e transform of τ , it is essential to know how regular the distributionfun
tion 
an be expe
ted to be. Our analysis relies on the formula of the Lapla
e trans-form (4). This is why we only 
onsider here the 
ase n = 2.Proposition A.3. When b 6= 0, the fun
tions Pb,m,µ1,µ2(t) and ∂pPb,m,µ1,µ2(t) for p ∈

{b, m, µ1, µ2} are of 
lass C∞ on [0,∞). Moreover, for any ε > 0, we have
∀k ∈ N

∗, P
(k)
b,m,µ1,µ2

(t) =
t→∞

O(e(ε−µ1)t) and ∀k ∈ N, ∂pP
(k)
b,m,µ1,µ2

(t) =
t→∞

O(e(ε−µ1)t).In parti
ular, these fun
tions are bounded on R+ when µ1 > 0.When b = 0, P0,m,µ1,µ2 is of 
lass C1 on [0,∞) but not C2 and of 
lass C∞ on (0,∞).Remark A.4. Sin
e Pb,m,µ1,µ2 is at least of 
lass C1 on [0,∞), ∀t < ∞ P(τ = t) = 0.
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losed-form extension to the Bla
k-Cox model 27Proof of Proposition A.3. First, we 
onsider the 
ase b 6= 0.
b 6= 0 : From Theorem 1.1, we know that the Lapla
e transform of Pb,m,µ1,µ2 is givenby

Lb,m,µ1,µ2(z) = emb−|b|
√

2(z+µb)+m2

(
1

z + µ1
− 1

z + µ2

)
×
{

− 1{b>0}

+
−m +

√
2(z + µ2) + m2

√
2(z + µ1) + m2 +

√
2(z + µ2) + m2

}

+
1

z
− 1

z + µb
.We noti
e that 1

z
− 1

z+µb
is the Lapla
e transform of the 
umulative density fun
tion of theexponential distribution with parameter µb.For any ε − µ1 > γ > −µ1, we have

Pb,m,µ1,µ2(t) =(1 − e−µbt)1{t≥0} +
1

2πi

∫ ∞

−∞
e(γ+is)t emb−|b|

√
2(γ+is+µb)+m2

(
1

γ + is + µ1
− 1

γ + is + µ2

)
×
{

− 1{b>0}

+
−m +

√
2(γ + is + µ2) + m2

√
2(γ + is + µ1) + m2 +

√
2(γ + is + µ2) + m2

}

dsThe fun
tion s 7−→ sk e(γ+is)t emb−|b|
√

2(γ+is+µb)+m2
(

1
γ+is+µ1

− 1
γ+is+µ2

)
×
{
− 1{b>0} +

−m+
√

2(γ+is+µ2)+m2√
2(γ+is+µ1)+m2+

√
2(γ+is+µ2)+m2

} is integrable and 
ontinuous on R for all k ∈ N, sin
e
Re
(√

2(γ + is + µb) + m2
)

∼
|s|→+∞

√
s. Hen
e, the fun
tion Pb,m,µ1,µ2 is of 
lass C∞ whi
himplies that the random variable τ admits a density w.r.t Lebesgue's measure and moreoverfor every k ∈ N∗ and all t ≥ 0

P
(k)
b,m,µ1,µ2

(t) = − (−µb)
k e−µbt +

1

2πi

∫ ∞

−∞
eist(γ + is)k eγt emb−|b|

√
2(γ+is+µb)+m2

(
1

γ + is + µ1
− 1

γ + is + µ2

)
×
{

− 1{b>0}

+
−m +

√
2(γ + is + µ2) + m2

√
2(γ + is + µ1) + m2 +

√
2(γ + is + µ2) + m2

}
dsUsing the Riemann-Lebesgue lemma (∫ +∞

−∞ f(s) eist ds →
t→+∞

0 if f is integrable), we get that
P

(k)
b,m,0,µ(t) = O(eγt) when t → ∞. By di�erentiating this equation with respe
t to ea
hparameter, we also get that ∂bP

(k)
b,m,0,µ(t), ∂mP

(k)
b,m,µ1,µ2

(t), ∂µ1P
(k)
b,m,0,µ(t) and ∂µ2P

(k)
b,m,0,µ(t) are
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O(eγt).

b = 0 : Whereas when b 6= 0, the proof is based on the integrability of the Lapla
etransform given in Theorem 1.1, to treat the 
ase b = 0, we use the expression of P c
0,m,0,µgiven by:

P c
0,m,0,µ(t) = e−µt(1 − e−m2t/2) +

1

π

∫ t

0

e−(µ+m2/2)s

√
s

e−m2(t−s)/2

√
t − s

ds (33)
+

m√
2π

[
−
∫ t

0

e−(µ+m2/2)s

√
s

Φ(m
√

t − s) e−µ(t−s) ds +
1

µ

∫ t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

Φ(m
√

t − s) ds

−1

µ

∫ t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

e−µ(t−s) Φ(−m
√

t − s)ds +

∫ t

0

e−(µ+m2/2)s

√
s

Φ(−m
√

t − s) e−µ(t−s) ds

]
.Equation (33) 
an be derived from results of Chesney et al. [11℄, or one 
an 
he
k that itsLapla
e transform 
omplies with the one given in (4).The �rst term in Equation (33) is obviously of 
lass C∞ on [0,∞). Using the 
hange ofvariable s = tu, the se
ond term of Equation (33) 
an be rewritten

e−m2t/2

π

∫ 1

0

e−µtu

√
u(1 − u)

duand is therefore of 
lass C∞ on [0,∞). Let I1, I2, I3, I4 respe
tively denote the last fourterms of Equation (33) that are between square bra
kets. Closely looking at the remainingintegrals and performing the same 
hange of variables, it 
learly appears that we only haveto 
onsider two di�erent types of integrals. For β, ρ ∈ R, we introdu
e
J1(β, ρ) =

∫ 1

0

eβtu
√

t√
u

Φ(ρ
√

t
√

1 − u)du (34)
J2(β, ρ) =

∫ 1

0

e−m2tu/2

√
t
√

u3
(1 − e−βtu)Φ(ρ

√
t
√

1 − u)du. (35)An integration by parts in Equation (34) leads to
J1(β, ρ) =

√
t

2

∫ 1

0

eβtu

√
u

du +

∫ 1

0

(∫ u

0

eβtv

√
v

dv

)
ρt e−ρ2t(1−u)/2

2
√

2π
√

1 − u
du.We noti
e that I1 + I4 = e−µt(−J1(−m2/2, m) + J1(−m2/2,−m)). Hen
e,

I1 + I4 =
−mt e−µt

√
2π

∫ 1

0

(∫ u

0

e−m2tv/2

√
v

dv

)
e−m2t(1−u)/2

√
1 − u

du.
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k-Cox model 29This new formula makes 
lear that as a fun
tion of t, I1 + I4 is of 
lass C∞ on [0,∞).The term J2 is handled by a similar integration by parts:
J2(β, ρ) =

1

2

∫ 1

0

e−m2tu/2(1 − e−βtu)√
t
√

u3
du

+

∫ 1

0

(∫ u

0

e−m2tv/2(1 − e−βtv)√
v3

dv

)
ρ

2
√

2π
√

1 − u
e−ρ2t(1−u)/2 duAs a fun
tion of t, the se
ond integral is 
learly of 
lass C∞ on [0,∞) from Lebesgue'sbounded 
onvergen
e theorem. Noti
ing that I2 + I3 = J2(µ, m) + J2(−µ,−m) e−µt,

∫ 1

0
e−m2tu/2(1−e−βtu)√

t
√

u3
du =

∫ t

0
e−m2s/2(1−e−βs)√

s3
ds and

d

dt

(∫ t

0

e−m2s/2(1 − e−µs)√
s3

ds + e−µt

∫ t

0

e−m2s/2(1 − eµs)√
s3

ds

)
= −µ e−µt

2

∫ t

0

e−m2s/2(1 − eµs)√
s3

dswe get that I2 + I3 is (as a fun
tion of t) of 
lass C∞ on (0,∞) but only of 
lass C1 on
[0,∞) and not more. Finally, P0,m,0,µ is of 
lass C∞ on (0,∞), but only of 
lass C1 on thesemi-
losed interval [0,∞).Referen
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