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Analysis and short-time extrapolation of stock

market indexes through projection onto

discrete wavelet subspaces

Laurent Gosse

IAC–CNR “Mauro Picone” (sezione di Bari)
Via Amendola 122/I - 70126 Bari, Italy

Abstract

We consider the problem of short-time extrapolation of blue chips’ stocks indexes
in the context of wavelet subspaces following the theory proposed by X.-G. Xia
and co-workers in a series of papers [29,28,14,15]. The idea is first to approximate
the oscillations of the corresponding stock index at some scale by means of the
scaling function which is part of a given multi-resolution analysis of L2(R). Then,
since oscillations at a finer scale are discarded, it becomes possible to extend such a
signal up to a certain time in the future; the finer the approximation, the shorter this
extrapolation interval. At the numerical level, a so–called Generalized Gerchberg-
Papoulis (GGP) algorithm is set up which is shown to converge toward the minimum
L2 norm solution of the extrapolation problem. When it comes to implementation,
an acceleration by means of a Conjugate Gradient (CG) routine is necessary in
order to obtain quickly a satisfying accuracy. Several examples are investigated
with different international stock market indexes.

Key words: Multi-resolution analysis, wavelet decomposition, scale-limited
extrapolation, empirical finance.
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1 Introduction

Extrapolation is one of the fundamental problems arising in Signal Processing; during the
last decades, a lot of work has been devoted to it, in the particular context of band-limited
signals, see e.g. [11,21,31,12,18,23,26]. The theoretical basis for band-limited extrapolation
has to do with the classical Paley-Wiener theorem which states that a function belonging to
L2(R) whose Fourier transform has compact support can be extended to the complex plane
as an entire function of exponential type. Hence, its knowledge restricted to any connected
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open set still allows for a reconstruction up to any arbitrarily big domain by relying onto
classical analytic functions theory. Numerically, things are more involved, especially because
this analytic extension turns out to be an ill-conditioned problem which is quite sensitive
to noise and truncation errors; in particular, methods based on Taylor series have been
completely given up for Fast Fourier Transform (FFT) routines, see again [11,21,12,18,26].

In this paper, we follow a similar methodology to produce reliable extrapolations of liquid
stock market indexes relying on so–called scale-limited approximation. Roughly speaking, in
the case of band-limited extrapolation, one assumes that the signal under consideration can
be approximated by a function of compact support in the Fourier space (hence having only
finite frequency oscillations) whereas in the present context, one considers that the signal
can be well represented by its projection onto a subspace of L2(R) containing functions with
rather “thick” oscillations. Such subspaces can be found by considering what is now usu-
ally called a Multi-Resolution Analysis of L2(R) (see Definition 1 below): they are spanned
by bases of shift-invariant scaling functions with various smoothness properties [17]. Hence
this work applies primarily to indexes which are dominated by their low-frequency approx-
imation and for which fine scale features can be considered as detail not being of great
importance.

This is not a very restrictive assumption since the composition of most of modern stock
indexes is regularly updated to keep their variations under control even when some share’s
prices may have erratic behavior. For instance, on june 18, 2007, AGF and Thomson have
been removed from the French index CAC 40; they have been replaced by Air France-KLM
and Unibail. Similarly, the Dow Jones Industrials 30 Index will see its composition modified
as General Motors should leave because its capitalization dropped too strongly during march
2009. An estimate of the volatility of an investment can be given by a statistical measure
known as the standard deviation of the return rate. Standard deviation can be thought as
being synonymous with volatility in such a context. An S&P 500 index fund has a standard
deviation of about 15%; a standard deviation of zero would mean a return rate that never
varies, like a bank account paying compound interest at a guaranteed rate. Exchange rates
on FOREX markets seem to display quite an opposite behavior and the methods presented
in this paper don’t seem to apply (see e.g. [6] for some empirical differences between stock
and FX markets, especially the gain/loss asymmetry).

Recently, a whole theory has been proposed in a series of papers [29,28,14,15] (see also [7])
to extend the well-known band-limited extrapolation theory to a more flexible framework
of scale-limited spaces which have the nice property to be able to handle finite-duration
signals. The roadmap really follows classical Fourier extrapolation and proceeds through
linear integral operator theory (see e.g. [34] for a general reference): this is recalled in
§2.1. However, one big difference is that from a compact set of observations, one cannot
theoretically reconstruct the signal on the whole real line (except in the special case where
the multi-resolution analysis involves bases of analytic functions), see Theorem 3. So one can
merely hope to reconstruct a small part of the missing signal on both sides of the measures
interval; hence the “short-time extrapolation” in the title. The size of this “small part” is
related to the smoothness of the analyzing wavelets and the scale at which one decides to
work (and this scale itself is related to the volatility of the index).

In §2.2, we present the standard algorithms to produce these extrapolations: they originate
from the now classical Gerchberg-Papoulis algorithm [11,21] widely used for band-limited
extrapolation and whose convergence has been studied in various papers, see [8,12,18,31] and
references therein. In the present case, this routine converges toward the so-called Minimum-
norm Solution of the extrapolation problem. Because of its poor practical convergence
properties, an acceleration by the Conjugate Gradient (CG) algorithm is generally needed;
this is explained in [12,26] in case of band-limited extrapolation, and in [14] for scale-limited
extrapolation. We don’t completely follow this paper in §2.3 as we propose an easier way
to produce a CG acceleration.

Our specific application is considered in §3. First, in §3.1, we explain that because of the
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features of the market indexes, particular wavelet bases are needed. Namely, since these
indexes are strongly non-periodic, one cannot consider usual wavelet bases defined on the
whole real line as they process finite duration signals either by zero-padding or by artificial
periodization. Both techniques will lead to the appearance of strong discontinuities at the
edge of the observation interval, which will be reflected in the wavelet coefficients at very
fine scales. Hence such bases will yield poor representations at medium scales, especially in
the vicinity of the borders. A solution is to use the wavelet bases on a bounded interval: these
bases have been first proposed by Meyer [16], then by Cohen, Daubechies, Jawerth and Vial
[3,5]; see also e.g. [4,17,19,13]. Then, in §3.2, we explain through an example that results
can be of quite poor quality when scale-limited extrapolation is applied to individual share
prices displaying locally strong variations on a fine scale. Smoothness and weak volatility
are therefore requested to produce an acceptable result.

In §4, we present some numerical results on real-life data. First, in §4.1, a quiet bull market
on the French CAC 40 is considered: this gives the best conditions in which the scale-limited
extrapolation can be used because the market follows a stable trend and the volatility is
low. Then, in §4.2, we look at the real-estate EPRA Eurozone index as a prototype of a
moderately volatile stock index in a bear market; the quality of the extrapolation is lower,
but there are signs (like the size of some wavelet coefficients) which give a hint about the
difficulty in treating such a situation. Finally, we considered what happened on the Hang-
Seng Chinese index during the first days of october 2008 when it lost around 25% of its value
in less than 10 days; obviously, extrapolation routines cannot give reliable information in
such a case, but the analysis of what is left behind after projecting the index onto a scale-
limited subspace of L2(R) can somewhat reveal itself as a warning sign its high volatily
(which makes violent corrections plausible in a difficult economic period). In Appendix A,
we briefly present results on scale-limited extrapolation of assets log-returns (see [6]).

Let us recall finally that other works previously addressed the wavelet techniques for stock
market data: see the review paper [24] and the book [10]. Concerning this book, the authors
works primarily with the discontinuous Haar wavelet which in general forbids to use any
of these scale-limited extrapolation techniques. Other forecasting algorithms are proposed
in [1,2,9,25,32]. A book is devoted to wavelet techniques for time series analysis, see [22].
Some results of empirical finance are reviewed in [6].

2 From band-limited to scale-limited extrapolation

In this section, we aim at reviewing some of the results from [29,28,14,15] which will be
useful in the context of processing stock market indexes. Let’s begin by introducing the
concept of Multi-Resolution Analysis (MRA): (see e.g. [17] for details)

Definition 1 A sequence of nested subspaces Vj is called a Multi-Resolution Analysis of

L2(R) if: {0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R). Moreover, the following properties
must hold:

• for all f ∈ L2(R), ‖PVj
f − f‖L2 → 0 as j → +∞ also, PVj

f → 0 as j → −∞.

• if f(t) ∈ Vj, then f(t/2) ∈ Vj−1 and for all k ∈ Z, f(t − 2jk) ∈ Vj.
• there exists a shift-invariant orthonormal base of V0 given by the scaling function φn(t) =

φ(t − n) for n ∈ Z.

In this définition, PVj
stands for the orthogonal projector onto the subspace Vj . Intuitively,

it asks for the Vj ’s to be vector subspaces of functions with increasing temporal resolution:
when j decreases, functions in Vj tend to become constants. Oppositely, when j increases,
they are allowed to oscillate with high instantaneous frequency. The wavelet spaces Wj

are defined as the orthogonal complement of Vj inside Vj+1, that is to say: for all j ∈ Z,
Vj+1 = Vj ⊕ Wj .
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From φn, the base of V0, one can deduce a base of Vj by simple dilatation,

φj,n(t) =
√

2jφn(2jt) =
√

2jφ(2jt − n). (1)

Thus, the orthogonal projection of f onto Vj reads:

PVj
f =

∑

n∈Z

< f, φj,n > φj,n, < f, φj,n >=

∫

R

f(t)φj,n(t).dt, (2)

which is the best approximation of f in Vj in the least-squares sense. Similarly, for any
value of T ∈ R

+, we denote by PT the time-truncation operator: PT f(t) = f(t) if |t| ≤ T ,
zero in the other case. Finally, χA stands for the indicator function of any set A.

2.1 Reproducing kernel Hilbert spaces (RKHS) and continuous extrapolation

The general problem of extrapolation for scale-limited functions can be presented as follows:
we fix a MRA in the sense of Definition 1 and an index j ∈ Z. Any function f ∈ Vj can
be represented by means of the scaling function through the formula (2); in particular, if
we choose a compact time interval [−T, T ], with T ∈ R

+, we can define g, a “truncated
version” of f the following way: (notice that in general, g 6∈ Vj)

∀t ∈ [−T, T ], g(t) = (PT ◦ PVj
f)(t) =

∑

n∈Z

< f, φj,n > φj,n(t). (3)

Implicitly, this defines a linear bounded operator Hj : Vj → L2(−T, T ). The problem of
extrapolating a time-truncated, scale-limited signal g can be formulated as finding a unique
solution f ∈ Vj to Hjf = g. In order to proceed with this inversion, we recall from linear
operator theory the adjoint H∗

j which we can compute easily:

< Hf, ϕ > = <
∑

n∈Z
< f, φj,n > φj,n, ϕ >

=
∑

n∈Z
< f, φj,n >< φj,nχt∈[−T,T ], ϕ >

= < f,
∑

n∈Z
φj,n < φj,n, ϕ χt∈[−T,T ] >>

= < f,H∗ϕ > .

Thus H∗ is a projector L2(−T, T ) → Vj ; in particular, the composition Hj ◦ H∗
j defines an

integral operator from L2(−T, T ) onto itself,

∀g ∈ L2(−T, T ),
(

Hj ◦ H∗
jg

)

(t) =

∫ T

−T

g(s)Qj(s, t).ds,

where Qj is called the Reproducing Kernel for the reproducing kernel Hilbert space [30] Vj :

Qj(s, t) =
∑

n∈Z

φj,n(s)φj,n(t) = Qj(t, s), (s, t) ∈ R
2. (4)

In the sequel, we assume Qj to be bounded 1 as a function of R
2 and continuous in [−T, T ]2.

Lemma 1 (see [14]) The following properties hold for Qj bounded and continuous:

1 This is the case as soon as |φ(t)| ≤ O(1 + |t|0.5+ǫ)−1 for some ǫ > 0, see [28];
especially, this is true for scaling functions with compact support.
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• if the scaling function φ is real-valued, Hj ◦ H∗
j is self-adjoint and positive-semidefinite;

in particular, all its eigenvalues are real and nonnegative, so +∞ > λ1 ≥ λ2 ≥ ... ≥ 0.
• Hj ◦H∗

j is compact; in particular, its set of eigenfunctions rk(t) satisfying (Hj ◦H∗
j )rk =

λkrk forms an orthogonal basis of L2(−T, T ).

The second part of the lemma is classical: see for instance §4.4 (page 240) of [34]. These
eigenfunctions are the key to extrapolate scale-limited signals. In case some eigenvalues
vanish, let K stand for the biggest integer for which there holds:

k ≤ K ⇒ λk > 0 and λK+1 = 0.

We then extend the domain of definition of the eigenfunctions rk from [−T, T ] to R: recall

that λkrk(t) =
∫ T

−T
rk(s)Qj(s, t).ds. Hence, by definition of the reproducing kernel Qj (4),

we can build for all k ≤ K,

∀t ∈ R, r̃k(t) =
1

λk

∑

n∈Z

(

∫ T

−T

rk(s)φj,n(s)

)

φj,n(t) ∈ Vj .

It turns out that these modified eigenfunctions have interesting properties:

Lemma 2 (see [14]) For Qj bounded and continuous, the set of functions r̃k ∈ Vj, k ≤ K
is orthonormal in L2(R) and orthogonal in L2(−T, T ); their corresponding eigenvalues are
positive and lower than 1. Moreover, there holds:

∀f ∈ Vj ,

∫ T

−T

f(s)rk(s).ds = λk

∫

R

f(s)r̃k(s).ds. (5)

In this context, λk can be seen as the energy contribution of r̃k inside the interval [−T, T ];
to see this, we choose f = r̃k inside the formula (5), apply Cauchy-Schwarz inequality, and
use ‖r̃k‖L2(R) ≥ ‖r̃k‖L2(−T,T ) which leads to:

‖r̃k‖L2(R) ≤
1

λk

‖rk‖L2(−T,T ).

We can now define Uj , the linear subspace of L2(R) spanned by the set r̃k, k ≤ K.

Theorem 3 (see [14,28]) The following decomposition holds for any j ∈ Z:

Vj = Uj ⊕
(

Vj ∩ PT

[

L2(R)
]⊥)

, Uj = PVj
◦ PT

[

L2(R)
]

.

As a consequence of the definition of Uj ⊂ Vj , any function f ∈ Vj can be written as f1 +f2

with f1 ∈ Uj and f2 ∈ U⊥
j . Obviously, f1(t) =

∑

k≤K akr̃k(t). The fact is that, from (5), it
is readily seen that the coefficients ak depend on PT f only:

ak =

∫

R

f(s)r̃k(s).ds =
1

λk

∫ T

−T

f(s)rk(s).ds.

At this point, there is no clue to compute the missing part f2 which belongs to the set of
functions in Vj vanishing on [−T, T ]. However, we can get rid of this part by a smoothness
argument if we aim at extrapolating the signal on a small enough interval. Indeed, for
finite j, the space Vj ∩ L2(−T, T )⊥ cannot contain discontinuous functions; hence there is
a small interval beyond T , say [T, T + δT ], inside which f2 must vanish. The value of δT
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is not known precisely, but clearly, δT is lower than the support of φj,0. Hence, in case the
following rough estimate holds,

|δT | < |supp(φj,0)|, (6)

Theorem 3 ensures that a signal g = PT f , f ∈ Vj , can be extrapolated uniquely up to
[−T − δT, T + δT ]. The value of δT thus decreases when j is getting bigger, hence a rule of
thumb could be stated like “the more details one decides to keep inside the signal,
the shorter the extrapolation length will be”. It can happen that stock indexes,
during periods of high volatility, ask for a big value of j in order to keep track of some of
the small scale features: in such a case, the length of the extrapolation interval given by δT
will be reduced accordingly through (6) (see an illustration in §4).

Scaling function (left) and wavelet (right)
200 250 300 350 400 450 500 550 600 650 700

−300

−200

−100

0

100

200

300

Fig. 1. Compact support of a scaling function and its mother wavelet.

Remark 1 In case the scaling function is analytic, the space Vj ∩ L2(−T, T )⊥ is reduced
to zero because a non-zero analytic function cannot vanish on a non-trivial interval. In this
case, we recover the usual framework of band-limited extrapolation (see [28,26]).

2.2 Generalized Gerchberg-Papoulis (GGP) algorithm and scale-limited extrapolation

The leading idea of the series of papers [29,28,14,15] is to extend the classical Gerchberg-
Papoulis algorithm, originally proposed for band-limited extrapolation (see for instance
[11,21,31,18,12,8,26]), to the processing of scale-limited functions belonging to wavelet sub-
spaces. To begin with, let’s recall the original construction: a function f ∈ L2(R) is said to

be W-band-limited if its Fourier transform f̂ has compact support. In such a case, one has:

∀t ∈ R, f(t) =
(

F−1(f̂)
)

(t) :=

∫ W

−W

f̂(ξ) exp(2iπtξ).dξ with F : f 7→ f̂ .

The number W ∈ R
+ is called the band-width of f . Moreover, the classical Paley-Wiener

theorem ensures that f is actually an entire function of exponential type which can be
extended to the whole complex plane as a result of analytic continuation theory. This paves
the way to various extrapolation routines as we explain now; first, we denote by PW the
projector onto the subspace of W-band-limited functions. More precisely,

∀f ∈ L2(R), PW (f) = F−1
(

f̂χ[−W,W ]

)

.
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By analogy with the preceding section, we define g as a time-truncated version of a W-
band-limited signal f as follows:

∀t ∈ [−T, T ], g(t) =
(

PT ◦ PW (f)
)

(t).

Similarly, this defines a bounded linear operator HW from the subspace of W-band-limited
functions onto its restriction to functions defined in [−T, T ]. The extrapolation problem can
be formulated as finding the unique W-band-limited signal f for which HW f = g. In this
direction, we introduce a reproducing kernel QW for which the following equality holds [30]:

∀f ∈ L2(R), PW (f) = f, f(t) =

∫

R

f(s)QW (s, t).ds, t ∈ [−T, T ].

Since f is known to be W-band-limited, an explicit form can be derived for QW :

QW (s, t) =

∫ W

−W

exp(2iπ(t − s)ξ).dξ =
sin(2π(t − s)W )

π(t − s)
= QW (t, s),

which turns out to be the low-pass filtering kernel. The whole procedure can be repeated
for this particular choice of QW corresponding indeed to the analytic scaling function being
the cardinal sine, “sinc”. The eigenfunctions of HW ◦ H∗

W are called the Slepian Prolate
Spheroidal wave functions (PSWF), see for instance [20,33], and are known to realize the
maximum energy concentration for a W-band-limited function onto the interval [−T, T ].
They constitute an orthogonal basis of both L2(−T, T ) and a subspace of L2(R), known as
the Paley-Wiener space of W-band-limited functions. This means in particular that there’s
no need for a decomposition like the one of Theorem 3.

This theoretical construction doesn’t lead to a simple numerical algorithm able to gener-
ate the W-band-limited extrapolation of g. However, if we denote by PT c the orthogonal
projector such that PT c(f)(t) = f(t) if |t| > T , zero in the other cases, we can observe that:

∀t ∈ R, g(t) = (PT ◦ PW (f))(t) = (Id − PT c ◦ PW )(f)(t).

From [8], we know that the operator (Id−PT c ◦ PW ) can be invertible on the space of W-
band-limited functions. In this case, (Id −PT c ◦ PW )−1 =

∑

k≥0(PT c ◦ PW )k. An iterative

procedure to recover f from g originally due to Gerchberg and Papoulis [11,21] reads:

f (0) = g, f (1) = g + PT c ◦ PW (f (0)), ... , f (k+1) = g + PT c ◦ PW (f (k)). (7)

Several proofs of convergence are available, see [31,12,8]. The discrete algorithm is shown
to construct the so–called Minimum-Norm Least-Squares (MNLS) solution in [6], see also
[23].

At this level, it clear how to derive an iterative algorithm for the preceding problem of scale-
limited extrapolation following the same stepping stones: it suffices to replace the projector
PW by PVj

inside the preceding formula: (see [28])

f (0) = g, f (1) = g + PT c ◦ PVj
(f (0)), ... , f (k+1) = g + PT c ◦ PVj

(f (k)). (8)

This procedure is called the Generalized Gerchberg-Papoulis algorithm (GGP) in [28]. We
finally give the main convergence result from [15]:

Theorem 4 (see [15,28]) Let φ be an orthogonal real-valued scaling function and f (k),
k ∈ N be the sequence of functions generated by the generalized Gerchberg-Papoulis algorithm
(8) for some f ∈ Vj, j ∈ Z. Then, as k → +∞, f (k) converges toward the minimum norm

solution f̃ defined by:
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• f̃ ∈ Vj

• ‖f̃‖L2(R) = inf
{

‖ϕ‖L2(R); ϕ ∈ Vj , PT ϕ = PT f
}

Recalling Theorem 3, it is likely that the minimum norm solution f̃ belongs to Uj alone;

actually, f̃ is the orthogonal projection of f onto Uj (see Corollary 1 in [14]).

Fig. 2. Illustration of the alternating projections algorithm.

Remark 2 It is possible to give a direct convergence proof for the band-limited iterative
extrapolation algorithm relying on the so–called Alternating Projections Theorem in Hilbert
spaces. One defines two subsets of L2(R): F1 is the subspace of W-band-limited functions,
and F2 is made of functions vanishing outside of [−T, T ]. Then, since F1 ∩ (F2)

⊥ = 0 as a
consequence of the fact that analytic functions have isolated zeros, the iterative procedure (7)
converges toward the unique point in F1 starting from its orthogonal projection on F2 (see
Figure 2). Clearly, the transversality condition isn’t met in the general case of scale-limited

subspaces (especially because F1 ∩ (F2)
⊥ = Vj ∩ PT

[

L2(R)
]⊥ 6= 0).

2.3 Acceleration by Conjugate Gradient resolution

The iterative procedures from the preceding section can be readily implemented on a com-
puter; however, it is a well-known fact that they are endowed with rather poor practical
convergence properties. In order to fix this drawback, several acceleration routines have
been proposed: we shall concentrate onto the ones based on the Conjugate Gradient algo-
rithm (see [12,26] for the band-limited extrapolation and [15] for the scale-limited one). The
idea is the same in both cases of band-limited and scale-limited extrapolation: one considers
the pointwise collection of sampled values for g(t), and while seeking for an approximation
of f(t), aim at solving efficiently the linear system given by g(t) = PT ◦ PVj

(f)(t) (for
band-limited extrapolation, one inserts PW in place of PVj

in the former formula).
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In this direction, it is necessary to define ~g ∈ R
M as the collection of N observed values

(the samples of g(t)) completed by zero (M > N), the discrete operators TN and Pj being
respectively the diagonal truncation matrix and the discrete projector onto Vj ; the unknown

is therefore ~f ∈ R
M such that ~g = TNPj

~f . Following [15], we begin by observing that these
matrices have several interesting properties: in case the base of Vj given by the scaling
function φ is orthonormal, the matrix Pj is symmetric. Moreover, we clearly have that
(TNPj)

∗ = PjTN and T ∗
NTN = TN . The Conjugate Gradient method is to be applied to the

normal equations yielding the least-squares solution of the discrete extrapolation problem:

x̄ = inf
x∈RM

‖Ax − b‖L2 ⇔ (A∗A)x̄ = A∗b.

In the present case, this reduces to find efficiently ~f solving

(TNPj)
∗~g = PjTN~g = Pjg = (TNPj)

∗(TNPj)~f

= P ∗
j T ∗

NTNPj
~f

= PjTNPj
~f

= PjTN
~f ∈ Uj ,

see Theorem 3. Intermediate steps are done by noting that TN~g = ~g and Pj
~f = ~f by their

very definition. Since PjTNPj is symmetric positive definite (observe that xT PjTNPjx =
(Pjx)T TN (Pjx) > 0 for a smooth scaling function φ in case (6) holds), the Conjugate
Gradient algorithm can be set up to solve in a finite number of operations the linear system:

b := Pjg = PjTNPj
~f := Ax. We recall it briefly:

Fix r0 = b and p0 = r0; while rk > ε,

• qk = Apk

• If k=1 p1 = r0, else

βk−1 =
r⊤

k−1
rk−1

r⊤

k−2
rk−2

pk = rk−1 + βk−1pk−1

• αk =
r⊤

k−1
rk−1

p⊤

k
qk

• xk = xk−1 + αkpk

• rk = rk−1 − αkqk

This algorithm will hopefully converge in a finite number of iterations toward the vector

x ≃ ~f which contains the sampled values of the minimum-norm solution f̃ of the scale-
limited extrapolation problem up to a given (small) tolerance 0 < ε ≪ 1. We close this
section by noticing that in practice, it is not necessary to implement the matrix Pj : the
WaveLab package contains commands for computing the Fast Wavelet Transform and its
inverse. It suffices thus to use it, to cut the coefficients corresponding to scales finer than
j, and to apply the inverse transform. For big values of M , it will also result in a quicker
execution.

3 Application to stock market indexes

One theoretical obstruction for considering stock market indexes in the context of multi-
resolution analysis of L2(R) is that these signals aren’t typically functions of finite energy
defined on the whole real line. Hence a way around this issue is to extend them with
zero (zero-padding) outside of their definition interval (which is obviously compact); the
resulting function belongs to L2(R) and we can apply the preceding developments. Moreover,
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if considering time scales not shorter than daily quotations, stock market signals can be
treated as Lipschitz continuous W 1,∞(R) functions (with possibly big Lipschitz constants
depending on volatility). These are the only hypotheses really necessary to be made on the
signal in order to set up the preceding algorithms.

3.1 The need for wavelet bases on a bounded interval

As a consequence of the aforementioned minor issue concerning our signals, it may result
difficult to set up the usual wavelet algorithms; in particular, since stock indexes are strictly
positive and strongly non-periodic, extending them either by zero of periodically will result
in big discontinuities on the border of the interval of observations. This leads typically to
the emergence of big and spurious wavelet coefficients at the high resolution scales which
render for these discontinuities (in practice, standard algorithms for wavelet transforms 2

extend the source signal to the whole real line periodically). Hence, in order to be able to
get a correct compression of such a signal by projecting it onto a scale-limited space, the
use of wavelet bases on a bounded interval became absolutely necessary.
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Fig. 3. Scaling function (top) and its mother wavelet (bottom) in the interval.

The theory of multi-resolution on a bounded interval has been developed after the pioneer-
ing work by Meyer [16]. However, his construction couldn’t be used to produce a robust
numerical algorithm. This problem has been fixed later by Cohen, Daubechies, Jawerth
and Vial [3,5]; see also e.g. [4,17,19,13]. This results in a local modification of the scaling
functions at the edge of the interval so that all of the properties enjoyed by the wavelets
on R are preserved. In particular, as used in the characterization of spaces Cs(R) via the
decay of wavelet coefficients, it is important to preserve both the wavelet’s smoothness and
its vanishing moments. This corresponds to introducing modified filters (the sequences usu-
ally denoted by {hn} and {gn} in the cited papers) for the treatment of the edges of the
interval; otherwise, away from the borders, the algorithm remains essentially the same as
for the case of the infinite real line. On Figure 3, one can visualize in the middle column the
same scaling function and mother wavelet than in Figure 1; however, in both left and right
columns, their modifications able to handle properly discontinuities possibly appearing at
the edges of a finite interval are displayed.

2 This work has been done relying on the free package WaveLab

developed for MatLab by Dave Donoho and co-workers, see
http://www-stat.stanford.edu/ wavelab/. However, we used its conversion for
the free software SciLab, see http://www.scilab.org.
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We stress the fact that, since we aim at extrapolating data on the right edge of the obser-
vations interval by projecting the whole set onto a scale-limited subspace, it is of crucial
importance to prevent the apparition of high wavelet coefficients in this region because of
artificial periodicity. In this last case, the scaling function coefficients kept when annihi-
lating all the others corresponding to finer scales are likely to be modified because of this
“Gibbs-like” phenomenon. Consequently, the initial data given to the GGP algorithm (8)
would be rather inaccurate, and would thus result in a poor extrapolation since such an
inverse problem is quite sensitive to noise (see [14]).

3.2 Multi-scale decomposition and scale-limited extrapolation

Hereafter, the notation I(t) ∈ R
+ will refer to some nonnegative stock index and ~I, to its

sampled values on a time-discrete grid. In practice, we shall always rely on daily quotations,
which are freely available at http://fr.finance.yahoo.com. The general framework pre-
sented in this paper can be set up by first, selecting a multi-resolution analysis on a bounded
interval which is compatible with I (in the sense that base functions should have vanishing
moments and smoothness properties compatible with the volatility of the index under con-
sideration), then choosing a scale j ∈ Z which realizes a good balance between accuracy and
data compression. With both these elements in hand, it is possible to perform short-time
extrapolation as explained in the previous sections on real-life examples.

According to the WaveLab package, only the standard compact support Daubechies wavelet
with either 2 or 3 vanishing moments is available (see again Figure 3 for an illustration).
For most of the indexes, the one with only 2 vanishing moments gave the best results
for observations ranging from 512 to 2048 days of quotations (recall that one year gives
roughly 250 quotation days). Once the multi-resolution analysis has been selected, the
remaining issue is to choose a scale parameter j ∈ Z which retains enough information
in the time series, but is low enough to allow for a non-trivial extrapolation. This means
that ‖PVj

I − I‖L2 should be small; in other words, the wavelet coefficients associated to
subspaces Wℓ with ℓ > j should be rather small (the smaller, the better). In this case, one
can say that the index I is well compressed in the base φj,n of Vj . This has to do with
the fact that oscillations in the index at a scale finer than j don’t really carry important
information; volatility (in the sense formerly mentioned of standard deviation) may exist,
but what matters is that its effect onto the global trend of I is very limited in such a
situation.
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Fig. 4. Quotations of Berkshire-Hathaway A (left) and wavelet coefficients (right).

This favorable context doesn’t happen systematically: on Figure 4, we display the 1024-days
evolution (ending on october 17, 2008), wavelet coefficients and conjugate gradient conver-
gence which produce a 20-days extrapolation for the famous Buffett’s holding, Berkshire-
Hathaway. In this rather spectacular case, one sees clearly that during most of the obser-
vation interval, prices follow rather well the trend obtained by projecting them onto V5;
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however, in the last days, a very rapid growth cancels the validity of such an approximation
in a scale-limited space. The consequences are easily seen on the right figure: in blue are
represented the coefficients of φj=5,n. In red, green, light blue and black are represented the
wavelet coefficients in W5, W6, W7 and W8,W9 multiplied by 10 respectively (the abscissa is
the scale index). Obviously, for this pathological example, we clearly have important energy
concentrated in the fine scales: hence the conjugate gradient algorithm converges poorly,
and the resulting extrapolation is quite poor because the scale-limited space doesn’t really
match all the meaningful features of the evolution of the share price. As a consequence,
working on indexes is safer than to do so on individual share’s prices, mainly because the
former are more likely to display a smoother behavior because they are computed as convex
combinations of the latter.

4 Numerical experiments on real data

4.1 A quiet bull market

We begin by considering the French leading index CAC 40 on a period of 1024 days (roughly
4 years beginning in 2003) covering the end of the bear market which resulted from the
“internet krach” and the September 11 events. The very low interest rates, cut by FED
Chairman Alan Greenspan, helped to sustain the prices and allowed for a bull market to
take place. It was characterized by a moderate growth and a low volatility; this is easily
noticeable by looking at the wavelet coefficients in the middle/right part of Figure 5 since
the coefficients in Wj , j > 5 look quite small even if they are again multiplied by 10.

This is the best context in which to set up our scale-limited extrapolation algorithms. For
a 30 days forecast (roughly one month and a half), one gets a monotone convergence of the
conjugate gradient routine in less than 10 iterations. On the top graphic of Figure 5, one
sees that starting from the red arrow (at the abscissa t = 1004), the MNLS extrapolated
part matches quite well the evolutions of the index. Obviously, one cannot hope to obtain
exactly the real oscillations, as what is sought is an approximation in V5 only, but the idea
is more to extrapolate a general trend and to define a confidence interval around it which
should contain the fluctuations of the near-future.

In order to set up this confidence interval, one considers the discarded part of the signal
(see bottom left of Figure 5), namely I(t) − PVj

I(t) (which has some vanishing moments
because it belongs to the wavelet spaces ∪kWk, k ≥ j), computes its distribution function
together with its standard deviation. In case it would be a standard Gaussian distribution
(see for instance the bottom of Figure 5), then it would suffice to trace both red curves at a
distance of 2 times the standard deviation to ensure a 95% confidence interval. In realistic
experiments, we found that the discarded signal approaches a Gaussian distribution when
overall volatility was low thus one can only speak about an approximated confidence interval.
The stopping criterion ε for the CG algorithm was 10−9.

4.2 A moderately volatile bear market

During years 2003-2007, not only the shares prices have tremendously increased; real-estate
market value has inflated more than stocks in certain areas as a consequence of wide and
easy credit allocation. Some of the gains obtained on financial markets have also been re-
cycled in “concrete” during this period. On Figure 6, we are interested in the FTSE EPRA
Eurozone index (EPRA meaning European Real Estate Association 3 ), which contains es-

3 See http://www.epra.com
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sentially shares linked to european real-estate markets, like banks, insurance companies and
promoters. Obviously, starting from august 2007, this index entered into a bear market as
a consequence of the so–called subprime crisis 4 ignited in the USA in february 2007 with
the depreciations of the bank HSBC.

We work with a measures interval of 512 days (roughly 2 years, ending in february 2008)
mainly because this index is too recent to allow for a 1024 days sample. A bear market
being in general more volatile than a bull one (one says that shares prices decrease twice as
fast as they grow [6]), the Gaussian approximation of the “noise” defined as I(t) − PVj

I(t)
with j = 4 is less convincing; however, the approximated confidence interval remains rather
satisfying even in the clearly decreasing period ranging from day 200 to 500. From the
repartition of the energy in the wavelet coefficients (middle in Figure 6, it may sound
reasonable to work in the V5 space rather than in V4 as we did. However, this wouldn’t lead
to a sensible improvement in the quality of the results. On the top of Figure 6, one sees
that the MNLS 15 days extrapolation (starting from the red arrow at the abscissa t = 497)
is rather good in determining a trend around which a reliable confidence interval can be
built. The convergence of the CG algorithm was satisfying; the stopping criterion ε for the
CG algorithm was 10−10.

4.3 What happens for a krach ?

On Figure 7, we display what happened on the Chinese index Hang-Seng in the first days
of october 2008: namely, because of recession fears in both the USA and the Eurozone,
operators sold massively emerging countries shares regardless of the so–called decoupling
theory 5 . The index under consideration lost around 25% of its value in less than 10 days
and authorities decided to close the market several times and to ban short-selling in or-
der to prevent a complete collapse. In such a case, there’s no hope that the scale-limited
extrapolation (starting from the red arrow at the abscissa t = 1004) can give a reliable
result (see top of Figure 7); however, what can be considering as interesting is that such
an analysis highlights the fact that the discarded part of the signal (see bottom of Figure
7) has a now repartition function which is different from the standard Gaussian: it is quite
peaked which a thick tail on the left side. Hence this suggests a potentially volatile index
which is likely to have violent corrections. Increasing the value of j may improve the result
by including more fine scale features inside PVj

I(t): however, a strong reduction of the size
of the extrapolation interval would also come as a direct consequence of (6).

5 Conclusion and outlook

We presented in this paper a quite general methodology to handle a standard problem in
Empirical Finance, that is, trying to extrapolate stock market indexes during periods of
mild volatility relying on the nowadays well-known theory of multi-resolution and discrete
wavelet subspaces of L2(R). The numerical results obtained on real-life data coming from
daily quotations indicate that this process can be considered as reliable as long as the basic
assumption of the relevance of a scale-limited approximation PVj

I of the index I holds.
Especially, during strong corrections (like e.g. in october 2008), one notices rather easily
that I−PVj

I ceases to be small and is even not distributed like a standard Gaussian density
of the same average and variance. When this “empirical density” is very peaked (like in
Figure 7), the scale-limited extrapolation cannot be taken as a meaningful possible forecast
for the index. Concerning the size of the extrapolation interval, it depends on the level of
resolution j of the scale-limited approximation (a lower j gives a longer extrapolation, but

4 See http://en.wikipedia.org/wiki/Subprime mortgage crisis
5 See http://en.wikipedia.org/wiki/Decoupling#Decoupling and the stock market declines of January 2008
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at the price of a poorer accuracy) and on the smoothness of the scaling function (smoother
yields a bigger interval). The extreme case being the one of analytic functions from which
one can theoretically extrapolate onto the whole real line R).

A Treating the very oscillating “log-returns” function

There exists another way, maybe more natural, to extrapolate a stock index I(t): it is to
work with its so–called “log-returns” function (see e.g. [6]) defined as follows:

S(t) = ln

(

I(t)

I(t − 1)

)

=
ln(I(t)) − ln(I(t − 1))

1
≃ d

dt
ln(I(t)) =

I ′(t)

I(t)
. (A.1)

As the quotations are taken on a daily base, a straightforward piecewise linear interpola-
tion produces an overall positive Lipschitz continuous function belonging to the Sobolev
space W 1,∞. Therefore, extracting its logarithmic derivative makes sense at least within
the framework of L∞, or maybe even in functions of bounded variation. The advantage is
that, since S is a very oscillating function around zero, the need for multi-resolution bases
defined on a bounded interval may be relaxed as (in general) one shouldn’t expect too big
variations in the L∞ norm. Hence the discontinuities possibly showing up at the edges of
the interval of observations can be really smaller compared to the ones arising when working
with the index I itself. This can open the way to using much smoother wavelet bases, like
for instance the Symmlet: see Figure A.1. However, a small issue arises because, since all
the filtering and the extrapolation is done on the logarithmic derivative (A.1), the starting
point I(0) is lost; indeed, by definition, there holds:

∀t ≥ 0, I(t) = I(0) exp

(
∫ t

0

S(s).dx

)

.

After the separation of S between low and fine scales in order to produce PVj
(S), I(0)

becomes useless, but one can use another value. Let Cj be the support of the scaling
function φj,n=0(t), as an initial point, we take:

Ĩ0 =
1

|Cj |

∫

Cj

I(s).ds.

This allows to compute a scale-limited index at level j like:

∀t ≥ 0, Ĩj(t) := Ĩ0 exp

(
∫ t

0

PVj
(S)(s).dx

)

.

We applied these ideas to the example of EPRA Eurozone (see §4.2); on the top of Figure
A.2, we display the multi-resolution decomposition of its log-returns S(t) ranging from V3,
W3 up to W5. On the middle, the extrapolation of the index obtained through the scale-
limited extrapolation of its log-returns function is shown (staring from the red arrow at
abscissa t = 497). It is considerably smoother than the result from Figure 6; the first reason
is that the analyzing wavelet is smoother, the second one is that moreover, S is integrated
to deduce I. On the bottom, one can see that the convergence of the Conjugate Gradient
algorithm is satisfying even for this type of extrapolation problem. However, when looking
at the wavelet coefficients, one may think it became more difficult to justify why the space V4

can be chosen to approximate the function S(t) as the fine scale coefficients aren’t small like
in the examples shown in the preceding sections. But since we work now with a derivative,
big values on a fine scale correspond to both important and rapid (maybe erratic) variations
of the index I(t). It is therefore perfectly normal to remove them in order to derive a smooth
trend; the working subspace Vj should correspond now to a set of moderately big coefficients
in the discrete wavelet transform of S.
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CAC 40: 1024 days
MNLS extrapolation in V5
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Fig. 5. CAC 40 index on 1024 days: 30 days extrapolation (top), scale-limited de-
composition and convergence (middle) and remaining noise repartition (bottom).
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EPRA Eurozone: 512 days
MNLS Extrapolation in V4
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Fig. 6. EPRA index on 512 days: 15 days extrapolation (top), scale-limited decom-
position and convergence (middle) and remaining noise repartition (bottom).
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HSCEI: 1024 days
MNLS Extrapolation in V5
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Fig. 7. HSCEI index on 1024 days: 20 days extrapolation (top), scale-limited de-
composition and convergence (middle) and remaining noise repartition (bottom).
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Fig. A.1. Comparison between the Daubechies 4 (top) and Symmlet 8 (bottom)
basis functions.
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EPRA Eurozone: 512 days
MNLS Extrapolation in V5
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Fig. A.2. EPRA on 512 days: 15 days extrapolation (top), scale-limited decomposi-
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