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Abstract 
The paper focuses on the accuracy improvement of stiffness models for parallel manipulators, which are 
employed in high-speed precision machining. It is based on the integrated methodology that combines 
analytical and numerical techniques and deals with multidimensional lumped-parameter models of the links. 
The latter replace the link flexibility by localized 6-dof virtual springs describing both translational/rotational 
compliance and the coupling between them. There is presented detailed accuracy analysis of the stiffness 
identification procedures employed in the commercial CAD systems (including statistical analysis of round-
off errors, evaluating the confidence intervals for stiffness matrices). The efficiency of the developed 
technique is confirmed by application examples, which deal with stiffness analysis of translational parallel 
manipulators  
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1 INTRODUCTION 

Currently, parallel manipulators have become more and 
more popular for a variety of technological processes, 
including high-speed precision machining [1] [2]. This 
growing attention is inspired by their essential advantages 
over serial manipulators, which have already reached the 
dynamic performance limits. In contrast, parallel 
manipulators are claimed to offer better accuracy, lower 
mass/inertia properties, and higher structural rigidity (i.e. 
stiffness-to-mass ratio) [3]. 

These features are induced by their specific kinematic 
structure, which resists the error accumulation in 
kinematic chains and allows convenient actuators location 
close to the manipulator base. This makes them attractive 
for innovative robotic systems, but practical utilization of 
the potential benefits requires development of efficient 
stiffness analysis techniques, which satisfy the 
computational speed and accuracy requirements of 
relevant design procedures. 

Generally, the stiffness analysis evaluates the effect of the 
applied external torques and forces on the compliant 
displacements of the end-effector. Numerically, this 
property is defined through the “stiffness matrix”, which 
gives the relation between the translational/rotational 
displacement and the static forces/torques causing this 
transition [4]. Similar to other manipulator properties 
(kinematical, for instance), the stiffness essentially 
depends on the force/torque direction and on the 
manipulator configuration [5]. 

Several approaches exist for the computation of the 
stiffness matrix, such as the Finite Element Analysis 
(FEA), the matrix structural analysis (MSA), and the virtual 
joint method (VJM). The FEA method is proved to be the 
most accurate and reliable, since the links/joints are 
modeled with its true dimension and shape. Its accuracy 
is limited by the discretization step only. However, 
because of high computational expenses required for the 
repeated re-meshing, this method is usually is not very 
popular in industrial robotics. 

The MSA method incorporates the main ideas of the FEA 
but operates with rather large flexible elements (beams, 
arcs, cables, etc.). This obviously yields reduction of the 
computational expenses and, in some cases, allows even 
obtaining an analytical stiffness matrix. This method gives 

a reasonable trade-off between the accuracy and 
computational time, provided that link approximation by 
the beam elements is realistic. 

Finally, the VJM method, which is also referred to as the 
“lumped modeling”, is based on the expansion of the 
traditional rigid model by adding virtual joints, which 
describe the elastic deformations of the manipulator 
components (links, joints and actuators). This approach 
originates from the work of Gosselin [6], who evaluated 
parallel manipulator stiffness taking into account only the 
actuators compliance. At present, there are a number of 
variations and simplifications of the VJM method, which 
differ in modeling assumptions and numerical techniques.  

Recent modification of this method proposed by the 
authors [7] allows to extend it to the over-constrained 
manipulator and to apply it at any workspace point, 
including the singular ones. The method is based on a 
multidimensional lumped-parameter model that replaces 
the link flexibility by localized 6-dof virtual springs that 
describe both the linear/rotational deflections and the 
coupling between them. The spring stiffness parameters 
are evaluated using FEA modelling to take into account 
real shape of the manipulator components. This gives 
almost the same accuracy as FEA but with essentially 
lower computational effort because it eliminates re-
meshing through the workspace. 

This paper focuses on the accuracy improvement of the 
VJM method via enhancement of the identification 
algorithms incorporated in FEA-based stiffness 
evaluation. This leads to adequate modeling of the 
manipulator components and allows essentially reduce 
the modeling errors for the whole mechanism. In contrast 
to previous works, the proposed technique operates with 
the deflection field composed of the set of the nodes and 
allows evaluate statistical significance of the estimated 
elements of the stiffness matrix.   

The reminder of the paper is organized as follows. In the 
Section 2, it is defined the set of problems which are 
considered in the paper. Section 3 presents a new 
method for the deflections identification from the field of 
points. Section 4 illustrates the proposed method via a 
numerical example. Section 5 presents the stiffness 
identifications of the Orthoglide manipulator using the new 
method. And, finally, Section 6 summarizes the main 
contributions of the paper.    

Pashkevich A., Klimchik A., Chablat D., Wenger P, “Accuracy Improvement for Stiffness Modeling of 
Parallel Manipulators”, 42ème CIRP Conference on Manufacturing Systems, 3 - 5 Juin, Grenoble 2009. 



 

2 PROBLEM STATEMENT 

The stiffness model describes the resistance of an elastic 
body or mechanism to deformations caused by an 
external force or torque. For relatively small deformations, 
this property is defined through the ‘‘stiffness matrix” K, 
which defines the linear relation  
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causing this transition. As known from mechanics, K is a 
66 symmetrical semi-definite non-negative matrix, which 
may include non-diagonal elements to represent the 
coupling between the translations and rotations [7]. The 
inverse of K is usually called the ‘‘compliance matrix” and 
is denoted as k.  

For robotic manipulators, the matrix K can be computed 
semi-analytically provided that the stiffness matrices of all 
separate components (links, actuators, etc.) are known 
with desired precision [7]. However, explicit expressions 
for the link stiffness matrices can be obtained in simple 
cases only (truss, beam, etc.). For more sophisticated 
shapes that are commonly used in robotics, the stiffness 
matrix is usually estimated via the shape approximation, 
using relatively small set of primitives [8]. However, as 
follows from our previous study [7], accuracy of this 
approach is rather low (errors from 30% to 50%). Hence, 
in general case, it is prudent to apply to each link the 
FEA-based techniques, which hypothetically produce 
rather accurate result.  

Using the FEA, the stiffness matrix K (or its inverse k) is 
evaluated from several numerical experiments, each of 
which produces the vectors of linear and angular 
deflections (t, ) corresponding to the applied force and 
torque (F, M). Then, the desired matrix is computed from 
the linear system  
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where m is the number of experiments ( 6m ) and the 
matrix inverse is replaced by the pseudoinverse in the 
case of 6m . It is obvious that numerically attractive is 
the case of 6m  with special arrangement of the forces 
and torques 
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corresponding to the diagonal structure of the matrix to be 
inverted. In this case, each FEA-experiment produces 
exactly one column of the compliance matrix 
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and the values ),( ii t  may be clearly physically 

interpreted. On the other hand, by increasing the number 
of experiments ( 6m ) it is possible reduce the estimation 
error, which is in the focus of this paper. 

It is obvious that the main source of estimation errors is 
related to the FEA-modeling that highly depends on the 
size and type of the finite elements, meshing options, 
incorporated numerical algorithms, computer word length 
and round-off principle. Hypothetically, the accuracy can 
be essentially improved by reducing the mesh size and 
increasing the number of digits in presentation of all 
variables. But there are some evident technical 
constraints that do not allow ignoring the FEA limitations. 

Another type of errors arises from numerical differentiation 
incorporated in the considered technique. Strictly 
speaking, the linear relation (1) is valid for rather small 
deflections that may be undetectable against the FEA-
modeling defects. On the other side, large deflections may 
be out of the elasticity range. Hence, it is prudent to find 
compromise for the applied forces/torques taking into 
account both factors. 

In order to increase accuracy; it is also worth to improve 
the deflection estimation technique. Traditionally, the 
values (t, ) are computed from spatial location of a single 
finite element enclosing the reference point (RP). In 
contrast to this approach, it is proposed to evaluate (t, ) 
from the displacement field describing transitions of rather 
large number of nodes located in the neighborhood of RP. 
It is reasonable to assume that such modification will yield 
positive result, since the FEA-modeling errors are usually 
differ from node to node, exposing almost quasi-
stochastic nature.  

To formulate this problem strictly, let us denote the 
displacement field by a set of vector couples 

},1|,{ niii pp  where the first component ip  define the 

node initial location (before applying the force/torque), 

ip  refers to the node displacement due to the applied 

force/torque, and n is the number of considered nodes. 
Then, assuming that all the nodes are close enough to the 
reference point, this set can be approximated by a “rigid 
transformation”  
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that includes as the parameters the linear displacement t 
and the orthogonal 33 matrix R that depends on the 
rotational displacement .  Then, the problem of the 
deflection estimation can be presented as the best fit of 
the considered vector field by equation (4) with respect to 
six scalar variables incorporated in t, R.  

In practice, the FEA-modeling output provides the 
deflection vector fields for all nodes referring to all 
components of the mechanism. So, it is required to select 
relevant subset corresponding to the neighborhood of the 
reference point 0p . Besides, the node locations ip  must 

be expressed relative to this point, i.e. the origin of the 
coordinate system must be shifted to 0p . The latter is 

specified by the physical meaning of the deflections in the 
stiffness analysis. 

Thus, the primary problem to be solved in this paper is the 
development of efficient numerical technique for 
estimation of the deflections from the vector field. 
Besides, there are a number of subsidiary problems to 
consider, including: (i) defining reasonable size of finite 
elements, selecting meshing options and the assigning 
prudent force/torque amplitudes for the FEA modeling; (ii) 
developing simple rules for constructing the deflection 
field (‘rule of thumb’ for RP-neighborhood); (iii) elaboration 
of  filtering techniques allowing to eliminate outliers in the 
FEA output; (iv) significance testing for the identified 
parameters and estimation their confidence intervals. 



 

3 DEFLECTIONS IDENTIFICATION FROM FEA FIELD 

To estimate the desired deflections (t, ), let us apply the 
least square technique that leads to minimization of the 
sum of squared residuals  
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with respect to the vector t and the orthogonal matrix R 
representing the rotational deflections . The specificity of 
this problem (that does not allow direct application of the 
standard methods) are the orthogonally constraint 

IRR T  and non-trivial relation between elements of the 
matrix R and the vector . The following subsections 
presents two methods for computing t, , as well as their 
comparison study. 

3.1 SVD-based method 

This technique was elaborated in our previous paper [7] 
and relies on some results from matrix algebra referred to 
the orthogonal “Procrustes problem” [9]. The estimation 
procedure is decomposed in two steps, which sequentially 
produce the rotation matrix R and the translation vector t. 
Then, the desired vector of rotation angles  is extracted 
from R using linearization. Let us briefly present the 
mathematical background paying primary attention to the 
accuracy issues. 

Here, the desired solution is obtained by minimization of 

the function (5) subject to IRR T . First, for the non-
constrained variable t, straightforward differentiation and 
equating to zero gives an expression  
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Then, after relevant substitution and denoting  
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the original optimization problem is reduced to the 
orthogonal Procrustes formulation] 
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The latter yields the solution [9]  

TVUR   (9) 

that is expressed via the singular value decomposition 
(SVD) of the matrix 
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which requires some computational efforts. Hence, the 
above expressions (6), (9) allow to solve the optimization 
problem (5) in terms of variables R and t.  

Further, to evaluate the vector , the orthogonal matrix R 
must be decomposed into product of elementary rotations 

around the Cartesian axes x, y, z. It is obvious that, in 
general case, this decomposition is not unique and 
depends on the rotation order. However, for small  (that 
is implicitly assumed for FEA-experiments) this matrix 
may be uniquely presented in differential form as 
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Using this expression, the desired parameters zyx  ,,  

may be extracted from ][ ijrR in several ways (Table 1), 

which are formally equivalent but do not necessarily 
posses similar robustness with respect to round-off errors. 
Relevant comparison study is presented in subsection3.3. 

3.2 LIN-based method. 

To reduce the computational efforts and to avoid the SVD, 
let us introduce linearization of the rotational matrix R at 
the early stage, using explicit parameterization given by 
expression (11). This allows to rewrite equation of the 
‘rigid transformation’ (4) in the form   
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that can be further transformed into a linear system of the 
following form 
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where iP  is a skew-symmetric matrix corresponding to 

the vector :ip  























0

0

0

xiyi

xizi

yizi

i

pp

pp

pp

P  (14) 

Then, applying the standard least-square technique with 
the objective 
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one can get the solution 
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that employs the 66 matrix inversion. This solution can 
be simplified by shifting the origin of the coordinate 

system to the point  
 n

i ic n 1
1 pp  leading to expression  
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that requires inversion of the matrix of size 33. Here, 

following the adopted notation, iP̂  is a skew-symmetric 

matrix corresponding to the vector cii ppp ˆ . Let us 

also consider several cases that are useful for practical 
applications. 

Method x  y  z

SVD+ 32r  13r  21r  

SVD- 23r  31r  12r  

SVD± 2/)( 2332 rr   2/)( 3113 rr   2/)( 1221 rr   

Table 1: Evaluation of the rotation angles from matrix R  



 

Case 1: Symmetrical field. If the field is symmetrical with 
respect to its centre cp , the solution (17) can be 

presented in compact analytical form as 
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is diagonal and easily inverted. 

Case 2: Cubic field. If the field is symmetrical and, in 
addition, it is produced by uniform meshing of the cubic 
subspace aaa  , the matrix D is expressed as ID  d  

where )1(6)1( 332  nnnad .  

Case 3: Planar square field. For the filed produced by 
uniform meshing of the square aa  located 
perpendicular to the x-axis, the expression for the matrix 

 2/2/ ddddiagD  

The derived expressions are computationally attractive 
and allow simultaneous estimation both translational and 
rotational deflections from the FEA-produced field. Below 
they are evaluated for the precision and robustness.  

3.3 Influence of linearization and round-offs 

Both of the proposed algorithms involve numerous matrix 
multiplications that may accumulate the round-off errors. 
Besides, they employ the first-order approximation of the 
matrix R that may create another source of inaccuracy. 
Hence, it is prudent to obtain numerical assessments 
corresponding to a typical case study. 

For these assessments, there were examined data sets 
corresponding to the cubic field of size 101010 mm3 
with the mesh step 1 mm (1331 points). The deflections 
were generated via the ‘rigid transformation’ (4) with the 

parameters Taaa ),,(t  and Tbbb ),,(  presented in 

Tables 2, 3. All calculations were performed using the 
double precision floating-point arithmetic. 

As follows from the analysis, the influence of the 
linearization and round-offs is negligible for the translation 
(the induced errors are less than 10-14 mm ). In contrast, 
for the rotation, practically acceptable results may be 
achieved for rather small angular deflections that are less 
than 1.0° (the errors are up to 0.01°). The latter impose 
essential constraint on the amplitude of the forces/torques 
in the FEA-modelling that must ensure reasonable 
deflections. 

Another conclusion concerns comparison of the SVD-
based and LIN-based methods. It justifies advantages of 
the proposed LIN-based technique that provides the best 
robustness and lower computational complexity. 

3.4. Influence of FEA-modeling errors 

By its general principle, the FEA-modeling is an 
approximate method that produces some errors caused 
by the discretization. Beside, even for the perfect 
modeling, the deflections in the neighborhood of the 
reference point do not exactly obey the equation (4). 
Hence, it is reasonable to assume that the ‘rigid 
transformation’ (4) incorporates some random errors  

niiiii ,1;)(  εtpRpp   (18) 

that are supposed to be independent and identically 
distributed (i.i.d.) Gaussian random variables with zero-
mean and standard deviation .  

In the frame of this assumption, the expression for the 
deflections (17) can be rewritten as  
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where the superscript ‘o’ corresponds to the ‘true’ 
parameter value. This justifies usual properties of the 
adopted point-type estimator (17), which is obviously 
unbiased and consistent. Furthermore, the variance-
covariance matrices for t,  may be expressed as  
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allowing to evaluate the estimation accuracy using 
common confidence interval technique. As follows from 
(20), for the translational deflection t the identification 

accuracy is defined by the standard deviation n  and 

depends on the number of the points only. In contrast, for 
the rotational deflection, the spatial location of the points 
is a very important issue. In particular, for the cubic filed of 
the size aaa  , the standard deviation of the rotation 

angles may be approximately expressed as  6/na . 

Another practical question is related to detecting zero 
elements in the compliance matrix or, in other word, 
evaluating the statistical significance of the computed 
values compared to zero. Relevant statistical technique 
[10] operates with the p-values that may be easily 
converted in the form ak , where k is usually from 3 to 5 

and the subscript ‘ a ’ refers to a particular component of 
the vectors t, .  

To evaluate the standard deviation  describing the 
random errors ε , one may use the residual-based 
estimator obtained  from the expression 
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The latter may be easily derived taking into account that, 
for each experiment, the deflection filed consist of n three-
dimensional vectors that are approximated by the model 
containing 6 scalar parameters. Moreover, to increase 
accuracy, it is prudent to aggregate the squared residuals 
for all FEA-experiments and to make relevant estimation 

using the coefficient 2)63( mn  , where m is the 

experiments  number. 

Method 
Translation amplitude a  

0.01 mm 0.1 mm 1.0 mm 10 mm 

SVD 10-16 10-16 10-16 2·10-14 

LIN 10-16 10-16 10-16 3·10-15 

Table 2: Identification errors for the translation [mm] 
 

Method 
Rotation amplitude b  

0.01° 0.1° 1.0° 5.0° 

SVD+ 2·10-6 2·10-4 2·10-2 0.48 

SVD- 2·10-6 2·10-4 2·10-2 0.48 

SVD± 1·10-6 1·10-4 1·10-2 0.24 

LIN 1·10-6 1·10-4 1·10-2 0.24 

Table 3: Identification errors for the rotation  [deg] 



 

In addition, to increase accuracy and robustness, it is 
reasonable to eliminate outliers in the experimental data. 
They may appear in the FEA-field due to some 
anomalous causes, such as unsufficient meshing of some 
elements, violation of the boundary conditions in some 
arears of the mechanical joints, etc. The simplest and 
realible method that is adopted in this paper is based on 
the ‘data filtering’ with respect to the residials (i.e. 
eliminating cernain percertainge of the points with the 
highest residual values). 

3.5 Simulation study: cubic field of deflections 

To evaluate combined influence of various error sources, 
let us extend the simulation study from Sub-section 3.3 
that focuses on the deflection identification from the cubic 
field of size 101010 mm3 (1331 points, mesh step 
1 mm). In particular, let us contaminate all deflections 
using the Gaussian noise with the s.t.d. 5×10-5 mm that is 
a typical value discovered from the examined FEA data 
sets (Table 4). Similar to the pervious case, all 
calculations were performed using the double precision 
floating-point arithmetic (16 decimal digits). 

Simulation results confirmed the main theoretical 
derivations of the previous subsections. The identification 
errors obey the normal distribution (Figure 1) but their 
dispersions should be evaluated taking into account some 

additional issues. Thus, the s.t.d. of the translational error 

is about 61036.1   mm and depends only on the FEA-

induced component that is evaluated as 61037.1/ n  
mm. The influence of the linearization and round-offs is 
negligible here (this component less than 10-14 mm). Also, 
this type of the error does not depend on the translation 
amplitude. 

In contrast, for the rotational deflections, there exists 
strong dependence on the amplitude (Figure 2). In 
particular, for the angular deflection 0.1°, the s.t.d. of the 

identification error is about  5104.8   deg,  while the FEA-

induced component is evaluated as 5108.16// na  
deg and the linearization component is about 8.8·10-5 deg 
(see Table 2). Moreover, the simulation results allow 
define preferable values of the angular deflection that may 
be extracted from the FEA-data with the highest accuracy. 
They show that that the deflection angles should be in the 
range 0.01 …0.2° to ensure the identification accuracy 
about 0.2%  

Thus, the proposed LIN-based algorithm (subsection 3.2) 
allows to identify the desired deflections (t, ) with the 
required accuracy while possessing lower computational 
complexity than the known SVD-based technique.  

4 ILLUSTRATIVE EXAMPLE 

To demonstrate efficiency of the developed technique and 
to evaluate its applicability to real-life situations, let us 
consider an illustrative example for which the desired 
compliance matrix can be obtained both numerically and 
analytically. Comparison of these two solutions provides 
convenient benchmarks for different FEA-modeling 
options and also gives some practical recommendations 
for achieving the required accuracy. 

4.1 Physical model 

As an example, let us consider a cantilever beam of size 
10001010 mm3 with the Young's Modulus 

25 /102 mmNE  and the Poisson's Ratio 266.0 . 

These data correspond to geometry and material 
properties of a typical robot link studied in this paper. 

For this element, an analytical expression for the 
compliance matrix can be presented as [7] 

66][  ijkk  (22) 

where non-zero elements are: yIELkk 2/2
5335  , 

AELk /11  , zIELk 3/3
22  , yIELk 3/3

33  , JGLk /44  , 

yIELk 3/55  , zIELk 3/66  , zIELkk 2/2
6226  . Here 

L  is the length of the beam, A is its cross-section 
area, yI , zI  are the second moments, J  is the 

cross-section property.  

4.2 Modeling environment  

The FEA-modeling was performed using CATIA V5R16 
CAD system. It is a complete tool for preparing parts 
geometry and generating finite element models with 
powerful meshing capabilities. The software was run on a 
computer with a 1.8 GHz processor and 1 GB memory, 
which impose essential constraints on the finite element 
dimensions even for this simple case (a single beam 
element) [11]. 

During modeling, the loads were applied at one end of the 
beam with the other end fully clamped. The force/torque 
amplitudes were determined using expression (22) and 

Mesh type in FEA model σ, mm 

Linear mesh, 2 mm 4.59·10-5 

Linear mesh, 1 mm 3.87·10-5 

Parabolic mesh, 3mm 5.26·10-5 

Parabolic mesh, 2 mm 5.60·10-5 

Table 4: Parameters of the FEA-modeling noise 
for different mesh type 
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Figure 1: Histograms for the identification errors  
( a = 1.0 mm, b=0.1°, = 5×10-5 mm) 
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Figure 2: Identification errors for different amplitudes 
of the rotational deflections  
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the optimal accuracy settings for the deflections 
0.1…1.0 mm and 0.01…0.20° obtained in Sub-section 
3.5, which yielded the following values: NFx 1000 , 

NFy 1 , NFz 1 , mNM x 1 , mNM y 1 , 

mNM z 1 . These loads were applied sequentially, 

providing 6 elementary FEA-experiments, each of which 
produced a single column of the compliance matrix k, in 
accordance with expression (3). 

4.3 Meshing options 

The adopted software provides two basic options for the 
automatic mesh generation: linear and parabolic ones. It 
is known that, generally, the linear meshing is faster 
computationally but less accurate. On the other hand, the 
parabolic meshing requires more computational resources 
while leads to more accurate results.  

For the considered case study, both meshing options 
were examined and compared with respect to the 
accuracy of the obtained compliance matrix. The mesh 
size was gradually reduced from 5 to 1 mm, until 
achieving the lower limit imposed by the computer 
memory size. The obtained results (Table 5) clearly 
demonstrate advantages of the parabolic mesh, which 
allow achieving appropriate accuracy of 0.1% for the 
mesh step 2 mm using standard computing capacities. In 
contrast, the best result for the linear mesh is 12% and 
corresponds to the step of 1 mm.   

4.4 Defining the deflection field 

The developed technique operates with the deflection field 
corresponding to the neighborhood of the reference point 
(RP). As stated above, this neighborhood should be large 
enough to neutralize the influence of the FEA-induced 
errors, but its unreasonable increase may lead to violation 
of some essential assumptions and, consequently, to the 
accuracy reduction. 

To get a realistic inference concerning this issue, a 
number of experiments were carried out, for different 
definitions of the RP-neighborhood. The obtained results 
show that the highest accuracy (0.1%) is achieved for the 
one-layer configuration of deflection field, which is 
composed of the nodes located on the rare edge of the 
examined beam. This configuration is very close to the 
square-type field 1010 mm2 studied in sub-section 3.2. In 
contrast, increasing the neighborhood up to the cubic-type 
field 101010 mm3 leads to the identification error of 
about 0.08%. Hence, in practice, it reasonable to estimate 
the deflection values from the field corresponding to the 
square-type neighborhood of RP. 

4.5 Eliminating outliers 

As noticed in subsection 3.4, the FEA-modeling data may 
include some anomalous samples that do not obey the 
assumed statistical properties. This phenomena was 
detected in 2 of 6 experiments, (see Figure. 3) where the 
histograms demonstrated obvious presence of the outliers 
changing the regular distribution shape (local maximums 
around the tails). For this reason, it was applied a 
straightforward filtering technique that eliminated 10% the 
nodes corresponding to the highest residual values.  This 
technique essentially improved the identification accuracy, 
the maximum error for the compliance matrix elements 
reduced from 0.1% to 0.05%.  

It worth mentioning that here, because of the 3-
dimensional nature of the problem, each node was 
evaluated by three residual values and was eliminated if 
any of the residuals was treated as an outlier. Also, the 
detailed analysis showed that the outliers were 
concentrated at the beam edges, which confirms previous 
assumptions concerning the FEA-induced errors.  

4.6 Eliminating non-significant elements  

According to (22), the desired compliance matrix include a 
number of zero elements (26 of 36), but the proposed 
identification procedure may produce some small non-
zero values. To evaluate their statistical significance, for 
each element of matrix k it was computed the confidence 
interval. Relevant computations were performed using 
expressions for the variances of the deflections (20) and 
the s.t.d. value of the FEA-modeling noise, which was 

estimated as mm5106.5   (by averaging for all 6 

experiments). Then, the computed confidence intervals 
were scaled in accordance with (3), to be adopted to 
corresponding elements of the matrix k.  

Using this approach, the compliance matrix was revised 
by assigning to zero all non-significant elements. The 
employed decision algorithm treated an element as non-
significant if its confidence interval included zero. They 
allowed to detect all 26 zero elements mentioned above. It 
should be noted that all non-zero elements were 
evaluated as ’significant’ ones, with essential ‘safety 
factor’ (of 102 and higher).  

Final results for the compliance matrix demonstrate good 
agreement with analytical expression (22) and confirm 
both accuracy of the proposed technique and its ability to 
detect zero-elements. Further enhancement can be 

achieved by the symmetrization 2/)( Tkk   that is 
motivated by the physical reasons. 

4.7 Remarks and comments  

Presented illustrative example that deals with a classical 
element (cantilever beam) confirmed validity of the 
developed method but also demonstrated some 
limitations of the FEA-modeling with respect to the 
stiffness analysis. In particular, it was detected some (not 
very essential but non negligible) non-agreement between 

Linear mesh Parabolic mesh 
3 mm 2 mm 1 mm 5 mm 3 mm 2 mm 
27% 20% 12% 3.3% 0.19% 0.10% 

Table 5: Maximum errors in estimation of matrix k 
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Figure 3: Residuals for stiffness model identification with 
parabolic mesh 2 mm 



 

numerical values of the applied forces/torques and their 
values extracted from the modeling protocol. Besides, 
there are a number of non-trivial issues in defining 
modeling options that are normally set by default. All 
these factors contribute to the accuracy, but practically 
acceptable level 0.1% can be achieved rather easily, 
using standard computing facilities. 

5 STIFFNESS MODEL OF ORTHOGLIDE 

Let apply the proposed methodology to the stiffness 
analysis of 3-d.o.f. translational mechanisms of 
Orthoglide-type architecture [12]. This problem was 
previously studied using other techniques [7], but the 
results were essentially different from those obtained from 
both the straightforward FEA-modeling and from the 
physical experiments. 

5.1 Manipulator kinematics 

The Orthoglide is a three d.o.f. parallel manipulator 
actuated by linear drives with mutually orthogonal axes. 
Its kinematic architecture is presented in Figure 4a and 
includes three identical parallel chains, which will be 
further referred as “legs”. Each manipulator leg is formally 
described as PRPaR - chain, where P, R and Pa denote 
the prismatic, revolute, and parallelogram joints 
respectively. The output machinery (with a tool mounting 
flange) is connected to the legs in such a manner that the 
tool moves in the Cartesian space with fixed orientation 
(i.e. restricted to translational motions). The Orthoglide 
workspace has a regular, quasi-cubic shape. The 
input/output equations are simple and the velocity 
transmission factors are equal to one along the x, y and z 
direction at the isotropic configuration, like in a 
conventional serial PPP machine. The latter is an 
essential advantage for machining applications [12].  

This architecture was implemented in the Orthoglide 
prototype, which was built in Institut de Recherche en 
Communications et Cybernetique de Nantes (IRCCyN) 
and satisfies the following design objectives: cubic 
Cartesian workspace of size 200200200 mm3, 
Cartesian velocity and acceleration in the isotropic point 
1.2 m/s and 14 m/s2; payload 4 kg; transmission factor 
range 0.5–2.0. The legs nominal geometry is defined by 
the following parameters:  L = 310 mm, d = 100 mm, r = 
31 mm where L, d are the parallelogram length and width, 

and r is the distance between the points Ci and the tool 
centre point P (see Figure. 4e). 

The manipulator kinematics, including the direct and 
inverse transformations, is described in details in our 
previous paper [12]. Here we propose the manipulator 
stiffness model that, in contrast to previous works, 
possesses higher accuracy. 

5.2 Stiffness of manipulator elements 

The desired stiffness model for the entire manipulator 
(Figure 6) incorporates, as the parameters, the stiffness 
matrices of all principal links. Each of them was estimated 
using the FEA-based technique proposed in this paper. 
The principal components of the mechanism are 
presented in Figure 4, where the elements (a, b, c) are 
threaded as flexible ones and the element (d) is assumed 
to be rigid. allelogram axe d – foot, r – end-effector ) 

For all flexible links, the compliance matrixes were 
computed via the FEA-based technique proposed in this 
paper. Also, for comparison purposes, there were 
computed similar matrices corresponding to the link 
approximations, which are presented in Table 7  These 
results confirm advantages of the proposed technique, 
that give essential increase of accuracy. Besides, for the 
manipulator component (b), it was detected extreme 
difference (13 times) in the values of k44 evaluated by 
different methods. The latter is cased by the compliancy 
of the joint that is taken into account in contrast to 
previous studies. 

 

 
(a) 

 
(b) 

 
(c) 

 
(c) 

 
(e) 

Figure 4: CAD model of Orthoglide and its principal 
components (a – Orthoglide, b- parallelogram bar, 
c – parallelogram axe d – foot, r – end-effector ) 

Method 
Compliance matrix elements 

k11 mm/N k22 mm/N k33 mm/N k44 rad/N·mm k55 rad/N·mm k66 rad/N·mm 

Foot 

Single-beam approximation 3.45×10-4 3.45×10-4 18.1×10-4 2.10×10-7 2.10×10-7 0.91×10-7 

Four-beam approximation 2.77×10-4 4.34×10-4 17.9×10-4 2.11×10-7 1.95×10-7 0.91×10-7 

FEA-based evaluation [6] (linear mesh) 2.45×10-4 3.24×10-4 15.9×10-4 2.07×10-7 2.06×10-7 1.71×10-7 

FEA-based evaluation (parabolic mesh) 2.77×10-4 4.15×10-4 19.4×10-4 2.29×10-7 2.30×10-7 0.84×10-7 

Parallelogram Axis 

Single beam approximation  1.34×10-6 2.65×10-5 2.65×10-5 4.29×10-8 3.18×10-8 3.18×10-8 

FEA-based evaluation [6] (linear mesh) 1.99×10-6 1.29×10-5 1.50×10-5 6.81×10-6 8.23×10-6 2.67×10-6 

FEA-based evaluation (parabolic mesh) 6.23×10-6 2.83×10-5 2.59×10-5 2.77×10-7 4.84×10-7 1.20×10-7 

Parallelogram Bar 

Single-beam approximation 3.75×10-5 4.38×10-2 1.09×10-1 3.96×10-6 3.40×10-6 1.37×10-6 

FEA-based evaluation [6] (linear mesh) 4.50×10-5 3.64×10-2 8.01×10-2 3.76×10-6 2.65×10-6 1.09×10-6 

FEA-based evaluation (parabolic mesh) 4.55×10-5 5.08×10-2 2.33×10-1 2.88×10-5 7.19×10-6 1.50×10-6 

Table 7: Comparison of the link stiffness models   



 

5.3 Stiffness of the manipulator  

Using the obtained matrixes and applying technique from 
our previous paper [7], it was derived the VJM-based 
stiffness model of the Orthoglide manipulator. This model 
allows computing the stiffness matrix for any given 
manipulator posture, including singular configurations, 
without tedious re-meshing of the entire mechanism that 
is usually associated with conventional FEA-based 
methods.  

Also, it was performed a straightforward FEA-based 
evaluation of the manipulator stiffness and compared with 
other modeling results (Table 8). As follows from this 
study, the achieved accuracy level is about 2% and 
essentially overcome previous approaches. Some loss of 
the accuracy compared to the separate links (where it is 
about 0.1%) is caused by neglecting some flexibility 
effects in the passive joints that will be in the focus of the 
future research. 

6. CONCLUSIONS 

The problem of accurate modeling of the manipulator 
stiffness arises in number of practical applications, 
including high-speed precision machining. Traditional 
analytical and semi-analytical approaches usually ignore a 
number of flexible effects in the manipulator mechanics 
while a straightforward FEA-modeling requires rather high 
computing resources. This paper contributes to alternative 
methodology that uses advantages of both analytical and 
numerical techniques, but requires fairly accurate stiffness 
matrices of the manipulator elements that are evaluated 
via CAD-based finite element analysis. 

Proposed methodology allows essentially increase 
accuracy of the stiffness matrix identification by enhancing 
the estimation algorithms and increasing their robustness. 
Presented results also include detailed accuracy analysis 
of the stiffness identification procedures based on the 
statistical error model. The efficiency of the developed 
technique is confirmed by application examples, which 
deal with stiffness analysis of translational parallel 
manipulators and their comparison with analytical results. 
There are proposed practical recommendations for 
achieving desired accuracy of stiffness models in 
accordance with the requirements of particular industrial 
applications. 

While analyzing the modeling results, there were identified 
several directions for prospective research activities. They 
include adequate modeling of the link-joint assembly and 
experimental verification of the stiffness models for the 
Orthoglide robot. 
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Method 
Compliance matrix elements 

ktran mm/N·10-

4 
krot mm/N·10-

7 

Lump model of Majou et al. [08] with additional passive joint 3.68 2.77 

Lump model of Majou et al. [6] without additional passive 
joint 

3.68 1.26 

Overconstrained lump model with 6-dot springs [6]  2.78 1.94 

Extended overconstrained lump model with 6-dot springs [6] 2.93 2.02 

FEA-based evaluation [6] (linear mesh) 3.05 2.05 

Lump model with 6-dot springs with rigid axis 3.10 2.31 

FEA-based evaluation (parabolic mesh) 3.02 2.46 

T bl 8 C i f th i l t tiff d l (O th lid )


