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Abstract

We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity
patterns of all dictionary elements are structured and constrained to belong to a prespecified
set of shapes. Thisstructured sparse PCAis based on a structured regularization recently
introduced by [1]. While classical sparse priors only deal with cardinality, the regularization
we use encodes higher-order information about the data. We propose an efficient and simple
optimization procedure to solve this problem. Experimentswith two practical tasks, face
recognition and the study of the dynamics of a protein complex, demonstrate the benefits of
the proposed structured approach over unstructured approaches.

1 Introduction

Principal component analysis (PCA) is an essential tool fordata analysis and unsupervised di-
mensionality reduction, whose goal is to find, among linear combinations of the data variables, a
sequence of orthogonal factors that most efficiently explain the variance of the observations.

One of its main shortcomings is that, even if PCA finds a small number of important factors,
the factor themselves typically involve all original variables. In the last decade, several alternatives
to PCA which find sparse and potentially interpretable factors have been proposed, notably non-
negative matrix factorization (NMF) [2] and sparse PCA (SPCA) [3, 4, 5].

However, in many applications, only constraining the size of the factors does not seem appro-
priate because the considered factors are not only expectedto be sparse but also to have a certain
structure. In fact, the popularity of NMF for face image analysis owes essentially to the fact that the
method happens to retrieve sets of variables that are localized on the face and capture some features
or parts of the face which seem intuitively meaningful givenour a priori. We might therefore gain
in the quality of the factors induced by enforcing directly this a priori in the matrix factorization
constraints. More generally, it is desirable to encode higher-order information about the supports
that reflects thestructureof the data. For example, in computer vision, features associated to the
pixels of an image are naturally organized on a grid and the supports of factors explaining the
variability of images could be expected to be localized, connected or have some other regularity
with respect to the grid. Similarly, in genomics, factors explaining the gene expression patterns
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observed on a microarray could be expected to involve groupsof genes corresponding to biological
pathways or set of genes that are neighbors in a protein-protein interaction network.

Recent research on structured sparsity [6, 7, 1] has highlighted the benefit of exploiting such
structure for variable selection and prediction in the context of regression and classification. In par-
ticular, [1] shows that, given any intersection-closed family of patternsP of variables, such as all
the rectangles on a 2-dimensional grid of variables, it is possible to build an ad hoc regularization
normΩ that enforces that the support of the solution of the least-squares regression regularized by
Ω belongs to the familyP.

Capitalizing on these results, we aim in this paper to go beyond sparse PCA and propose
structured sparse PCA(SSPCA), which explains the variance of the data by factors that are not
only sparse but also respect some a priori structural constraints deemed relevant to model the data
at hand. We show how slight variants of the regularization term of [1] can be used successfully to
yield a structured and sparse formulation of principal component analysis for which we propose a
simple and efficient optimization scheme.

The rest of the paper is organized as follows: Section 2 introduces the SSPCA problem in the
dictionary learning framework, summarizes the regularization considered in [1] and its essential
properties, and presents some simple variants which are more effective in the context of PCA. Sec-
tion 3 is dedicated to our optimization scheme for solving SSPCA. Our experiments in Section 4
illustrate the benefits of our approach through applications to face recognition and the study of the
dynamics of protein complexes.

Notation: For any vectory in R
p and anyα > 0, we denote by‖y‖α = (

∑p
j=1 |yj|

α)1/α the
(quasi-)normℓα of y. Similarly, for any rectangular matrixY ∈ R

n×p, we denote by‖Y ‖F =
(
∑n

i=1

∑p
j=1 Y

2
ij)

1/2 its Frobenius norm, whereYij is the(i, j)-th element ofY . We writeY j for
the j-th column ofY . Givenw in R

p and a subsetJ of {1, . . . , p}, wJ denotes the vector inRp

that has the same entrieswj asw for j ∈ J , and null entries outside ofJ . In addition,supp(w) =
{j ∈ {1, . . . , p} ; wj 6= 0} is referred to as thesupport, or nonzero patternof the vectorw ∈ R

p.
For any finite setA with cardinality |A|, we also define the|A|-tuple (ya)a∈A ∈ R

p×|A| as the
collection ofp-dimensional vectorsya indexed by the elements ofA. Furthermore, for two vectors
x andy in R

p, we denote byx ◦ y = (x1y1, . . . , xpyp)
⊤ ∈ R

p the elementwise product ofx and
y. Finally, we extenda

b by continuity in zero witha
0 =∞ if a 6= 0 and0 otherwise.

2 Problem statement

It is useful to distinguish two conceptually different interpretations of PCA. In terms ofanalysis,
PCA sequentially projects the data on subspaces that explain the largest fraction of the variance of
the data. In terms ofsynthesis, PCA finds a basis, or orthogonal dictionary, such that all signals ob-
served admit decompositions with low reconstruction error. These two interpretations recover the
same basis of principal components for PCA but lead to different formulations forsparsePCA. The
analysisinterpretation leads to sequential formulations ([8, 9, 3]) that consider components one at
a time and perform adeflationof the covariance matrix at each step (see [10]). Thesynthesisinter-
pretation leads to non-convex global formulations ([4, 11,9, 12]) which estimate simultaneously
all principal components, often drop the orthogonality constraints, and are referred to as matrix
factorization problems ([13]) in machine learning, and dictionary learning in signal processing.

The approach we propose fits more naturally in the framework of dictionnary learning, whose
terminology we now introduce.
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2.1 Matrix factorization and dictionary learning

Given a matrixX ∈ R
n×p of n rows corresponding ton observations inRp, the dictionary learning

problem is to find a matrixV ∈ R
p×r, called thedictionary, such that each observation can be well

approximated by a linear combination of ther columns(V k)k∈{1,...,r} of V called thedictionary
elements. If U ∈ R

n×r is the matrix of the linear combination coefficients ordecomposition
coefficients, the matrix productUV ⊤ is called a decomposition ofX.

Learning simultaneously the dictionaryV and the decompositionU corresponds to a matrix
factorization problem (see [5] and reference therein). As formulated in [14] or [5], it is natural,
when learning a decomposition, to penalize or constrain some norms or quasi-norms ofU andV ,
sayΩu andΩv respectively, to encode prior information—typically sparsity—about the decompo-
sition ofX. This can be written generally as

min
U∈Rn×r, V ∈Rp×r

1

2np

∥∥∥X−UV ⊤
∥∥∥

2

F
+ λ

r∑

k=1

Ωv(V
k) s.t. ∀k, Ωu(Uk) ≤ 1, (1)

where the regularization parameterλ ≥ 0 controls which extent the dictionary is regularized1. If
we assume that both regularizationsΩu andΩv are convex, problem (1) is convex w.r.t.U for V
fixed and vice versa. It is however notjointly convex in(U, V ).

The formulation of sparse PCA considered in [12] corresponds to a particular instance of this
problem, where the dictionary elements are required to be sparse (without the orthogonality con-
straintV ⊤V = I). This can be achieved by penalizing the columns ofV by a sparsity-inducing
norm, e.g., theℓ1 norm,Ωv(V

k) =
∥∥V k

∥∥
1
. In the next section we consider a regularizationΩv

which controls not only the sparsity but also the structure of the supports of dictionary elements.

2.2 Structured sparsity-inducing norms

The work of [1] considered a norm which induces structured sparsity in the following sense: the
solutions to a learning problem regularized by this norm have a sparse support which moreover
belongs to a certain set of groups of variables. Interestingsets of possible supports include set of
variables forming rectangles when arranged on a grid and more generally convex subsets2.

The framework of [1] can be summarized as follows: if we denote byG a subset of the power
set of{1, . . . , p}, such that

⋃
G∈G G = {1, . . . , p}, we define a normΩ on a vectory ∈ R

p as

Ω(y) =
∑

G∈G

{ ∑

j∈G

(dG

j )2|yj |
2

} 1

2

=
∑

G∈G

‖dG ◦ y‖2 ,

where(dG)G∈G ∈ R
p×|G| is a |G|-tuple ofp-dimensional vectors such thatdG

j > 0 if j ∈ G and
dG

j = 0 otherwise. This normΩ linearly combines theℓ2 norms of possibly overlapping groups of
variables, with variables in each group being weighted by(dG)G∈G . Note that a same variableyj

belonging to two different groupsG1, G2 ∈ G is allowed to be weighted differently inG1 andG2

(by respectivelydG1

j anddG2

j ).
For specific choices ofG, Ω leads to standard sparsity-inducing norms. For example, whenG

is the set of all singletons,Ω is the usualℓ1 norm (assuming that all the weights are equal to 1).

1From [14], we know that our formulation is also equivalent totwo unconstrained problems, with the penalizations
λ
2

Pr

k=1
[Ωv(V k)]2+[Ωu(Uk)]2 or λ

Pr

k=1
Ωv(V k)Ωu(Uk).

2We use the termconvexinformally here. It can however be made precise with the notion of convex subgraphs
([15]).
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We focus on the case of a 2-dimensional grid where the set of groupsG is the set of all horizon-
tal and vertical half-spaces (see Fig. 1 taken from [1]). As proved in [1, Theorem 3.1], theℓ1/ℓ2
normΩ sets to zero some groups of variables‖dG ◦ y‖2, i.e., some entire horizontal and vertical
half-spaces of the grid, and therefore induces rectangularnonzero patterns. Note that a broader set
of convex patterns can be obtained by adding inG half-planes with other orientations. In practice,
we use planes with angles which are multiples ofπ

4 .

Figure 1: (Left) The set of blue and green groups with their (not displayed) complements to penal-
ize to select rectangles. (Right) In red, an example of recovered pattern in this setting.

Among sparsity inducing regularizations,ℓ1 is often privileged since it is convex. However, so-
called concave penalizations, such as penalization by anℓα quasi-norm, which are closer toℓ0 and
penalize more aggressively small coefficients can be preferred, especially in a context where the
unregularized problem, here dictionary learning is itselfnon convex. In the light of recent work
showing the advantages of addressing sparse regression problems through concave penalization
(e.g., see [16]), we therefore generalizeΩ to a family of non-convex regularizers as follows: for
α ∈ (0, 1), we define the quasi-normΩα for all vectorsy ∈ R

p as

Ωα(y) =

{ ∑

G∈G

‖dG ◦ y‖α2

} 1

α

= ‖ (‖dG ◦ y‖2)G∈G ‖α ,

where we denote by(‖dG ◦ y‖2)G∈G ∈ R
1×|G| the |G|-tuple composed of the different blocks

‖dG ◦ y‖2. We thus replace the (convex)ℓ1/ℓ2 normΩ by the (neither convex, nor concave)ℓα/ℓ2
quasi-normΩα. Note that this modification impacts the sparsity induced atthe level of groups,
since we have replaced the convexℓ1 norm by the concaveℓα quasi-norm.

3 Optimization

We consider the optimization of Eq. (1) where we useΩv = Ωα to regularize the dictionaryV . We
discuss in Section 3.3 which normsΩu we can handle in this optimization framework.

3.1 Formulation as a sequence of convex problems

We are now considering Eq. (1) where we takeΩv to beΩα, that is,

min
U∈Rn×r, V ∈Rp×r

1

2np

∥∥∥X−UV ⊤
∥∥∥

2

F
+ λ

r∑

k=1

Ωα(V k) s.t. ∀k, Ωu(Uk) ≤ 1. (2)

Although the minimization problem Eq. (2) is still convex inU for V fixed, the converse is not true
anymore because ofΩα. Indeed, the formulation inV is non-differentiable and non-convex. To
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address this problem, we use the variational equality basedon the following lemma that is related3

to ideas from [17, 18]:

Lemma 3.1. Letα ∈ (0, 2) andβ = α
2−α . For any vectory ∈ R

p, we have the following equality

‖y‖α = min
z∈R

p
+

1

2

p∑

j=1

y2
j

zj
+

1

2
‖z‖β ,

and the minimum is uniquely attained forzj = |yj|
2−α ‖y‖α−1

α , ∀j ∈ {1, . . . , p}.

Proof. Let ψ : z 7→
∑p

j=1 y
2
j z

−1
j + ‖z‖β be the continuously differentiable function defined on

(0,+∞). We havelim‖z‖β→∞ ψ(z) = +∞ andlimzj→0 ψ(z) = +∞ if yj 6= 0 (for yj = 0, note
that minz≥0 ψ(z) = minz≥0,zj=0 ψ(z)). Thus, the infimum exists and it is reached. Taking the
derivative w.r.t. zj (for zj > 0) leads to the expression of the unique minimum, expression that
still holds forzj = 0.

To reformulate problem(2), let us consider the|G|-tuple (ηG)G∈G ∈ R
r×|G| of r-dimensional

vectorsηG that satisfy for allk ∈ {1, . . . , r} andG ∈ G, ηG

k ≥ 0. It follows from Lemma (3.1)
that

2
r∑

k=1

Ωα(V k) = min
(ηG)G∈G∈R

r×|G|
+

r∑

k=1

[
‖(ηG

k )G∈G‖β +
∑

G∈G

∥∥∥V k ◦ dG

∥∥∥
2

2
(ηG

k )−1

]
.

If we introduce the matrixζ ∈ R
p×r defined by4 ζjk =

{ ∑
G∈G, G∋j(d

G

j )2(ηG

k )−1
}−1

, we then
obtain

2

r∑

k=1

Ωα(V k) = min
(ηG)G∈G∈R

r×|G|
+

r∑

k=1

(V k)⊤Diag
(
ζk

)−1
V k + ‖(ηG

k )G∈G‖β .

This leads to the following formulation

min
U, V, Ωu(Uk)≤1

(ηG)G∈G∈R
r×|G|
+

1

2np

∥∥∥X−UV ⊤
∥∥∥

2

F
+
λ

2

r∑

k=1

[
(V k)⊤Diag

(
ζk

)−1
V k + ‖(ηG

k )G∈G‖β

]
, (3)

which is equivalent to Eq. (2).

3.2 Sharing structure among dictionary elements

So far, the regularization quasi-normΩα has been used to induce a structureinsideeach dictionary
element taken separately. Nonetheless, some applicationsmay also benefit from a control of the
structureacrossdictionary elements. For instance it can be desirable to impose the constraint thatr
dictionary elements share only a few different nonzero patterns. In the context of face recognition,
this could be relevant to model the variability of faces as the combined variability of several parts,
with each part having a small support (such as eyes), and having its variance itself explained by
severaldictionary elements (corresponding for example to the color of the eyes).

To this end, we considerM, a partition of{1, . . . , r}. Imposing that two dictionary elements
V k andV k′

share the same sparsity pattern is equivalent to imposing that V k
i andV k′

i are si-
multaneously zero or non-zero. Following the approach usedfor joint feature selection ([19])

3Note that we depart form [17, 18] who consider a quadratic upperbound on thesquarednorm. We prefer to remain
in the standard dictionary learning framework where the penalization is not squared.

4For the sake of clarity, we do not specify the dependence ofζ on (ηG)G∈G .
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where theℓ1 norm is composed with anℓ2 norm, we compose the normΩα with the ℓ2 norm
V M

i = ‖(V k
i )k∈M‖2, of all ith entries of each dictionary element of a classM of the partition,

leading to the regularization:

∑

M∈M

Ωα(V M
i ) =

∑

M∈M

[
∑

G∈G

∥∥∥(V k
i d

G

i )i∈G, k∈M

∥∥∥
α

2

]1/α

, (4)

In fact, not surprisingly given that similar results hold for the group Lasso [17], it can be shown
that the above extension is retrieved equivalently by adding equality constraints between variables
ηG

k corresponding to the same class in the variational formulation Eq. (3), which leads to

min
U, V, Ωu(Uk)≤1

(ηG)G∈G∈R
r×|G|
+

1

2np

∥∥∥X−UV ⊤
∥∥∥

2

F
+

λ

2

r∑

k=1

[
(V k)⊤Diag

(
ζk

)−1
V k + ‖(ηG

k )G∈G‖β

]
,

s.t ∀M ∈M, ∀k, k′ ∈M, (ηG

k )G∈G = (ηG

k′)G∈G .

3.3 Algorithm

The main optimization procedure described in Algorithm 1 isbased on a cyclic optimization over
the three variables in play, namely(ηG)G∈G , U andV . We will use Lemma (3.1) to solve Eq. (2)
by a sequence of problems that are convex inU for fixedV (and conversely, convex inV for fixed
U ). For this sequence of problems, we then present efficient optimization procedures based on
block coordinate descent (BCD) [20, Section 2.7]. We describe these in detail in Algorithm 1.
Note that we depart from the approach of [1] who use an active set algorithm. Their approach does
not indeed allow warm restarts, which is crucial in our alternating optimization scheme.

Update of (ηG)G∈G . The update of(ηG)G∈G is straightforward (even if the underlying minimiza-
tion problem is non-convex), since the minimizer in Lemma (3.1) is given in closed-form . Note
that in practice, as in [18], we avoid numerical instabilities near zero by considering the variable
η̃G

k = ηG

k + ε, with ε≪ 1.

Update of U . The update ofU follows the technique suggested by [11]. Each columnUk of
U is constrained separately throughΩu(Uk). Furthermore, if we assume thatV and{U j}j 6=k are
fixed, some basic algebra leads to

arg min
Ωu(Uk)≤1

1

2np

∥∥∥X−UV ⊤
∥∥∥

2

F
= arg min

Ωu(Uk)≤1

∥∥∥∥U
k−

∥∥∥V k
∥∥∥
−2

2
(X−

∑

j 6=k

[U j ]⊤V j)V k

∥∥∥∥
2

2

(5)

= arg min
Ωu(Uk)≤1

∥∥∥Uk−w
∥∥∥

2

2
, (6)

which is simply the Euclidian projectionΠΩu(w) of w onto the unit ball ofΩu. Consequently, the
cost of the BCD update ofU depends on how fast we can perform this projection; theℓ1 andℓ2
norms are typical cases where the projection can be computedefficiently. In the experiments, we
takeΩu to be theℓ2 norm.

In addition, since the functionUk 7→ 1
2np

∥∥X−UV ⊤
∥∥2

F
is continuously differentiable on the

(closed convex) unit ball ofΩu, the convergence of the BCD procedure is guaranteed since the
minimum in Eq. (5) is unique [20, Proposition 2.7.1]. The complete update ofU is given in
Algorithm 1.
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Update of V . A fairly natural way to updateV would be to compute the closed form solutions
available for each row ofV . Indeed, both the loss12np

∥∥X−UV ⊤
∥∥2

F
and the penalization onV are

separable in the rows ofV , leading top independent ridge-regression problems, implying in turn
p matrix inversions.

However, in the light of the update ofU , we consider again a BCD scheme that turns out to be
much more efficient, without requiring any non-diagonal matrix inversion. The detailed procedure
is given in Algorithm 1. The convergence follows along the same arguments as those used forU .

Algorithm 1 Main optimization procedure for solving Eq. (3).
Input: Dictionary sizer, data matrixX.
Initialization: Random initialization ofU, V .

while ( stopping criterionnot reached )
Update (ηG)G∈G : closed-form solution given by Lemma (3.1).
Update U by BCD:

for t = 1 to Tu, for k = 1 to r:
Uk ← ΠΩu(Uk+

∥∥V k
∥∥−2

2
(XV k−UV ⊤V k)).

Update V by BCD:
for t = 1 to Tv, for k = 1 to r:

V k←Diag
(
ζk

)
Diag

(∥∥Uk
∥∥2

2
ζk+npλ1

)−1
(X⊤Uk−V U⊤Uk+

∥∥Uk
∥∥2

2
V k).

Output: DecompositionU, V .

Our problem is notjointly convex in(ηG)G∈G , U andV , which raises the question of the
sensitivity of the optimization to its initialization. This point will be discussed in the experiments,
Section 4. In practice, the stopping criterion relies on therelative decrease (typically,10−3) in the
cost function in Eq. (2).

Algorithmic complexity. The complexity of Algorithm 1 can be decomposed into 3 terms,cor-
responding to the update procedures of(ηG)G∈G , U andV . First, computing(ηG)G∈G andζ costs
O(r|G|+ |G|

∑
G∈G |G|+r

∑p
j=1 |G ∈ G;G ∋ j|) = O(pr|G|+p|G|2). The update ofU requires

O((p+ Tun)r2 + (np+CΠTu)r) operations, whereCΠ is the cost of projecting onto the unit ball
of Ωu. Similarly, we get for the update ofV a complexity ofO((n + Tvp)r

2 + npr). In prac-
tice, we notice that the BCD updates for bothU andV require only few steps, so that we choose
Tu = Tv = 3. In our experiments, the algorithmic complexity simplifiestoO(p2+r2 max{n, p}+
rpmax{p1/2, n}) times the number of iterations in Algorithm 1.

Extension to NMF. Our formalism does not cover the positivity constraints of non-negative
matrix factorization, but it is straightforward to extend our framework at the cost of an additional
threshold operation (to project onto the positive orthant)in the BCD updates ofU andV .

4 Experiments

We first focus on the application of SSPCA to a face recognition problem and we show that,
by adding a sparse structured prior instead of a simple sparse prior, we gain in robustness to
occlusions. We then apply SSPCA to biological data to study the dynamics of a protein/protein
complex. The results we obtain are validated by known properties of the complex. In preliminary
experiments, we considered the exact regularization of [1], i.e., withα = 1, but found that the
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obtained patterns were not sufficiently sparse and salient.We therefore turned to the setting where
the parameterα is in (0, 1). In the experiments described in this section we choseα = 0.5.

Figure 2: Three learned dictionaries of faces withr = 36: NMF (top), SSPCA (middle) and
SSPCA(12) (bottom) (i.e., SSPCA with|M| = 12 different patterns of size3). The dictionary
elements are ordered by explained variance. While NMF givessparse spatially unconstrained pat-
terns, SSPCA finds convex areas that correspond to more natural face segments. SSPCA captures
the left/right illuminations in the dataset by recovering symmetric patterns.
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4.1 Face recognition

We first apply SSPCA on the cropped AR dataset [21] that consists of 2600 face images, corre-
sponding to 100 individuals (50 women and 50 men). For each subject, there are 14 non-occluded
poses and 12 occluded ones (the occlusions are due to sunglasses and scarfs). We reduce the
resolution of the images from 165x120 to 38x27 for computational reasons.

Fig. 2 shows examples of learned dictionaries (forr = 36 elements), for NMF, SSPCA
and SSPCA with shared structure. While NMF finds sparse but spatially unconstrained patterns,
SSPCA select sparse convex areas that correspond to a more natural segment of faces. For instance,
meaningful parts such as the mouth and the eyes are recoveredby the dictionary.
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Figure 3: Correct classification rate vs. dictionary size: each dimensionality reduction technique
is used with k-NN to classify occluded faces. SSPCA shows better robustness to occlusions.

We now compare SSPCA, SPCA (as in [12]), PCA and NMF on a face recognition problem.
We first split the data into 2 parts, the occluded faces and non-occluded ones. For different sizes
of the dictionary, we apply each of the aforementioned dimensionality reduction techniques to the
non-occluded faces. Keeping the learned dictionaryV , we decompose both non-occluded and
occluded faces onV . We then classify the occluded faces with a k-nearest-neighbors classifier
(k-NN), based on the obtained low-dimensional representations. Given the size of the dictionary,
we choose the number of nearest neighbor(s) and the amount ofregularizationλ by 5-fold cross-
validation5.

The formulations of NMF, SPCA and SSPCA are non-convex and asa consequence, the local
minima reached by those methods are sensitive to the initialization. Thus, after having selected the
parameters by cross-validation, we run each algorithm 20 times with different initializations on the
non-occluded faces, divided into a training (900 instances) and validation set (500 instances) and
take the model with the best classification score. We summarize the results in Fig. 3. We denote

5In the 5-fold cross-validation, the number of nearest neighbor(s) is searched in{1, 3, 5} while log2(λ) is in
{4, 6, 8, . . . , 18}. For the dictionary, we consider the sizesr ∈ {10, 20, 30, 40, 50, 60, 70}.
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by SSPCA(10) (resp. SPCA(10)) the models where we impose, ontop of the structure ofΩα, to
have only 10 different nonzero patterns among the learned dictionaries (see Section 3.2).

As a baseline, we also plot the classification score that we obtain when we directly apply k-
NN on the raw data, without preprocessing. Because of its local dictionary, SSPCA proves to
be more robust to occlusions and therefore outperforms the other methods on this classification
task. On the other hand, SPCA, that yields sparsity without astructure prior, performs poorly.
Sharing structure across the dictionary elements (see Section 3.2) seems to help SPCA for which
no structure information is otherwise available.

The goal of our paper is not to compete with state-of-the-arttechniques of face recognition,
but to demonstrate the improvement obtained betweenℓ1 and more structured norms. We could
still improve upon our results using non-linear classification (e.g., with a SVM) or by refining our
features (e.g., with a Laplacian filter).

4.2 Protein complex dynamics

Understanding the dynamics of protein complexes is important since conformational changes of
the complex are responsible for modification of the biological function of the proteins in the com-
plex. For the EF-CAM complex we consider, it is of particularinterest to study the interaction
between EF (adenyl cyclase ofBacillus anthracis) and CAM (calmodulin) to find new ways to
block the action of anthrax [22].

Figure 4: (Top left) Entire protein with biological domainshighlighted in different colors. The
two blue parts represent the CAM protein, while the rest of the complex corresponds to EF. (Top
right, bottom left/right) Dictionary of sizer = 3 found by SSPCA with the same color code.
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In our experiment, we consider 12000 successive positions of the 619 residues of the EF-CAM
complex, each residue being represented by its position inR

3 (i.e., a total of 1857 variables).
We look for dictionary elements that explain the dynamics ofthe complex, with the constraint
that these dictionary elements have to be small convex regions in space. Indeed, the complex is
comprised of several functional domains (see Fig. 4) whose spatial structure has to be preserved
by our decomposition.

We use the normΩα (andG) to take into account the spatial configuration. Thus, we naturally
extend the groups designed for a 2-dimensional grid (see Fig. 1) to a 3-dimensional setting. Since
one residue corresponds to 3 variables, we could either (1) aggregate these variables into a single
one and consider a 619-dimensional problem, or (2) we could use Section 3.2 to force the three
coordinates of each residue to share the same support, i.e.,in a 1857-dimensional problem. This
second method has given us more satisfactory results.

We only present results on a small dictionary (see Fig. 4 withr = 3). As a heuristic to pickλ,
we maximize|

Sr

k=1
supp

`

V k
´

|2/(p
Pr

k=1
|supp

`

V k
´

|) to select dictionary elements that cover pretty
well the complex, without too many overlapping areas.

We retrieve groups of residus that match known energetically stable substructures of the com-
plex [22] . In particular, we recover the two tails of the complex and the interface between EF and
CAM where the two proteins bind. Finally, we also run our method on the same EF-CAM complex
perturbed by (2 and 4) calcium elements. Interestingly, we observe stable decompositions, which
is in agreement with the analysis of [22].

5 Conclusions

We proposed to apply a non-convex variant of the regularization introduced by [1] to the prob-
lem of structured sparse dictionary learning. We present anefficient block-coordinate descent
algorithm with closed-form updates. For face recognition,the dictionaries learned have increased
robustness to occlusions compared to NMF. An application tothe analysis of protein complexes
reveals biologically meaningful structures of the complex. As future directions, we plan to re-
fine our optimization scheme to better exploit sparsity. We also intend to apply this structured
sparsity-inducing norm for multi-task learning, in order to take advantage of the structure between
tasks.
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