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Abstract

We present an extension of sparse PCA, or sparse dictioeamyihg, where the sparsity
patterns of all dictionary elements are structured andtcaingd to belong to a prespecified
set of shapes. Thistructured sparse PC/#s based on a structured regularization recently
introduced by [1]. While classical sparse priors only dedhwardinality, the regularization
we use encodes higher-order information about the data. rdfgope an efficient and simple
optimization procedure to solve this problem. Experimemith two practical tasks, face
recognition and the study of the dynamics of a protein comymlemonstrate the benefits of
the proposed structured approach over unstructured agpesa

1 Introduction

Principal component analysis (PCA) is an essential tooldfatia analysis and unsupervised di-
mensionality reduction, whose goal is to find, among lineanlginations of the data variables, a
sequence of orthogonal factors that most efficiently ergdiae variance of the observations.

One of its main shortcomings is that, even if PCA finds a smathbber of important factors,
the factor themselves typically involve all original vdies. In the last decade, several alternatives
to PCA which find sparse and potentially interpretable fiect@ve been proposed, notably non-
negative matrix factorization (NMF) [2] and sparse PCA (29(3, 4, 5].

However, in many applications, only constraining the sizéhe factors does not seem appro-
priate because the considered factors are not only exptrtezlsparse but also to have a certain
structure. In fact, the popularity of NMF for face image as& owes essentially to the fact that the
method happens to retrieve sets of variables that are techtin the face and capture some features
or parts of the face which seem intuitively meaningful gieem a priori. We might therefore gain
in the quality of the factors induced by enforcing directhsta priori in the matrix factorization
constraints. More generally, it is desirable to encode dnginder information about the supports
that reflects thetructureof the data. For example, in computer vision, features @ssatto the
pixels of an image are naturally organized on a grid and tippatts of factors explaining the
variability of images could be expected to be localized,nemted or have some other regularity
with respect to the grid. Similarly, in genomics, factorplaining the gene expression patterns



observed on a microarray could be expected to involve grofigsnes corresponding to biological
pathways or set of genes that are neighbors in a proteieiprtteraction network.

Recent research on structured sparsity [6, 7, 1] has higkligthe benefit of exploiting such
structure for variable selection and prediction in the eghof regression and classification. In par-
ticular, [1] shows that, given any intersection-closed ifgrof patternsP of variables, such as all
the rectangles on a 2-dimensional grid of variables, it ssfme to build an ad hoc regularization
norm¢? that enforces that the support of the solution of the leqstes regression regularized by
Q) belongs to the familyP.

Capitalizing on these results, we aim in this paper to go beéysparse PCA and propose
structured sparse PCASSPCA), which explains the variance of the data by factoas are not
only sparse but also respect some a priori structural cingtrdeemed relevant to model the data
at hand. We show how slight variants of the regularizatiomtef [1] can be used successfully to
yield a structured and sparse formulation of principal congmt analysis for which we propose a
simple and efficient optimization scheme.

The rest of the paper is organized as follows: Section 2doites the SSPCA problem in the
dictionary learning framework, summarizes the reguldioraconsidered in [1] and its essential
properties, and presents some simple variants which are effiective in the context of PCA. Sec-
tion 3 is dedicated to our optimization scheme for solving®?68. Our experiments in Section 4
illustrate the benefits of our approach through applicatimnface recognition and the study of the
dynamics of protein complexes.

Notation:  For any vectory in RP and anya > 0, we denote byjyll, = (3-7_, ly;|*)/ the
(quasi-)norm¢,, of y. Similarly, for any rectangular matrix’ € R"*?, we denote by|Y|| =
(>, YoF_, Y2)H/% its Frobenius norm, wherE;; is the (i, j)-th element ofy”. We writeY? for
the j-th column ofY. Givenw in R? and a subsef of {1,...,p}, w; denotes the vector iR?
that has the same entrieg asw for j € J, and null entries outside of. In addition,supp(w) =
{7 €{1,...,p}; w; # 0} is referred to as theupport or nonzero patterrof the vectorw € RP.
For any finite setd with cardinality |A|, we also define théd|-tuple (y%),c4 € RP*I4l as the
collection ofp-dimensional vectorg® indexed by the elements df. Furthermore, for two vectors
x andy in RP, we denote byr o y = (2191, . .. ,xpyp)T € RP the elementwise product afand
y. Finally, we extend; by continuity in zero withg = oo if a # 0 and0 otherwise.

2 Problem statement

It is useful to distinguish two conceptually different irgestations of PCA. In terms @&nalysis
PCA sequentially projects the data on subspaces that explaiargest fraction of the variance of
the data. In terms &fynthesisPCA finds a basis, or orthogonal dictionary, such that ghiais ob-
served admit decompositions with low reconstruction erftyiese two interpretations recover the
same basis of principal components for PCA but lead to diffeformulations fosparsePCA. The
analysisinterpretation leads to sequential formulations ([8, 9t8&t consider components one at
a time and perform deflationof the covariance matrix at each step (see [10]). Syrehesisnter-
pretation leads to non-convex global formulations ([4, 4,112]) which estimate simultaneously
all principal components, often drop the orthogonality stoaints, and are referred to as matrix
factorization problems ([13]) in machine learning, andiditary learning in signal processing.
The approach we propose fits more naturally in the framewbdkctionnary learning, whose

terminology we now introduce.



2.1 Matrix factorization and dictionary learning

Given amatrixX € R™*P of n rows corresponding te observations ifR?, the dictionary learning
problem is to find a matri¥” € RP*", called thedictionary, such that each observation can be well
approximated by a linear combination of theolumns(V’“)ke{le} of V called thedictionary
elements If U € R™*" is the matrix of the linear combination coefficients daecomposition
coefficientsthe matrix product/ V" is called a decomposition of.

Learning simultaneously the dictionaby and the decompositiofl corresponds to a matrix
factorization problem (see [5] and reference therein). dkstilated in [14] or [5], it is natural,
when learning a decomposition, to penalize or constrainesoonms or quasi-norms éf andV/,
say(, and{2, respectively, to encode prior information—typically sgg—about the decompo-
sition of X. This can be written generally as

‘X UVTH +)\ZQ VEY st WE QuUR) <1, (1)

min ‘
UERnXT VVERPXT 2np

where the regularization parameter> 0 controls which extent the dictionary is regularizedf
we assume that both regularizatidilg and(2, are convex, problem (1) is convex w.rlf. for V'
fixed and vice versa. It is however rjointly convex in(U, V).

The formulation of sparse PCA considered in [12] correspdoda particular instance of this
problem, where the dictionary elements are required to besepgwithout the orthogonality con-
straintV 'V = I). This can be achieved by penalizing the columnd/dfy a sparsity-inducing
norm, e.g., the; norm,Q,(VF) = HV’“H1 In the next section we consider a regularization
which controls not only the sparsity but also the structdréne supports of dictionary elements.

2.2 Structured sparsity-inducing norms

The work of [1] considered a norm which induces structureatsty in the following sense: the
solutions to a learning problem regularized by this normehasparse support which moreover
belongs to a certain set of groups of variables. Interestéig of possible supports include set of
variables forming rectangles when arranged on a grid ane gemerally convex subséts

The framework of [1] can be summarized as follows: if we dermtG a subset of the power
setof{1,...,p}, suchthat J,.; G = {1,...,p}, we define a norni2 on a vectory € R” as

o) = 3 { L) ryj} = 3 € oyl

Geg * jeG Geg

where(d%)geg € RP*19lis a|G|-tuple of p-dimensional vectors such thdf > 0if j € G and
df = 0 otherwise. This norm linearly combines thé, norms of possibly overlapping groups of
variables, with variables in each group being weightedd$})cg. Note that a same variablg
belonging to two different group&y, G € G is allowed to be weighted differently i@, andG-
(by respectivelyl;* andd).

For specific choices df, € leads to standard sparsity-inducing norms. For examplenyh
is the set of all singletons) is the usual; norm (assuming that all the weights are equal to 1).

1From [14], we know that our formulation is also equivalentwo unconstrained problems, with the penalizations
3 2 het Qo (VEPH[Qu (U] or A 305, 20 (VF)Q(U").
2We use the terntonvexinformally here. It can however be made precise with theamotf convex subgraphs

([15)]).



We focus on the case of a 2-dimensional grid where the sebapgg is the set of all horizon-
tal and vertical half-spaces (see Fig. 1 taken from [1]). Awed in [1, Theorem 3.1], th& //o
norm (2 sets to zero some groups of variable¥’ o y|,, i.e., some entire horizontal and vertical
half-spaces of the grid, and therefore induces rectangolazero patterns. Note that a broader set
of convex patterns can be obtained by adding imalf-planes with other orientations. In practice,
we use planes with angles which are multiples;of

e
Figure 1: (Left) The set of blue and green groups with theit (isplayed) complements to penal-
ize to select rectangles. (Right) In red, an example of rex@m/pattern in this setting.

Among sparsity inducing regularizatiorfs,is often privileged since it is convex. However, so-
called concave penalizations, such as penalization lfy, gmasi-norm, which are closer fg and
penalize more aggressively small coefficients can be pesfeespecially in a context where the
unregularized problem, here dictionary learning is itselh convex. In the light of recent work
showing the advantages of addressing sparse regressiblempothrough concave penalization
(e.g., see [16]), we therefore generali2zdo a family of non-convex regularizers as follows: for
a € (0,1), we define the quasi-norfa® for all vectorsy € R? as

1
0 (y) = { Sl oyus} (1 o yll)aes |, -
Geg

where we denote by||d® o y||,)geg € R'*I9 the |G|-tuple composed of the different blocks
|d% o y||,. We thus replace the (convek)/¢2 norm$ by the (neither convex, nor concaw)/ /-
quasi-normQ®. Note that this modification impacts the sparsity inducethatlevel of groups,
since we have replaced the convgxnorm by the concavé, quasi-norm.

3 Optimization

We consider the optimization of Eq. (1) where we (se= Q¢ to regularize the dictionary’. We
discuss in Section 3.3 which norrfdg, we can handle in this optimization framework.

3.1 Formulation asa sequence of convex problems

We are now considering Eqg. (1) where we téketo be2¢, that is,

1

. 2 d a
UERnXmT’l‘I}ERPXT%HX—UVTHF—F)\];Q (VF) st VR QU <1 @)

Although the minimization problem Eq. (2) is still convexiinfor V fixed, the converse is not true
anymore because 61“. Indeed, the formulation i is non-differentiable and non-convex. To
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address this problem, we use the variational equality baséde following lemma that is relatéd
to ideas from [17, 18]:

Lemma3.1l. Leta € (0,2) and3 = 52. For any vectory € R?, we have the following equality

.
o1&y 1
lylla = min 53 2+ 31zl

+ j=1
and the minimum is uniquely attained for = |y; >~ ”yug—l ,Vje{l,...,p}.

Proof. Let ¢ : z — Z;’:l yjz»zj_l + ||2]|s be the continuously differentiable function defined on
(0,400). We havelim |, ., ¢(2) =400 andlim., .o ¢ (z) = +oc if y; # 0 (for y; = 0, note
thatmin, > ¥(2) = min.>o.,=0%(2)). Thus, the infimum exists and it is reached. Taking the
derivative w.r.t. z; (for z; > 0) leads to the expression of the unique minimum, expressian t

still holds forz; = 0. O

To reformulate problen(2), let us consider th&g|-tuple (1) ceg € R"*19! of r-dimensional
vectorsn“ that satisfy for allk € {1,...,7} andG € G, n; > 0. It follows from Lemma (3.1)
that

2> o= min S ifoesli+ 3 [V o} )
k=1 Geg

(n%)aegeR, " 5

If we introduce the matrix € R?*" defined by (jr={ > seq. Gaj(df)z(n,f)‘l}_l, we then
obtain

T

" -1
2)-Q(VH) = min SV Diag(¢*) v+ | 0)eslls
k=1 (n%)cegeR, " 15

This leads to the following formulation

1 2 )\ -1
i —X—UVTH+— {V’“TD' B TR (8 @3
Lemn o] et |V ing (¢*) ln)ceclls|. @)
(UG)GGQERQX‘Q‘

which is equivalent to Eq. (2).

3.2 Sharing structure among dictionary elements

So far, the regularization quasi-nof® has been used to induce a structim@deeach dictionary
element taken separately. Nonetheless, some applicatiagsalso benefit from a control of the
structureacrossdictionary elements. For instance it can be desirable t@gaphe constraint that
dictionary elements share only a few different nonzerogpast In the context of face recognition,
this could be relevant to model the variability of faces asdbmbined variability of several parts,
with each part having a small support (such as eyes), anadnétgi variance itself explained by
severaldictionary elements (corresponding for example to theraolohe eyes).

To this end, we considek1, a partition of{1,...,r}. Imposing that two dictionary elements
VF and V¥ share the same sparsity pattern is equivalent to imposiaigth and V' are si-
multaneously zero or non-zero. Following the approach udsegbint feature selection ([19])

Note that we depart form [17, 18] who consider a quadratietppund on thequarednorm. We prefer to remain
in the standard dictionary learning framework where theafization is not squared.
“For the sake of clarity, we do not specify the dependenceanf (1) ceg.

5



where thel; norm is composed with af, norm, we compose the norfa® with the /; norm
VM = ||(VF)reall2, of all i entries of each dictionary element of a cldgsof the partition,

)

leading to the regularization:

1/a
> et = Y [Z H(deg,keMHj] , @

MeM MeM LGeG

In fact, not surprisingly given that similar results hold fbe group Lasso [17], it can be shown
that the above extension is retrieved equivalently by agldojuality constraints between variables
ny; corresponding to the same class in the variational fornaulaq. (3), which leads to

p g -1
X-Uv’ - VM) Diag(¢*) vV + (0§ :
i g XV 3R [0 () ol
(77 )GGQERM‘Q‘
st VM e M, Vk kK € M, (n)ceg = (15)Geg-
3.3 Algorithm

The main optimization procedure described in Algorithm based on a cyclic optimization over
the three variables in play, namely“)ccg, U andV. We will use Lemma (3.1) to solve Eq. (2)
by a sequence of problems that are convel( ifor fixed V' (and conversely, convex i for fixed
U). For this sequence of problems, we then present efficiein@ation procedures based on
block coordinate descent (BCD) [20, Section 2.7]. We descthese in detail in Algorithm 1.
Note that we depart from the approach of [1] who use an acéivalgorithm. Their approach does
not indeed allow warm restarts, which is crucial in our algding optimization scheme.

Updateof (n°)geg. The update ofn)gcg is straightforward (even if the underlying minimiza-
tion problem is non-convex), since the minimizer in Lemmad.)3s given in closed-form . Note
that in practice, as in [18], we avoid numerical instaldktinear zero by considering the variable

ng =mng +e, withe < 1.

Update of U. The update of/ follows the technique suggested by [11]. Each colufffnof
U is constrained separately through (U*). Furthermore, if we assume thitand {U7}; ., are
fixed, some basic algebra leads to

arg min — HX UVTH = argmin )

Qu(UF)<1 21D Q. (UR)<1

-2 N 2
U’“—"V’“" (X =3[9V
oy )

(6)

= argmin HUk
Q. (Uk)<1

which is simply the Euclidian projectioq, (w) of w onto the unit ball of2,,. Consequently, the
cost of the BCD update df depends on how fast we can perform this projection;/thand -
norms are typical cases where the projection can be comeffiegntly. In the experiments, we
take(2,, to be the/s norm.

In addition, since the functiot’* — ﬁ HX—UVTHf? is continuously differentiable on the
(closed convex) unit ball of2,,, the convergence of the BCD procedure is guaranteed siece th
minimum in Eq. (5) is unique [20, Proposition 2.7.1]. The gdete update of/ is given in
Algorithm 1.



Updateof V. A fairly natural way to updaté” would be to compute the closed form solutions
available for each row of . Indeed, both the Ios§}7p HX—UVTHé and the penalization ovi are
separable in the rows df, leading top independent ridge-regression problems, implying in turn
p matrix inversions.

However, in the light of the update 6f, we consider again a BCD scheme that turns out to be
much more efficient, without requiring any non-diagonal nixabversion. The detailed procedure
is given in Algorithm 1. The convergence follows along thensaarguments as those used far

Algorithm 1 Main optimization procedure for solving Eq. (3).
Input: Dictionary sizer, data matrixX.
Initialization: Random initialization ol/, V.
while ( stopping criterionnot reached )
Update (n)geg: closed-form solution given by Lemma (3.1).
Update U by BCD:
fort=1toT,, for k=1tor:
U* g, (UF+||VF|| (X VE-UVTVE)).
Update V' by BCD:
fort=1toT,, for k=1tor: )
VkDiag(c*) Diag ([[U* |5 ¢*+npA1 ) (XTUR-VUTURH|[UH|[35).
Output: Decomposition, V.

Our problem is nofointly convex in(n“)ceg, U andV, which raises the question of the
sensitivity of the optimization to its initialization. Thjpoint will be discussed in the experiments,
Section 4. In practice, the stopping criterion relies onrtiative decrease (typically0—?) in the
cost function in Eq. (2).

Algorithmic complexity. The complexity of Algorithm 1 can be decomposed into 3 tercos;
responding to the update procedure$gf)ccg, U andV'. First, computingn®)geg and( costs
O(r|GI+1G] > geg |Gl +7 Z§:1 |G € G;G > j|) = O(pr|G| +p|G|?). The update of/ requires
O((p+ Tyn)r? + (np + CnT,)r) operations, wheré€' is the cost of projecting onto the unit ball
of Q,,. Similarly, we get for the update df a complexity ofO((n + T,p)r? + npr). In prac-
tice, we notice that the BCD updates for béthand V' require only few steps, so that we choose
T, = T, = 3. In our experiments, the algorithmic complexity simplifte®) (p?+r? max{n, p} +
rpmax{p'/2,n}) times the number of iterations in Algorithm 1.

Extension to NMF. Our formalism does not cover the positivity constraints ohimegative
matrix factorization, but it is straightforward to extendrdramework at the cost of an additional
threshold operation (to project onto the positive orthanthe BCD updates dff andV'.

4 Experiments

We first focus on the application of SSPCA to a face recogmipiooblem and we show that,
by adding a sparse structured prior instead of a simple sgaiisr, we gain in robustness to
occlusions. We then apply SSPCA to biological data to sthdydynamics of a protein/protein
complex. The results we obtain are validated by known ptaseof the complex. In preliminary
experiments, we considered the exact regularization ofiJd], witha = 1, but found that the



obtained patterns were not sufficiently sparse and saN®attherefore turned to the setting where
the parametet is in (0, 1). In the experiments described in this section we chose0.5.

TTIINEHER
JEF4EFENE
ulZdPEUNS
RENENASER

r

Figure 2. Three learned dictionaries of faces with= 36: NMF (top), SSPCA (middle) and
SSPCA(12) (bottom) (i.e., SSPCA wittM| = 12 different patterns of siz8). The dictionary
elements are ordered by explained variance. While NMF gipesse spatially unconstrained pat-

terns, SSPCA finds convex areas that correspond to moreahfdoe segments. SSPCA captures
the left/right illuminations in the dataset by recoveriygnsnetric patterns.




4.1 Facerecognition

We first apply SSPCA on the cropped AR dataset [21] that ctineis2600 face images, corre-
sponding to 100 individuals (50 women and 50 men). For eabjest there are 14 non-occluded
poses and 12 occluded ones (the occlusions are due to ssemjland scarfs). We reduce the
resolution of the images from 165x120 to 38x27 for compateti reasons.

Fig. 2 shows examples of learned dictionaries (for= 36 elements), for NMF, SSPCA
and SSPCA with shared structure. While NMF finds sparse lattadly unconstrained patterns,
SSPCA select sparse convex areas that correspond to a nare segment of faces. For instance,
meaningful parts such as the mouth and the eyes are recdwethd dictionary.

50

===PCA

| | -©=NMF

=B SPCA(10)

== SPCA
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Figure 3: Correct classification rate vs. dictionary sizechedimensionality reduction technique
is used with k-NN to classify occluded faces. SSPCA showebatbustness to occlusions.

We now compare SSPCA, SPCA (as in [12]), PCA and NMF on a famegration problem.
We first split the data into 2 parts, the occluded faces andaestuded ones. For different sizes
of the dictionary, we apply each of the aforementioned dsiwerality reduction techniques to the
non-occluded faces. Keeping the learned dictiondrywe decompose both non-occluded and
occluded faces ofv. We then classify the occluded faces with a k-nearest-beighclassifier
(k-NN), based on the obtained low-dimensional represiemst Given the size of the dictionary,
we choose the number of nearest neighbor(s) and the amouweguérization\ by 5-fold cross-
validatior?.

The formulations of NMF, SPCA and SSPCA are non-convex aral@ssequence, the local
minima reached by those methods are sensitive to the inéttadn. Thus, after having selected the
parameters by cross-validation, we run each algorithmr28diwith different initializations on the
non-occluded faces, divided into a training (900 instapees validation set (500 instances) and
take the model with the best classification score. We sunzmalie results in Fig. 3. We denote

®In the 5-fold cross-validation, the number of nearest raifs) is searched if1, 3,5} while log,()) is in
{4,6,8,...,18}. For the dictionary, we consider the sizes {10, 20, 30, 40, 50, 60, 70}.



by SSPCA(10) (resp. SPCA(10)) the models where we impos&mof the structure of2®, to
have only 10 different nonzero patterns among the learngthbdaries (see Section 3.2).

As a baseline, we also plot the classification score that i@ilvhen we directly apply k-
NN on the raw data, without preprocessing. Because of ital Idictionary, SSPCA proves to
be more robust to occlusions and therefore outperforms ttier anethods on this classification
task. On the other hand, SPCA, that yields sparsity withostircture prior, performs poorly.
Sharing structure across the dictionary elements (seé8e:R) seems to help SPCA for which
no structure information is otherwise available.

The goal of our paper is not to compete with state-of-thaehniques of face recognition,
but to demonstrate the improvement obtained betweeand more structured norms. We could
still improve upon our results using non-linear classifaaie.g., with a SVM) or by refining our
features (e.g., with a Laplacian filter).

4.2 Protein complex dynamics

Understanding the dynamics of protein complexes is impbgance conformational changes of
the complex are responsible for modification of the biolabfanction of the proteins in the com-
plex. For the EF-CAM complex we consider, it is of particulaterest to study the interaction
between EF (adenyl cyclase Bfcillus anthraciy and CAM (calmodulin) to find new ways to
block the action of anthrax [22].

Figure 4. (Top left) Entire protein with biological domaihgghlighted in different colors. The
two blue parts represent the CAM protein, while the rest efdbmplex corresponds to EF. (Top
right, bottom left/right) Dictionary of size = 3 found by SSPCA with the same color code.
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In our experiment, we consider 12000 successive positibie®19 residues of the EF-CAM
complex, each residue being represented by its positidR®iifi.e., a total of 1857 variables).
We look for dictionary elements that explain the dynamicshef complex, with the constraint
that these dictionary elements have to be small convexmegiospace. Indeed, the complex is
comprised of several functional domains (see Fig. 4) whpséia structure has to be preserved
by our decomposition.

We use the norm2® (and@) to take into account the spatial configuration. Thus, wenadiy
extend the groups designed for a 2-dimensional grid (se€llrip a 3-dimensional setting. Since
one residue corresponds to 3 variables, we could eithergegate these variables into a single
one and consider a 619-dimensional problem, or (2) we cosddSection 3.2 to force the three
coordinates of each residue to share the same supportniae1857-dimensional problem. This
second method has given us more satisfactory results.

We only present results on a small dictionary (see Fig. 4 with3). As a heuristic to pick,
we maximize| J;_,supp(V*) [°/(p>_, Isupp(V*) |) to select dictionary elements that cover pretty
well the complex, without too many overlapping areas.

We retrieve groups of residus that match known energefistéible substructures of the com-
plex [22] . In particular, we recover the two tails of the cdexpand the interface between EF and
CAM where the two proteins bind. Finally, we also run our noetlon the same EF-CAM complex
perturbed by (2 and 4) calcium elements. Interestingly, ngeove stable decompositions, which
is in agreement with the analysis of [22].

5 Conclusions

We proposed to apply a non-convex variant of the regulaomahtroduced by [1] to the prob-
lem of structured sparse dictionary learning. We presengéfiicient block-coordinate descent
algorithm with closed-form updates. For face recognititie, dictionaries learned have increased
robustness to occlusions compared to NMF. An applicatiotineéocanalysis of protein complexes
reveals biologically meaningful structures of the compléys future directions, we plan to re-
fine our optimization scheme to better exploit sparsity. \lige antend to apply this structured
sparsity-inducing norm for multi-task learning, in orderttédke advantage of the structure between
tasks.
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