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Evidence-theoretic propagations of temporal belief functions are proposed to deal with possibly dependent observations and for partially supervised learning of HMM. Solutions are formulated in Transferable Belief Model framework and experiments concern a diagnosis problem.

INTRODUCTION

Temporal data modelling and analysis are important in many fields [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF][START_REF] Murphy | Dynamic Bayesian Networks: Representation, inference and learning[END_REF] and one common solution is to use state sequence representation, learning and inference algorithms. A state generally represents a stationarity or a functioning mode in the data and describes the dynamical system at a given time while transitions represent the system dynamics. In practical applications, states are hidden and only features are observable. An additional modelling step is thus required to relate numerical features to states. In order to manage imperfections, the modelling should cope with uncertainty using [START_REF] Klir | Uncertainty-based information. Elements of generalized information theory[END_REF] probability theory, possibility theory or evidence theory, the latter being more general.

Hidden Markov Model (HMM) [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF] is a famous probabilistic and non-deterministic finite state machine for state sequence learning and inference under the concept of hidden states managing both discrete and continuous features. In HMM, the modelling method allows to generate a conditional probability (or a likelihood), denoted b j (O t ) for the j-th state, where

O t = [O 1 O 2 . . . O F ]
is the set of F features. Three problems concerning HMM can be tackled. What if information on states are represented by possibilities or belief functions or in several formalisms? How to express a lack of knowledge without choosing any artificial priors and is it then possible to take it into account in probabilitic HMM learning? What if observations are not independent (conditionally on states)?

In order to tackle these problems, one solution is to marry HMM mechanims with other representations of uncertainty [START_REF] Klir | Uncertainty-based information. Elements of generalized information theory[END_REF]. Mohamad and Gader [START_REF] Mohamed | Generalized HMM -part I: Theoretical frameworks[END_REF] introduced the Generalized HMM in which the generalization is narrowed down to possibility measures and thereby their framework is not able to manage belief functions. One advantage of their framework is the possibility to manage dependent observations by using fuzzy operators but the authors used the product thereby assuming statistical independence. Pieczynski et al. [START_REF] Fouque | Evidential markovian model for data fusion and unsupervised image classification[END_REF][START_REF] Pieczynski | Multisensor triplet Markov chains and theory of evidence[END_REF] pioneered in mixing belief functions with Markov chains leading to promising results. The main idea was to alleviate the problem of prior modelling in Markov chains [START_REF] Soubaras | An Evidential Measure of Risk in Evidential Markov Chains[END_REF] using Dempster's rule of combination (generalizing Bayesian inference [START_REF] Ph | Beliefs functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF]). However, either the prior or the belief state is evidential but not both, thereby underlying probability assumptions are present. Rombaut et al. [START_REF] Rombaut | State recognition in discrete dynamical systems using Petri nets and Evidence theory[END_REF] proposed a generalization of a Petri Net to belief functions based on the Generalized Bayesian Theorem (GBT) [START_REF] Ph | Beliefs functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF]. However, it is not robust to noise because links between states at successive instants are given by an evolving and sparse transition matrix depending on sensors measures. Moreover, no classification criterion was proposed. The fourth paper [START_REF] Ramasso | Human shape-motion analysis in athletics videos for coarse to fine action/activity recognition using Transferable Belief Model[END_REF] proposed a deterministic state machine called Belief Scheduler based on the Temporal Evidential Filter [START_REF] Ramasso | State filtering and change detection using TBM conflict[END_REF]. An original inference criterion based on conflict is proposed for classification of sequences. The problem is the sensitivity of some threshold settings.

Compared to previous work, evidential forward-backward-Viterbi propagations are extended to belief functions with underlying probability assumptions. The extension is based on special operators developed in the Transferable Belief Model (TBM) [START_REF] Ph | The Transferable Belief Model[END_REF] in order to consider possibly dependent observations. The problem of partially supervised learning of probabilistic HMM is also tackled using belief functions. ) and the transition matrix is A = [a ij ], i ∈ {1 . . . N}, j ∈ {1 . . . N} with size N × N and j a ij = 1. Transitions between states start from an initial distribution (t = 1) denoted π i , i ∈ {1 . . . N} and probabilities on states are then updated along time according to transitions and observations. An HMM λ = {A, B, Π} is thus characterized by three elements: the transition matrix A, the observation models B (generating likelihoods b i (O t )) and the initial distribution Π.

PROBABILISTIC HMM IN A NUTSHELL

Estimating the likelihood of an observation sequence given the model is computationally feasible using the forward propagation that evaluates the forward variable α t (s

t j ) = P (O 1 , O 2 . . . O t , s t j |λ) = ∀si∈Ωt-1 α t-1 (s i ) • a ij • b j (O t ).
For a classification problem, we need to compute the of observations for each HMM model λ and then to choose the best model by: λ * = argmax λ L p with log L p = -1 T t log sj ∈Ωt α t (s j ) . The backward propagation allows to compute the backward variable

β t (s i ) = P (O T , O T -1 . . . O t+1 |s i , λ) = ∀sj ∈Ωt+1 • a ij • b j (O t+1 ) • β t+1 (s j ).
Two particular combinations of these variables are used in HMM learning [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. The first is the smooth estimate of probabilities γ t (s t j ) = P (s t j |O 1:T , λ) with γ t (s j ) = α t (s j ) • β t (s j ), that is particularly used to both determine the most probable state at a given instant and models parameters. The second combination is ξ t (s t i , s t+1 j ) = P (s t i , s t+1 j | O 1:T , λ) with ξ t (s t i , s t+1 j ) ∝ α t (s i ) • a ij •b j (O t+1 )•β t+1 (s j ) and allows to compute the expected probabilities of transition by: a ij ∝ T -1 t=1 ξ t (s t i , s t+1 j ). Lastly, the Viterbi algorithm determines the best sequence of hidden states. It is actually a forward propagation where the sum-product operator is replaced by a max-product.

TRANSFERABLE BELIEF MODEL (TBM)

The belief of an agent on subsets of the frame of discernment Ω t can be represented by a belief mass assignment (BBA) m Ωt : 2 Ωt → [0, 1], A → m Ωt (A). The belief mass satisfies A⊆Ωt m Ωt (A) = 1 and can be assigned to singleton state (|A| = 1) or to subsets (|A| > 1), without assumption concerning additivity that is one important difference with probabilities. Conditional BBA can be used to represent state of knowledge, e.g. m Ωt|Ωt-1 [S i ](•) is a BBA defined on Ω t conditionally to subset S i ⊆ Ω t-1 . The mass m Ωt (∅) is the mass of conflict and dividing each belief mass by 1-m Ωt (∅) while forcing m Ωt (∅) = 0 is called Dempster normalization.

Several functions, which are in one-to-one correspondance [START_REF] Ph | The Transferable Belief Model[END_REF], can be computed from a BBA which are then used to simplify the computation of combination rules. In the sequel, the function w Ωt (representing the weights of the canonical conjunctive decomposition (WCD) [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF]) will be used. They are defined ∀B ⊆ Ω t by:

w Ωt (B) = B⊆C q Ωt (C) (-1) |C|-|B|+1 (1)
where the commonality q is q Ωt (B) = C⊇B m Ωt (C). We will also use the credibility bel Ωt (B) = C⊆B m Ωt (C) and the plausibility pl Ωt (B) = C∩B =∅ m Ωt (C) with:

pl Ωt (Ω t ) = 1 -m Ωt (∅) (2) 
The combinations of BBAs can then be achieved by four main rules [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF]: the conjunctive combination (CRC, ∩ ), the disjunctive combination (DRC), the "cautious" CRC (CCRC, ∧ ), and the "bold" DRC. The two last ones are used when sources of belief are not independent. We have [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF]:

w Ωt 1 2 (B) = w Ωt 1 (B) w Ωt 2 (B) (3) 
where is a "generalized" cautious rule (GCR) based on positive t-norms/t-conorms (see [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF]- §5.1 for details). This offers the possibility to use an infinity number of t-norm/tconorm operators ( and ⊥) defined in possibility theory.

For example [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF] the Frank t-norm can be used:

x s y =        x ∧ y if s = 0 x • y if s = 1 log s 1 + (s x -1) • (s y -1) s -1 otherwise (4) 
where s ∈ [0, 1] and ∧ is the minimum. If s = 0 (resp. s = 1), the CCRC (resp. the CRC) is obtained. If the CRC is used and the obtained belief mass is normalized then we obtain Dempster rule [START_REF] Dempster | A generalization of Bayesian inference[END_REF]. The conditioning process is a special case of conjunctive combination using the CRC between a first belief mass (to be conditioned) with a second one (said categorical) where the latter has the particularity to be not nil only for one element A ⊂ Ω t ("A" is the condition).

Decision making in TBM is made by choosing the best hypothesis from the pignistic probability distribution [START_REF] Ph | The Transferable Belief Model[END_REF] obtained ∀s k ∈ Ω t by:

BetP{m Ωt }(s k ) = 1 1 -m Ωt (∅) B⊆Ωt,s k ∈B m Ωt (B) |B| (5)

PARTIALLY-HIDDEN MARKOV MODELS

Before tackling the problem of evidential propagations with dependent observations, let consider an intermediate situation where one uses probabilistic HMM when data are annotated by belief functions. Let O t be an instance of the learning set. One can have information about the belief of this observation to belong to one of the K states, i.e.

each observation in the learning set is annotated by a belief function m Ωt o . This can be useful because one can learn a HMM in a supervised / unsupervised / partially supervised manner. Indeed, in case of supervised learning, the belief function of each data in the learning set is categorical (e.g. for all instances, the whole mass is assigned to one singleton) thus

m Ωt o (B) = 1 for B ⊆ Ω t and ∀B = C ⊆ Ω, m Ωt o (C) = 0.
In unsupervised learning, the belief function of each data is vacuous, i.e. m Ωt o (Ω t ) = 1 and semi-supervised learning is a mixing of both previous cases. Finally, in partially-supervised learning, belief functions are "general" thus

m Ωt o (B) ∈ [0, 1[, ∀B ⊆ Ω t .
So the problem is: how to take into account partial labels (fourth case) in probabilistic HMM learning? For that, we rely [START_REF] Côme | Mixture model estimation with soft labels[END_REF] concerning EM-based parameters learning using partial labels which has shown promising results for static data.

Let consider the forward variable that has a pivotal role in HMM learning:

α t (s j ) = P (O 1 , O 2 . . . O t , s j |λ) = ∀si∈Ωt-1 α t-1 (s i ) • a ij • b j (O t ).
In case a partial knowledge on states at t is available in the form of a belief function on states m Ωt o , it can be taken into account by the conjunctive combination with α t . Since the probabilistic forward variable has only positive values for singletons, the conjunctive combination leads to:

α t ∩ m Ωt o (s i ) = α t (s i ) • pl Ωt o (s i ) (6) 
and thus the forward variable can be rewritten as:

α t (s j ) = ∀si∈Ωt-1 α t-1 (s i ) • a ij • b j (O t ) • pl Ωt o (s j ) (7) 
A similar result can be obtained for the backward variable. Given a learning set annotated by belief functions, only plausibility on singletons need to be stored and then used in the forward and backward recursions for HMM learning 1 .

THE CLASSIFICATION PROBLEM

Evidential forward algorithm -The evidential forward propagation is used to assess the forward variable at instant t and requires 1) the BBA m

Ωt-1 α

[λ] of the forward variable at the previous instant t -1 (conditional to the parameters that governs the corresponding EvHMM), 2) the conditional WCD w Ωt a [S t-1 i ] defined on Ω t conditionally to subsets of preceding states (S t-1 i ⊆ Ω t-1 ) and representing transitions between subsets of states at t -1 and t, and 3) the WCD w Ωt b [O t ] obtained from observations at t. Proposition 1 The computation of the evidential forward variable at t satisfies a "prediction -update" mechanism:

w Ωt α [λ](S t j ) = w Ωt b [O t ](S t j ) S t-1 i ⊆Ωt-1 m Ωt-1 α [λ](S t-1 i ) • w Ωt a [S t-1 i ](S t j ) (8) 
1 Thanks to Pr. Denoeux (HEUDIASYC lab, thierry.denoeux@utc.fr) for discussions on this subject.

GCR rules endow the evidential forward propagation with a panel of operators that could be chosen according to the application and the data [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF]. It has been demonstrated in [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF] that these operators are suited for dependent data. Moreover, another advantage is that the prior on states at t = 1 can be "vacuous" and this state of knowledge is easily represented by w Ω1 α [λ](S 1 i ) = 1, ∀S 1 i ⊆ Ω 1 meaning total ignorance. Besides, this evidential version generalizes the probabilistic one when transitions, observations and prior are all Bayesian (i.e. the belief masses are only on singleton hypotheses) and when one uses Dempster rule [START_REF] Dempster | A generalization of Bayesian inference[END_REF]. The complexity of the forward variable is in

T × |Ω t | × 2 |Ωt| .
A conflict may appear at each instant between prediction and observation meaning both quantities are contradictory. This conflict must be cancelled out because it is absorptive by a conjunctive rule. Actually, the required normalization procedure is the same as in probabilistic HMM [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. Unlike probabilistic HMM where the normalisation process consists in redistributing uniformly 1j α t (j) to each state at t, belief function framework provides complex and sound redistribution rules [START_REF] Ph | Analyzing the combination of conflicting belief functions[END_REF]. The parallel between both formalisms is more obvious when seeing the (seldom emphasized) relation between conflict and plausibility (Eq. 2) that represents a bridge between HMM and EvHMM. As shown in many applications (object association [START_REF] Ristic | The TBM global distance measure for the association of uncertain combat ID declarations[END_REF], image processing [START_REF] Capelle | Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information[END_REF], change detection and state sequence recognition [START_REF] Ramasso | State filtering and change detection using TBM conflict[END_REF][START_REF] Ramasso | Human shape-motion analysis in athletics videos for coarse to fine action/activity recognition using Transferable Belief Model[END_REF]), conflict is a useful information that is used below for classification of state sequences.

Classification in EvHMM -Given an observation sequence O 1:T (length T ) and a set of N EvHMM λ 1...N , how to choose the EvHMM that best fits observations? Proposition 2 The lower is the conflict throughout the whole observation sequence, the better is the EvHMM λ for explaining these observations. The whole conflict and the best EvHMM are given by:

L c (λ n ) = 1 T T t=1 log(1 -m Ωt α [λ n ](∅)) (9a) λ * = argmax n L c (λ n ) (9b) 
This criterion reduces to the probabilistic one when using Dempster rule and Bayesian BBAs. Conclusively, the evidential forward algorithm can be used for online filtering of belief functions on states and for the classification of observation sequences in five steps: 1) the initial BBA (t = 1) on states can be vacuous, 2) Eq. 8 is applied from t = 2 to T , 3) the conflict at t is stored and then redistributed, 4) the classification criterion (Eq. 9) is finally computed.

TIME-INSTANT STATE RECOGNITION AND TRANSITION ESTIMATION

Evidential backward algorithm -The evidential backward algorithm is similar to the forward one and requires the BBA ] are obtained from plausibilities by calculating the conditional commonalities using the GBT [START_REF] Ph | Beliefs functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF]:

q Ωt|Ωt+1 a [S t+1 j ](S t i ) = s t i ∈S t i pl Ωt+1|Ωt a [s t i ](S t+1 j ) (11) 
then used in Eq. 1 to obtain WCDs. Unknown prior at T is modelled by a vacuous BBA (w ΩT β (S T i ) = 1, ∀S T i ⊆ Ω T ). Eq. 10 reduces to the probabilistic case if all BBAs are Bayesian and if Dempster rule is used.

Instant state recognition -As in probabilistic HMM, the conjunctive combination of both forward and backward variables (called γ-variable) is performed when observations are available as a whole. Proposition 4 The γ-variable is given by:

w Ωt γ (S t j ) = w Ωt α (S t j ) w Ωt β (S t j ) (12) 
One has to use the same rule as in the forward and backward variables. The γ-variable can then be exploited for two functionalities. The first one is offline smoothing of belief functions on states. The second one is the detection of the best state s * t at a given instant and for a given EvHMM. This state is found out by maximizing the pignistic probability (Eq. 5) based on m Ωt γ , ∀t ∈ {1 . . . T }, i.e. s * t = argmax si∈Ωt BetP{m Ωt γ }(s i ). As in the probabilistic case [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF], this technique is not always well-suited for state sequence recognition because is too "local". Instead, an evidential version of the Viterbi algorithm is proposed ( § 7).

Transition estimation -One can mimic the computation of the so-called ξ-variable [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF] that is used in probabilistic HMM for transition estimation in an Expectation-Maximization (EM) learning process. A proposition has been formulaed in [START_REF] Ramasso | Forwardbackward-viterbi procedures in TBM for state sequence analysis using belief functions[END_REF] for independent observations. However, by doing so, one can face a serious problem: loosing the interest of belief functions. Indeed, EM is an iterative procedure while (evidential) transition estimation is based on conjunctive combinations. Therefore, due to the repeted conjunctive combinations at each iteration, the transition matrix is expected to gradually tend to a probabilistic one. Therefore, we rather propose below an estimation formula of transitions that is independent of transitions themselves. It consists in computing the expected belief mass of making a transition from one state to another. For that, it is required to combine conjunctively two observed BBAs defined at two successive instants and then taking the mean of these belief masses as proposed below. Proposition 5 An estimation of the expected transition from subsets to subsets from observations is given by: m is the vacuous extension [START_REF] Ph | The Transferable Belief Model[END_REF] of the belief mass m Ωt b [O t ] on the cartesian product defined by: m

Ωt↑Ωt×Ωt+1 b (B) = m Ωt b (C) if C × Ω t+1 = B
and 0 otherwise. If one has prior information on transitions, it can be combined conjunctively with observations in Eq. 13.

The backward recursion requires Eq. 11 to be computed and for that one needs plausibilities conditional to singleton states. They can be obtained from the joint belief mass distribution (Eq. 13) by conditioning it by each singleton state s t i ∈ Ω t followed by a marginalization onto Ω t+1 , formally m Ωt×Ωt+1 â [s t+1 j ] ↓Ωt (the two processes are explained in [START_REF] Ph | Beliefs functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF][START_REF] Ph | The Transferable Belief Model[END_REF]). This solution satisfies the constraint of independence of conditional beliefs (transition) to apply the GBT. Due to the duality GBT-DRC [START_REF] Ph | Beliefs functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF], Eq. 11 computes implicitly the beliefs conditional to unions of states by the disjunctive rule. Transitions expressed as a joint belief mass can also be used directly in both forward-backward recursions and this requires to compute the conjunctive combination on a joint space followed by a marginalization onto Ω t to obtain the evidential variables at t. Eq. 13 has been used to estimate the parameters of the Temporal Evidential Filter [START_REF] Ramasso | State filtering and change detection using TBM conflict[END_REF].

STATE SEQUENCE FROM OBSERVATIONS

For a given model, the goal is to determine the best state sequence s 1 * , s 2 * , . . . s T * given the sequence of observations O 1:T . In probabilistic HMM, the powerful Viterbi algorithm, based on dynamic programming, achieves this goal by selecting the sequence with maximum likelihood without computing the N T sequences.

An optimal evidential Viterbi decoding -If we consider sequences of singleton states s 1 , s 2 , . . . s T , then one can apply exactly the same algorithm as in probabilistic HMM except that transitions and observations are represented by the plausibilities on (and conditional to) singletons computed from the related belief masses. The Viterbi metric is a thus propagated plausibility initialized to 1 at the beginning of the sequence reflecting missing prior. The complexity is then the same as in the probabilistic case.

A sub-optimal evidential Viterbi decoding -The previous algorithm, even if optimal in the sense of maximum plausibility / likelihood, reduces belief functions to single values due to the conditioning and propagation processes.

In [START_REF] Ramasso | Forwardbackward-viterbi procedures in TBM for state sequence analysis using belief functions[END_REF] was proposed an algorithm that draws benefits from belief function modelling and that is able to postpone the decision concerning the best predecessors. For that, at each step, it updates a propagated metric that is a belief function w Ωt δ . This algorithm is a Viterbi-like decoder since decisions are not directly propagated. In the sequel, conditioning on EvHMM parameters [λ] are omitted for simplicity. Proposition 6 When observations are not independent, the Viterbi-like metric at t is defined ∀S t j ⊆ Ω t by:

w Ωt δ (S t j ) = w Ωt b [O t ](S t j ) S t-1 ⊆Ωt-1 w Ωt|Ωt-1 a [S t-1 ∩ A t-1 ](S t j ) • m Ωt-1 δ (S t-1 ) (14) 
where A t-1 = s t j ∈Ωt ψ (s t j ) is the union of predecessors of states at t. The main idea behind conditioning on the set of predecessors A t-1 is to make a one-step forward propagation of the belief masses of the most important subsets of m Ωt-1 δ . Set A t-1 is obtained by first searching which is the predecessor state at t -1 of each state at t and this is performed in three steps. First, since the predecessor of a state s t j is unknown, it is needed to condition w

Ωt-1 δ on all possible candidates s t-1 i ∈ Ω t-1 . Thus, a WCD w Ωt δ,i is computed by applying Eq. 14 and replacing w

Ωt|Ωt-1 a [S t-1 ∩ A t-1 ] by w Ωt|Ωt-1 a [S t-1 ∩ s t-1 i
]. The second step aims at making a decision concerning predecessors for each state s t j based on m Ωt δ,i using the decision criterion (Eq. 5):

P t [s t-1 i ](s t j ) = BetP{m Ωt δ,i }(s t j ) (15) 
Conditioning on s t-1 i in the first step is equivalent to a conjunctive combination with a categorical BBA ( § 3) and the generated conflict m Ωt δ,i (∅) quantifies how irrelevant is the hypothesis "the predecessor of s t j is s t-1 i ". When the two first steps are done for all previous states s t-1 i ∈ Ω t-1 , the most probable predecessor of s t j ∈ Ω t is found by:

ψ t (s t j ) = argmax s t-1 i ∈Ωt-1 1 -m Ωt δ,i (∅) • P t [s t-1 i ](s t j ) (16) 
where ψ t (s t j ) stores the best predecessor of s t j . Note that these three first steps are strictly equivalent to the probabilistic mechanism. Then, values of ψ t are used to generate A t-1 (Eq. [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF]. They are also used to compute a propagated metric defined at each t by: 

Q t (s t * , λ) = Q t-1 (ψ t (s t j ), λ) • pl Ωt δ (s t j ) (17) 

ILLUSTRATION ON FAULT DIAGNOSIS

The evidential Viterbi-like decoder is illustrated on challenge data of diagnostic and prognostic of machine faults from the Int. Conf. on Prognostics and Health Management [START_REF] Saxena | Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation[END_REF] (available at https://dashlink.arc.nasa. gov/member/goebel/). Data set consists of multiple multivariate time series with sensor noise (blue dots in Fig. 1). Each time serie is from a different engine of the same fleet and each engine starts with different degrees of initial wear and manufacturing variation unknown to the user and considered normal. The engine is operating normally at the start and develops a fault at some point. The fault grows in magnitude until system failure (we have used the file train FD001.txt for training and test FD001.txt for testing).

Given a new observation sequence measured on an engine, the goal is to diagnose its current mode and to determine whether the system is faulty. A fault occurs when a sequence of four modes is detected: steady → transition → up → faulty. One detector is built for each mode with an EM run on the training set using mixture of Gaussians with three components. A four states EvHMM is built where the evidential transition matrix is estimated as proposed in this paper and using the training set. The chosen GCR operator is the Frank t-norm (Eq. 4) with parameter s = 0.9. To exploit the EvHMM, we first use the GBT to transform the likelihoods generated by each detector into belief function distributions [START_REF] Ph | Beliefs functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF][START_REF] Delmotte | Target identification based on the Transferable Belief Model interpretation of Dempster-Shafer model[END_REF]. These beliefs are then used in the Viterbi decoder. To compare EvHMM with HMM, we transform the evidential transition matrix into a pignistic one and use the likelihoods directly.

An illustration of the detection by both systems is given in Fig. 1 (HMM in light magenta and EvHMM in bold red). The differences in detections come mainly from the lack of data for HMM learning while EvHMM are less sensitive. This lack of sensitivity on the size of the dataset, peculiar to belief functions [START_REF] Côme | Mixture model estimation with soft labels[END_REF], is important in fault diagnosis to decrease the number of tests on machines to build datasets. Moreover, the evidential Viterbi is better in part because it postpones the decision until the last instant thanks to the conditioned forward propagation. Table 1 presents confusion matrices of detections by HMM and EvHMM where EvHMM provides a classification rate of 75% against 68% for HMM. Confusion matrices reflects also an obvious mixing between "transitions" with both "steady" and "up" phases. One solution should be to consider "transition" as belonging to both "steady" and "up" phases while keeping only three modes. Sharing the same training set will not be a problem using GCR rules.

CONCLUSION

Extensions of HMM propagations to belief functions are presented. Contributions of belief functions to HMM are: 1) Possibility to process temporal belief functions, 2) Opportunity to mix several uncertainty formalisms into a flexible one, 3) Partially supervised learning of HMM, 4) Processing possibly-dependent observations by parametrized operators [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF], 5) Availability of a variety of combination operators and normalization processes. Higher computational cost is expected but solutions exist to reduce it. A thorough exploration of EvHMM is required for further applications. Moreover, generalizing the approach developed here to other graphical models as well as the development of a criterion for learning in EvHMM taking into account both models and transitions together are under study.

Proposition 3

 3 of the backward variable defined on subsets of states at t+1, the set of conditional plausibilities pl Ωt+1 a [S t i ] representing transitions from subsets of states at t and t + 1 and the observed BBA m Ωt+1 b [O t+1 ]. The belief on states at t in the backward recursion is obtained by: the conjunctive combination of BBAs at Ω t+1 , i.e. m

Fig. 1 .

 1 Fig. 1. EvHMM and HMM Viterbi decodings. Modes: steady (1), transition (2), up (3), faulty (4). Blue dots: observations with values normalized in [0, 4] for visualization.

  States are said hidden: only F observations in O t are available at instants t ∈ {1..T } (T is the sequence length). The number of states is N and s t At each t, the likelihood of state i conditional to the cur-rent observation is denoted b i (O t ) = P (O t |s t i ) and is provided by a modelling technique such as a mixture of Gaussians[START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. The transition from a state s t-1

	i	to a state s t j is
	made with a probability a ij = P (s t j |s t-1 i	

i ∈ Ω t is the i-th state at t where Ω t = {s t 1 , s t 2 , . . . s t N } is the frame of discernment.

Table 1 .

 1 Confusion matrices for HMM (top, global accuracy: 68%) and EvHMM (bottom, global accuracy: 75%), values are percents.

		Steady	Transition	Up	Faulty
	Steady	82	48	7	0
	Transition	17	42	18	0
	up	1	1 0	57	4
	Faulty	0	0	1 8	96
		Steady	Transition	Up	Faulty
	Steady	87	36	2	0
	Transition	13	59	25	0
	up	0	5	56	2
	Faulty	0	0	1 7	98