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FINITE  ELEMENT  ANALYSIS  OF A FAST 
ELECTROMAGNETIC  ACTUATOR 

A.Foggia,N.Burais,L.Krahenbuhl,A.Nicolas 

ABSTRACT 

The  present  paper  is  devoted to  the 
modelling  of  a  fast  acting  linear 
electromagnetic  actuator  in  which  the 
mechanical  and  electrical  time  constants  are 
of  the  same  order  of  magnitude.  The 
computation  of  the  electromagnetic  and  the 
mechanical  quantities  must  then  be  performed 
simultaneously.  This  paper  describes  the 
algorithm  used to solve 00th the  Maxwell's 
equations  and  the  equation  of  motion. 

INTRODUCTION 

In  many  industrial  applications,  it is 
necessary to use  linear  electromechanical 
actuators  in  which  the  rapidity  of 
displacement of. the  moving  part  is of prime 
importance.  The  geometry  of  such  a  device 
is  generally  axisymmetric : it  consists  of 

an  electromagnet  of  a  solenoidal  shape in 
which  a  cylindrical  ferromagnetic  yoke  is 
allowed to  have  a  linear motion.  Usually,  the 
excitation  coil  is  associated  with  a  fixed 
magnetic  circuit. 
Because  of  mechanical  constraints,  and  for 
economic  reasons,  the  magnetic  circuits  fixed 
and  moving,  may  be  solid.  The  designer  of 
such  circuits  is  then  faced  with  a  problem  of 
eddy  current  distribution  in  addition to  the 
magnetic  saturation  of  the  materials. 

Regarding  the  excitation  current  in  the 
coil,  it  is  desirable  that  this  current  has  a 
time  variation  adapted to the  desired  time 
response of the  moving  yoke.  In  our  case,  we 
assumed  that  the  current  is  provided  by  an 
electronic  current  source, e.g. the  current 
density  in  the  excitation  coil 1s assumed  to 
be known  at  every  time  instant. 

Finally,  the  mechanical  time  constant  of 
this  device  is of the  same  order  of  magnitude 
as the  electrical  one.  For  this  reason,  the 
position  of  the  moving  yoke  must  be  known 
with  respect to time  in  order to take  into 
account  the  mutual  interaction  between  the 
magnetic  quantities  and  the  mechanical 
position and veloclty of the yoke. 

This  is  why,  a  step  by  step  procedure  has 
been  developed  that  associates  the 
electromagnetic  equations  and  the  equation of 
motion.  Maxwell's  equations  have  been  solved 
using  a  finite  element  procedure in  space  and 
an  implicit  scheme  for  the  time  variation  of 
the  electromagnetic  quantities.  The  equation 
of  motion  which  is  a  second-order 
differential  equation  has  been  solved  using  a 
suitable  time  discretization  scheme.  The 
solution  of  the  discretized  quantities  has 
been  performed  by  means of  an  incomplete 
Choleski  factorization  associated  with  a 
conjugate  gradient  algorithm.  The  program 
has  been  implemented on  an HP1000 computer. 
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ELECTROMAGNETIC  AND  MOTION  EQUATIONS 

The  equations  that  govern  the  time  and 
space  variations  of  the  electromagnetic 
quantities  are  the  well-known  Maxwell's 
equations. In  the  absence  of  displacement 
currents  these  equations  read  as  follows : 

+ 
div B = 0 

e -. 
B = p . H  

using  the  following  notations : 
4 

B : flux  density 

ZX : excitation  current  density x : eddy  current  density 
E : electric  field 
u , p  : conductivity  and  permeability of 
the  materials 

: magnetic  field 

To  solve  these  equations  in  the  axisymmetric 
geometry  of  the  actuator  represented  in 
figure 1 ,  it  is  convenient  to  use  the 
magnetic  vector  potential  defined  by : 

with  the  Coulomb  gauge 

div A = 0 
+ 

( 3 )  

when  using  the  vector  potential as defined 
above,  one  obtains: 

which  is  the  equation  to  be  solved. 
In  the  particular  case  of  an  axLsymmetric 
geometry,  the  vector  potential A ha5 one 
component  only  and  this  scalar  function 
depends  on 2 space  variables (r, z )  and  time 
t. Equation ( 4 )  then  transforms  into : 

-(-.-) + b ( L . L  b(r .A) )  = 0. - - Jex ( 5 )  6 1 SA b A  
b z  P b z  b r  P r ' b r  b t  

Equation (5) has  to  be  solved  taking  into 
account  the  koundary  conditions  and in the 
reference  frame  of  the  fixed  and  the  moving 
parts  of  the  actuator. The position of the 
moving  yoke  is  defined  by  the  equation of 
motion  given  by : 
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where  the  following  notations  are  used : 

m : mass  of  the  yoke 
,i : friction  coefficient 
k : rigidity  coefficient 
Fe : electric  force 
Fr : resistive  force 

Due  to  the  low  inertia  of  the  yoke,  the  time 
constant  of  the  motion  is  of  the  same  order 
of  magnitude as tho  time  constant  of  the 
excitation  coil. For  this  reason,  equations 
(5) and (6) must  be  solved  simultaneously at 
every  time  instant. 

DISCRETIZATION OF THE  EQUATIONS 

In  order  to  solve  equations (5) and (6) 
it  is  necessary  to  adopt  a  numerical 
algorithm  that  takes  into  account  the  shape 
of  the  different  parts  of  the  actuator,  the 
non  linearity  of  the  magnetic  circuit  and  the 
time  variations 
of the  different  quantities.  Moreover  such  a 
method  must  be  stable  with  respect  to  time 
[ I ] .  
For  all  these  reasons  we  have  chosen  a  finite 
element  method  in  space  for  equation (5) ; 
after  discretization  of  the  domain,  the 
vector  potential  has  been  approximated  using 
second-order  triangular  elements. In each 
element,  the  vector  potential  varies 
according  to  equation ( 7 )  : 

6 

A(r,z , t )  = Ni(r,z) . Ai(t) ( 7  1 
1 .  

where Ni( r, z) are second-order 
I21. 
After  assembling  all  the 
equations,  a  differential  system 
is  obtained  which  may  be  written 

M . A + N . z = S  dA 

Where M and  N  are n x n matrices 

polynomials 

elementary 
of  equations 
as I.1 i : 

; n being 
the  number of nodes  of  the  finite  element 
grid  used. In  equation ( 8 ) ,  the  coefficients 
of  the  matrix  M  depend on the  permeability of 
the  magnetic  medium  which  makes  equation ( 8 )  
a. non-  linear  one. In matrix N, the 
coefficients  are  constant ; they  depend on 
the  conductivity  of  the  different  media. S is 
a  column  vector  representing  the  excitation 
function  due to the  current  flowing  in  the 
coil. 

SOLUTION OF THE  DISCRETIZED  EQUATIONS 

To solve  equation (81,  an  implicit  method 
has  been  used.  Such  a  method has  been 
proposed  many  years ago, and  has  proved  to  be 
very  efficient  in  the  computation  of  eddy 
currents  in  linear  and  non-linear  media [ I i .  
The  implicit  method  consists  of  writting 
equation ( 8 )  at  time n at 

M". A n + r t .  (A" - An'1) E S 1 9 )  

Solving  with  respect to A" leads  to 

n 
A = ( M  + -  n Nl-1 

At . (s" + An-1) (10) At 

Equation (IO) is  non-linear  and  the  solution 
is  obtained  by  successive  iterations. 
Provided  the  time  step  At  is  small  enough, 
the  number  of  iterations  is  reduced.  The 
solution  of  the  system  of  equations,  with  a 
good  approximation  of  the  coefficients  of M, 
has  been  obtained  by  means  of an ICCG 
procedure [ 3 i .  Once  equation (10) has been 
solved,  the  electromagnetic  force  exerted on 
the  moving yoke is  computed  in  order  to  solve 
the  equation  of  motion (6). This is a second 
order  equation  with  constant  coefficients  and 
may be  written  at  time  n  At  as : 

m f = Fn -Agn - k zn - Fr n '  e ( 1 1 )  

the  speed Z, and  the  position Z, of the 
moving  yoke  may  be  approximated  as 

i =,i 
n n-1 + (1  -p).Zn - lAt+,YeZn.At ( 1 2 )  

z = z  f 2 A t  + (1 -/3).Zn 1. A t 2  n n-1 n-1 - 2  - 
At2 + p Zn. 2 

( 1 3 )  

Equations ( 1  1 1 to (1 3 )  may  be  solved 
simultaneously  provided  the  electromagnetic 
force  is  known. p and V are  positive 
coefficients  less  than 1 121 . 

In  the  program  that  has  been  written  to 
simulate  the  actuator,  all  the  quantifies  are 
computed at every  time  instant.  Starting  with 
a  given  excitation  current  in  the  coil  and 
the  position  of  the  yoke at rest,  the  vector 
potential  is  then  computed  which  permits  the 
computation  of  the  force  exerted on the yoke. 
The  solution of the  mechanical  equation 
allows  the  position of the  yoke  to  be  known 
for  the  computation  of  the  electromagnetic 
quantities  for  the  next  time  interval. 

In figure 2, the  computed  results  are 
presented. It is  seen  that  the  eddy  currents 
behave  like  a  viscosity  and  introduce  a  delay 
in  the  development  of  the  force  and  the 
motion  of  the  yoke  is  delayed  accordingly. 

CONCLUSION 

In this  paper,  we  have  presented  a  method 
that  allows  Maxwell's  equations  to  be  solved 
simultaneously  with an equation of motion. It 
has  consisted  of  coupling  the  differential 
equation  obtained  after  discretizing 
Maxwell's  equations  with  finite  elements  in 
space. To this  differential  system,  it  has 
been  necessary to add  the  mechanical 
equation. A suitable  time  discretization 
scheme has permitted  to  transform  these 
differential  equations  into  algebraic  ones 
that  has  been  solved  using an ICCG  method. 

The method  described  in  this  paper  has 
been  experimented on .an electromagnetic 
linear  actuator  that  has  a fast time 
response,  and  has  given  satisfactory  results. 



1944 

This  method  coupling  mechanical  and 
electrical  equations  may  be  extended to the 
modelling  and  simulation  of  other 
electromechanical  devices  in  which  the  time 
constants  of  different  nature  are of the  same 
order  of  magnitude. 
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Figure 2 : Computed  force and displacement 


